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Abstract. We propose an alternative approach to probability theory closely re-
lated to the framework of numerosity theory: non-Archimedean probability
(NAP). In our approach, unlike in classical probability theory, all subsets of an
infinite sample space are measurable and only the empty set gets assigned prob-
ability zero (in other words: the probability functions are regular). We use a
non-Archimedean field as the range of the probability function. As a result, the
property of countable additivity in Kolmogorov’s axiomatization of probability is
replaced by a different type of infinite additivity.
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1. Introduction

Kolmogorov’s classical axiomatization embeds probability theory into measure the-
ory: it takes the domain and the range of a probability function to be standard
sets and employs the classical concepts of limit and continuity. Kolmogorov starts
from an elementary theory of probability “in which we have to deal with only a
finite number of events” [16] (p. 1). We will stay close to his axioms for the case
of finite sample spaces, but critically investigate his approach in the second chapter
of [16] dealing with the case of “an infinite number of random events”. There, Kol-
mogorov introduces an additional axiom, the Axiom of Continuity. Together with
the axioms and theorems for the finite case (in particular, the addition theorem, now
called ‘finite additivity’, FA), this leads to the generalized addition theorem, called
‘σ-additivity’ or ‘countable additivity’ (CA) in the case where the event space is a
Borel field (or σ-algebra, in modern terminology).

Within Kolmogorov’s probability theory, it may happen that a non-empty sub-
set of an infinite sample space gets assigned measure zero; this has been called a
failure of ‘regularity’ (see e.g. [17, 12]). In particular, for fair lotteries on uncount-
able domains, such as R or 2N, all countable subsets get assigned probability zero.
The observation that an event of probability zero may nevertheless happen, is a
well-known hurdle in the interpretation of standard probability theory, which also
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Table 1. Various quantitative probability theories.

Domain: Standard Ideal
Range:

R (Archimedean field) Kolmogorov (b) Loeb

Non-Archimedean field (c) NAP (a) Nelson

complicates the didactics of the topic [12]. Moreover, some problems—such as a fair
lottery on N or Q—cannot be modeled within Kolmogorov’s framework at all. Weak-
ening additivity to finite additivity, as de Finetti advocated [10], solves the latter
issue but introduces strange consequences of its own [13]. It has been suggested that
using infinitesimals, as available in the framework of nonstandard analysis (NSA),
would allow describing regular probability functions on infinite domains [18, 21]. We
investigate this claim further.

Multiple alternative approaches to probability theory have been proposed in
the literature. We focus here on proposals that involve changing the domain or the
range of the probability function to a nonstandard set in the sense of NSA. We can
thus distinguish three categories of alternatives, presented in Table 1: the probability
function has (a) both a nonstandard domain and a nonstandard range, (b) only a
nonstandard domain, or (c) only a nonstandard range.

Alternative (a) is easily obtained in the context of NSA by applying the Trans-
fer Principle (see e.g. [6]) to standard Kolmogorovian probability functions on finite
domains. An example of this approach was developed by Nelson: in [20], he pre-
sented his “Radically elementary probability theory” based on non-Archimedean,
hyperfinite sets as the domain and range of the probability function. His framework
has the benefit of making probability theory on infinite sample spaces equally sim-
ple and straightforward as the corresponding theory on finite sample spaces; the
appropriate additivity property is hyperfinite additivity. Nelson’s theory is regular.
However, this elegant theory does not apply directly to our current quest for finding
regular probability functions on standard infinite sets, such as a fair lottery on N,
Q, R, or 2N.

Alternative (b) is the dominant line of research in nonstandard measure and
integration theory; it is concerned mainly with finding new results in standard mea-
sure and integration theory [9]. A measure with standard range and nonstandard
domain can be obtained in NSA by starting from (a) and applying the standard
part function afterwards, which maps a hyperreal measure to the unique nearest
real value (see e.g. [6]). Probability measures of this type are known as Loeb mea-
sures [19]. Although the well-developed theory of Loeb measures has proven fruitful
in many applications, it too simply does not address the problem that concerns us
here.
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To describe regular probability functions on standard infinite domains, we need
to investigate the previously unexplored alternative (c). We develop this new ap-
proach to probability theory, which we call non-Archimedean probability (NAP)
theory, in the course of this paper. We formulate new desiderata (axioms) for a
concept of probability that is able to describe the case of a fair lottery on N, as
well as other cases where infinite sample spaces are involved. As such, the cur-
rent article generalizes the solution to the infinite lottery puzzle presented in [23].
Within NAP-theory, the domain of the probability function can be the full power-
set of any standard set from applied mathematics, whereas the general range is a
non-Archimedean field. We investigate the consistency of the proposed axioms by
giving a model for them. We show that our theory can be understood in terms of
a novel formalization of the limit and continuity concept (called ‘Λ-limit’ and ‘non-
Archimedean continuity’, respectively). Kolmogorov’s CA is replaced by a different
type of infinite additivity.

Observe that we do not start from NSA as our background theory. And yet, it
does turn out that our theory depends on the same kind of mathematical structures
that power NSA (such as the existence of free ultrafilters). We also do not presuppose
in the axioms that probability is a special case of measure. However, our theory does
suggest an interesting counting measure, which also applies to infinite sets: for fair
lotteries, the probability assigned to an event by NAP-theory is directly proportional
to the ‘numerosity’ of the subset representing that event [4]. We mentioned the failure
of regularity as a problem in the didactics of probability theory. Although much of
the material presented here is too advanced to be taught at the level of high school
students or college freshmen, we do think that an introduction to probability by
means of the axioms of our NAP-theory is a realistic option. After all, standard
probability theory is also taught as a rule-based system, without proving that the
rules are consistent by constructing a model for them. There is a philosophical
companion article [7] to this article, in which we dissolve philosophical objections
against using infinitesimals to model probability on infinite sample spaces.

We regard all mentioned frameworks for probability theory—the four quadrants
of Table 1—as mathematically correct theories (i.e. internally consistent), with a dif-
ferent scope of applicability. For example, if one wants to describe a fair lottery on
the sample space N, NAP-theory is the only option. It also allows one to subse-
quently conditionalize on any subset of N. This example is very simple, but it shows
that NAP can treat problems which do not make sense in standard probability the-
ory, and which are not addressed directly by the existing nonstandard approaches.
Exploring the connections between the various theories helps to understand each
of them better. We agree with Nelson [20] that the infinitesimal probability val-
ues should not be considered as an intermediate step—a method to arrive at the
answer—but rather as the final answer to probabilistic problems on infinite sam-
ple spaces. Approached as such, NAP-theory is a versatile tool with epistemological
advantages over the orthodox framework.
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1.1. Some notation

Here we fix the notation used in this paper. We use the phrase ‘fair lottery’ to refer
to any uniform probability measure. Furthermore, we set:

• N = {1, 2, 3, . . .} is the set of positive natural numbers;
• N0 = {0, 1, 2, 3, . . .} is the set of natural numbers;
• if A is a set, then |A| will denote its cardinality;
• if A is a set, P(A) is the set of the parts of A, Pfin(A) is the set of finite parts

of A, and P0
fin(A) is defined as Pfin(A) \∅;

• for any set A, χA will denote the indicator function (or characteristic function)
of A, namely

χA(ω) =

⎧⎨
⎩

1 if ω ∈ A

0 if ω /∈ A;

• if F is an ordered field and a, b ∈ F, then we set

[a, b]F = {x ∈ F | a ≤ x ≤ b}
[a, b)F = {x ∈ F | a ≤ x < b} ;

• if F is an ordered field and F ⊇ R, then F is called a superreal field;
• for any set D, F (D,R) will denote the (real) algebra of functions u : D → R

equipped with the following operations: for any u, v ∈ F (D,R), for any r ∈ R,
and for any x ∈ D:

(u + v)(x) = u(x) + v(x),

(ru) (x) = ru(x),

(u · v)(x) = u(x) · v(x);

• if F is a non-Archimedean field, then we set

x ∼ y ⇔ x− y is infinitesimal ⇔ ∀n ∈ N, |x− y| < 1
n

;

in this case we say that x and y are infinitely close;
• if F is a non-Archimedean superreal field and ξ ∈ F is bounded, then st(ξ)

denotes the unique real number x infinitely close to ξ.

2. Kolmogorov’s probability theory

2.1. Kolmogorov’s axioms

Classical probability theory is based on Kolmogorov’s axioms (KA) [16]. We give
an equivalent formulation of KA, using PKA to indicate a probability function that
obeys these axioms. The sample space Ω is a set whose elements represent elementary
events.
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Axioms of Kolmogorov

• (K0) Domain and range. The events are the elements of A, a σ-algebra over Ω,1

and the probability is a function

PKA : A→ R.

• (K1) Positivity. ∀A ∈ A,

PKA(A) ≥ 0.

• (K2) Normalization.

PKA(Ω) = 1.

• (K3) Additivity. ∀A,B ∈ A such that A ∩B = ∅,

PKA(A ∪B) = PKA(A) + PKA(B).

• (K4) Continuity. Let

A =
⋃
n∈N

An

where ∀n ∈ N, An ⊆ An+1 ∈ A; then

PKA(A) = sup
n∈N

PKA(An).

We will refer to the triple (Ω,A, PKA) as a Kolmogorov Probability space.

Remark 1. If the sample space is finite then it is sufficient to define a normalized
probability function on the elementary events, namely a function

p : Ω → R

with ∑
ω∈Ω

p(ω) = 1.

In this case the probability function

PKA : P (Ω) → [0, 1]R

is defined by

PKA(A) =
∑
ω∈A

p(ω) (1)

and KA are trivially satisfied. Unfortunately, eq. (1) cannot be generalized to the
infinite case. In fact, if the sample space is R, an infinite sum might yield a result
in [0, 1]R only if p(ω) = 0 for at most a denumerable number of ω ∈ A.2 In a sense,
the Continuity Axiom (K4) replaces eq. (1) for infinite sample spaces.

1A is a σ-algebra over Ω if and only if A ⊆ P (Ω) such that A is closed under complementation,

intersection, and countable unions. A is called the ‘event algebra’ or ‘event space’.
2Similarly, in classical analysis the sum of an uncountable sequence is undefined.
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2.2. Problems with Kolmogorov’s axioms

Kolmogorov uses [0, 1]R as the range of PKA, which is a subset of an ordered field and
thus provides a good structure for adding and multiplying probability values, as well
as for comparing them. However, this choice for the range of PKA in combination
with the property of Countable Additivity (which is a consequence of Continuity)
may lead to problems in cases with infinite sample spaces.
Non-measurable sets in P (Ω). A peculiarity of KA is that, in general A = P (Ω).
In fact, it is well-known that there are (probability) measures (such as the Lebesgue
measure on [0, 1]) which cannot be defined for all the sets in P (Ω). Thus, there are
sets in P (Ω) which are not events (namely elements of A) even when they are the
union of elementary events in A.3

Interpretation of PKA = 0 and PKA = 1. In Kolmogorov’s approach to probability
theory, there are situations such that:

PKA(Aj) = 0, with j ∈ J (2)

and

PKA

⎛
⎝⋃

j∈J
Aj

⎞
⎠ = 1. (3)

This situation is very common when J is not denumerable. It looks as if eq. (2) states
that each event Aj is impossible, whereas eq. (3) states that one of them will occur
certainly. This situation requires further epistemological reflection. Kolmogorov’s
probability theory works fine as a mathematical theory, but the direct interpretation
of its language leads to counterintuitive results such as the one just described. An
obvious solution is to interpret probability 0 as ‘very unlikely’ (rather than simply as
‘impossible’), and to interpret probability 1 as ‘almost surely’ (instead of ‘absolutely
certain’). Yet, there is a philosophical price to be paid to avoid these contradictions:
the correspondence between mathematical formulas and reality is now quite vague—
just how probable is ‘very likely’ or ‘almost surely’?—and far from intuition.
Fair lottery on N. We may observe that the choice [0, 1]R as the range of the prob-
ability function is neither necessary to describe a fair lottery in the finite case, nor
sufficient to describe one in the infinite case.

• For a fair finite lottery, the unit interval of R is not necessary as the range of the
probability function: the unit interval of Q (or, maybe some other denumerable
subfield of R) suffices.

• In the case of a fair lottery on N, [0, 1]R is not sufficient as the range: it violates
our intuition that the probability of any set of tickets can be obtained by adding
the probabilities of all individual tickets.

Let us now focus on the fair lottery on N. In this case, the sample space is
Ω = N and we expect the domain of the probability function to contain all the

3For example, if Ω = [0, 1]
R
and PKA is given by the Lebesgue measure, then all the singletons {x}

are measurable, but there are non-measurable sets; namely the union of events might not be an

event.
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singletons of N, otherwise there would be ‘tickets’ (individual, natural numbers)
whose probability is undefined. Yet, we expect them to be defined and to be equal
in a fair lottery. Indeed, we expect to be able to assign a probability to any possible
combination of tickets. This assumption implies that the event algebra should be
P (Ω). Moreover, we expect to be able to calculate the probability of an arbitrary
event by a process of summing over the individual tickets.

This leads us to the following conclusions. First, if we want to have a probability
theory which describes a fair lottery on N, assigns a probability to all singletons of
N, and follows a generalized additivity rule as well as the Normalization Axiom, the
range of the probability function has to be a subset of a non-Archimedean field. In
other words, the range has to include infinitesimals. Second, our intuitions regarding
infinite concepts are fed by our experience with their finite counterparts. So, if we
need to extrapolate the intuitions concerning finite lotteries to infinite ones, we need
to introduce a sort of limit-operation which transforms ‘extrapolations’ into ‘limits’.
Clearly, this operation cannot be the limit of classical analysis. Since classical limits
are implicit in Kolmogorov’s Continuity Axiom, this axiom must be revised in our
approach.

Motivated by the case study of a fair infinite lottery, at this point we know
which elements in Kolmogorov’s classical axiomatization we do not accept: the use
of [0, 1]R as the range of the probability function and the application of classical
limits in the Continuity Axiom. However, we have not specified an alternative to his
approach: this is what we present in the next sections.

3. Non-Archimedean Probability

We begin this section by stating the axioms of our new theory of probability. Ini-
tially, the meaning of the final axiom that replaces classical continuity by what we
call “non-Archimedean continuity” may not be transparent to the reader. There-
fore, we discuss the purpose of this axiom further in subsection 3.2. Moreover, the
construction presented in section 4.2 may clarify this matter further.

3.1. The axioms of Non-Archimedean Probability

We will denote by F(P0
fin(Ω),R) the algebra of real functions defined on P0

fin(Ω).

Axioms of Non-Archimedean Probability

• (NAP0) Domain and range. The events are all the elements of P (Ω) and the
probability is a function

P : P (Ω) → R
where R is a superreal field.

• (NAP1) Positivity. ∀A ∈ P (Ω),

P (A) ≥ 0.

• (NAP2) Normalization. ∀A ∈ P (Ω),

P (A) = 1 ⇔ A = Ω.
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• (NAP3) Additivity. ∀A,B ∈ P (Ω) such that A ∩B = ∅,

P (A ∪B) = P (A) + P (B).

• (NAP4) Non-Archimedean Continuity. ∀A,B∈P (Ω), with B = ∅, let P (A | B)
denote the conditional probability, namely

P (A | B) =
P (A ∩B)
P (B)

. (4)

Then
– ∀λ ∈ P0

fin(Ω), P (A | λ) ∈ R+ ;
– there exists an algebra homomorphism

J : F
(P0

fin(Ω),R
)→ R

such that ∀A ∈ P(Ω)

P (A) = J (ϕA)

where

ϕA(λ) = P (A | λ) for any λ ∈ P0
fin(Ω).4

The triple (Ω, P, J) will be called NAP-space (or NAP-theory).

Now we will analyze the first three axioms and the fourth will be analyzed in
the next section.

The differences between (K0),. . . ,(K3) and (NAP0),. . . ,(NAP3) derive from
(NAP2). As consequence of this, we have that:

Proposition 2. If (NAP0),. . . ,(NAP3) holds, then

(i) ∀A ∈ P(Ω), P (A) ∈ [0, 1]R.
(ii) ∀A ∈ P(Ω), P (A) = 0⇔ A = ∅.
(iii) Moreover, there are sufficient conditions for R to be non-Archimedean, such

as:
(a) Ω is countably infinite and the theory is fair, namely ∀ω, τ ∈ Ω, P ({ω}) =

P ({τ});
(b) Ω is uncountable.

Proof. Take A ∈ P(Ω) and let B = Ω \A; then, by (NAP2) and (NAP3),

P (A) + P (B) = 1;

then, since P (B) ≥ 0, P (A) ≤ 1 and then (i) holds. Moreover, P (A) = 0 ⇔ P (B) = 1
and hence, by (NAP2), P (A) = 0 ⇔ B = Ω and so P (A) = 0 ⇔ A = ∅. Now
let us prove (iii)(a) and assume that ∀ω ∈ Ω, P ({ω}) = ε > 0. Now we argue
indirectly. If the field R is Archimedean, then there exists n ∈ N such that nε > 1;
now let A be a subset of Ω containing n elements, then by (NAP3) it follows that

4In the remainder of this text, each occurence of λ is to be understood as referring to any λ ∈
P0

fin(Ω); f(λ) will be used instead of f(·), where f is a function on P0
fin(Ω).
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P (A) = nP ({ω}) = nε > 1 and this fact contradicts (NAP2); then R has to be
non-Archimedean. Now let us prove (iii)(b) and for every n ∈ N set

An = {ω ∈ Ω | 1/(n + 1) < P ({ω}) ≤ 1/n} .
By (NAP3) and (NAP2), it follows that each An is finite; actually, it contains at
most n + 1 elements.

Now, again, we argue indirectly and assume that the field R is Archimedean;
in this case there are no infinitesimals and hence

Ω =
⋃
n∈N

An

and this contradicts the fact that we have assumed Ω to be uncountable. �

Remark 3. In the axioms (NAP0),. . . ,(NAP3), the field R is not specified. This is
not surprising since also in Kolmogorov’s theory the same may happen. For example,
consider Ω = {a, b}, with PKA({a}) = 1/

√
2 and hence PKA({b}) = 1 − 1/

√
2. In

this case the natural field is Q(
√

2). However in Kolmogorov’s theory, since there is
no need to introduce infinitesimal probabilities, all these fields are contained in R

and hence it is simpler to fix [0, 1]R as the range. We suggest an analogous approach
with NAP; this will be done in section 4.5.

3.2. Analysis of the fourth axiom

If A is a bounded subset of a non-Archimedean field then the supremum might not
exist; consider for example the set of all infinitesimal numbers. Hence the axiom
(K4) cannot hold in a non-Archimedean probability theory. In this section, we will
show an equivalent formulation of (K4) which can be compared with (NAP4) and
helps to understand the meaning of the latter.

Conditional Probability Principle (CPP). Let Ωn be a family of events such that
Ωn ⊆ Ωn+1 and Ω =

⋃
n∈N

Ωn; then, eventually

PKA (Ωn) > 0

and, for any event A, we have that

PKA(A) = lim
n→∞ PKA(A | Ωn).

The following theorem shows that the Continuity Axiom (K4) is equivalent to
(CPP).

Theorem 4. Suppose that (K0),. . . ,(K3) hold. (K4) holds if and only if (CPP) holds.

Proof. Assume (K0),. . . ,(K4) and let Ωn be as in (CPP). By (K2) and (K4)

sup
n∈N

PKA(Ωn) = 1
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and so eventually PKA (Ωn) > 0. Now take an event A. Since PKA(A ∩ Ωn) and
PKA(Ωn) are monotonic sequences, we have that

lim
n→∞ PKA(A | Ωn) = lim

n→∞
PKA(A ∩ Ωn)
PKA(Ωn)

=
sup
n∈N

PKA(A ∩ Ωn)

sup
n∈N

PKA(Ωn)
=

PKA(A)
PKA(Ω)

= PKA(A).

Now assume (K0),. . . ,(K3) and (CPP). Take any sequence Ωn as in (CPP); first
we want to show that

lim
n→∞ PKA(Ωn) = sup

n∈N
PKA(Ωn) = 1. (5)

Take n̄ such that PKA (Ωn̄) > 0; such a n̄ exists since (CPP) holds. Then, using
(CPP) again, we have

PKA (Ωn̄) = lim
n→∞ PKA(Ωn̄ | Ωn) =

lim
n→∞ PKA(Ωn̄ ∩ Ωn)

lim
n→∞ PKA(Ωn)

=
PKA(Ωn̄)

lim
n→∞ PKA(Ωn)

.

Since PKA (Ωn̄) > 0, eq. (5) follows.
Now let An be a sequence as in (K4) and set

Ωn = (Ω \A) ∪An.

Then Ωn and A satisfies the assumptions of (CPP). So, by eq. (5), we have that

PKA(A) = lim
n→∞ PKA(A | Ωn) =

lim
n→∞ PKA(A ∩ Ωn)

lim
n→∞ PKA(Ωn)

=
lim
n→∞ PKA(An)

1
= sup

n∈N
PKA(An). �

So (CPP) is equivalent to (K4) and it has a form which can be compared with
(NAP4). Both (CPP) and (NAP4) imply that the knowledge of the conditional prob-
ability relative to a suitable family of sets provides the knowledge of the probability
of the event. In the Kolmogorovian case, we have that

PKA(A) = lim
n→∞ PKA(A | Ωn) (6)

and in the NAP case, we have that

P (A) = J (P (A | ·)) . (7)

If we compare these two equations, we see that we may think of J as a particular kind
of limit; this fact justifies the name Non-Archimedean Continuity given to (NAP4).
This point will be developed in section 4.4.
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3.3. First consequences of the axioms

Define a function
p : Ω → R

as follows:
p(ω) = P ({ω}) .

We choose arbitrarily a point ω0 ∈ Ω, and we define the weight function as follows:

w(ω) =
p(ω)
p(ω0)

.

Proposition 5. The function w takes its values in R and for any finite λ, the following
holds:

P (A | λ) =
∑

ω∈A∩λw (ω)∑
ω∈λw (ω)

. (8)

Proof. Take ω ∈ Ω arbitrarily and set r = P ({ω} | {ω, ω0}). By (NAP4), r ∈ R and,
by the definition of conditional probability (see eq. (4)), we have that

r =
p(ω)

p(ω) + p(ω0)
=

w (ω)
w (ω) + 1

< 1

and hence
w (ω) =

r

1− r
∈ R.

Eq. (8) is a trivial consequence of the additivity and the definition of w:

P (A | λ) =
∑

ω∈A∩λ p (ω)∑
ω∈λ p (ω)

=
∑

ω∈A∩λ p(ω0)w (ω)∑
ω∈λ p(ω0)w (ω)

=
∑

ω∈A∩λw (ω)∑
ω∈λw (ω)

. �

We recall that χλ denotes the indicator function of λ.

Lemma 6. ∀ω ∈ Ω, we have

J (χλ (ω)) = 1 (9)
and

J

(∑
ω∈λ

w (ω)

)
=

1
p(ω0)

. (10)

Proof. We have that

χλ (ω) [1− χλ (ω)] = 0

χλ (ω) + [1− χλ (ω)] = 1;

then, setting ξ = J (1− χλ (ω)), we have that

J (χλ (ω)) · ξ = 0

J (χλ (ω)) + ξ = 1;

then J (χλ (ω)) is either 1 or 0. We will show that J (χλ (ω0)) = 1.
By eq. (8), since w(ω0) = 1, we have that

p(ω0) = J (P ({ω0} | λ)) = J

(
w(ω0)χλ (ω0)∑

ω∈λw (ω)

)
=

J (χλ (ω0))
J
(∑

ω∈λw (ω)
) .
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By Prop. 2 (ii), we know that p(ω0) > 0, and therefore we obtain that J (χλ (ω0)) = 1
and J

(∑
ω∈λw (ω)

)
= 1/p(ω0). �

3.4. Infinite sums

The NAP-axioms allow us to generalize the notion of sum to infinite sets in such a
way that eq. (1) and eq. (8) hold also for infinite sets.

If F ⊂ Ω is a finite set and xω ∈ R for ω ∈ Ω, using eq. (9), we have that

∑
ω∈F

xω =
∑
ω∈F

[xωJ (χλ (ω))] = J

(∑
ω∈F

xωχλ (ω)

)
= J

( ∑
ω∈F∩λ

xω

)
.

The last term makes sense also when F is infinite (since F ∩λ is finite). Hence,
it makes sense to give the following definition:

Definition 7. For any set A ∈ P(Ω) and any function u : A→ R, we set

∑
ω∈A

u(ω) = J

( ∑
ω∈A∩λ

u(ω)

)
.

Using this notation, by eq. (10), it follows that∑
ω∈Ω

w (ω) =
1

p(ω0)

and hence we get that

P (A) = P (A | Ω) =
∑

ω∈Aw (ω)∑
ω∈Ωw (ω)

=
1

p(ω0)

∑
ω∈A

w (ω) .

Moreover, for any set A and B, we have that

P (A | B) =
P (A ∩B)
P (B)

=
1

p(ω0)

∑
ω∈A∩B w (ω)

1
p(ω0)

∑
ω∈B w (ω)

=
∑

ω∈A∩B w (ω)∑
ω∈B w (ω)

.

This equation extends eq. (8) when λ is infinite. Moreover, taking B = Ω, we get

P (A) =
1

p(ω0)

∑
ω∈A

w (ω) .

This equation extends eq. (1) when A is infinite since p (ω) = w (ω) p(ω0).
The next proposition replaces σ-additivity:5

Proposition 8. Let

A =
⋃
j∈I

Aj

where I is a family of indices of any cardinality and Aj ∩Ak = ∅ for j = k; then

P (A) = J(σ)

5Because it also holds for non-denumerably infinite sample spaces, this proposition encapsulates

what some philosophers have called ‘perfect additivity’; see e.g. [10] (Vol. 1, p. 118).



Vol.81 (2013) Non-Archimedean Probability 133

where

σ (λ) :=
∑
j∈I

P (Aj | λ) .

Proof. Since λ is finite, P (Aj | λ) can be computed just by making finite sums:

∑
j∈I

P (Aj | λ) =

∑
j∈I

∑
ω∈Aj∩λw (ω)∑

ω∈λw (ω)
=

∑
ω∈A∩λw (ω)∑
ω∈λw (ω)

= P (A | λ) .

So we have

J(σ) = J

⎛
⎝∑

j∈I
P (Aj | λ)

⎞
⎠ = J (P (A | λ)) = P (A) . �

4. NAP-spaces and Λ-limits

In this section, we will show how to construct NAP-spaces. In particular, this con-
struction shows that the NAP-axioms are not contradictory. Also, we will introduce
the notion of Λ-limit which will be useful in the applications.

4.1. Fine ideals

Before constructing NAP-spaces, we give the definition and some properties of fine
ideals.

Definition 9. Fine ideal: An ideal I in the algebra F(P0
fin(Ω),R) is called fine6 if it

is maximal and if for any ω ∈ Ω, 1− χλ (ω) ∈ I.

Proposition 10. If Ω is an infinite set, then F(P0
fin(Ω),R) contains a fine ideal.

Proof. We set

I0 =
{
ϕ ∈ F

(P0
fin(Ω),R

) | ∃λ0 ∈ P0
fin(Ω), ∀λ ⊇ λ0, ϕ (λ) = 0

}
.

It is easy to see that I0 is an ideal; in fact:

– if ∀λ ⊇ λ0, ϕ (λ) = 0 and ∀λ ⊇ μ0, ψ (λ) = 0, then ∀λ ⊇ λ0∪μ0, (ϕ + ψ) (λ) =
0 and hence ϕ + ψ ∈ I0;

– if ∀λ ⊇ λ0, ϕ (λ) = 0, then, ∀ψ ∈ F(P0
fin(Ω),R), we have that ∀λ ⊇ λ0, ϕ (λ) ·

ψ (λ) = 0 and hence ϕ · ψ ∈ I0.

Moreover, 1− χλ (ω) ∈ I0 since 1− χλ (ω) = 0 ∀λ ⊇ λ0 := {ω} .
The conclusion follows taking a maximal ideal I containing I0 which exists by

Krull’s theorem. �

Proposition 11. Let (Ω, P, J) be a NAP-space; then ker (J) is a fine ideal.

6The name fine ideal has been chosen since the maximal ultrafilter

U :=
{
ϕ−1(0) | ϕ ∈ I

}

is a fine ultrafilter.
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Proof. Since F(P0
fin(Ω),R) is a ring with identity and R is a field, by elementary

algebra it follows that ker (J) is a maximal ideal and by eq. (9), it follows that it is
fine. �

4.2. Construction of NAP-spaces

In the previous section, we have seen that, given a NAP-space (Ω, P, J) (with Ω
infinite), it is possible to define the weight function w : Ω → R+ and a fine ideal
I ⊂ F(P0

fin(Ω),R). In this section, we will show that also the converse is possible,
namely that in order to define a NAP-space it is sufficient to assign

• the sample space Ω;
• a weight function w : Ω → R+;
• a fine ideal I in the algebra F(P0

fin(Ω),R).

The weight function allows to define the conditional probability of an event A
with respect to an event λ ∈ P0

fin (Ω) according to the formula

P (A | λ) =
∑

ω∈A∩λw (ω)∑
ω∈λw (ω)

.

The fine ideal I allows us to define an ordered field

RI :=
F(P0

fin(Ω),R)
I

and an algebra homomorphism

JI : F
(P0

fin(Ω),R
)→ RI (11)

given by the canonical projection, namely

JI (ϕ) = [ϕ]I where [ϕ]I := ϕ + I.

The map JI allows us to define an infinite sum as in Def. 7 and to define the
probability function as follows:

PI(A) =
∑

ω∈Aw (ω)∑
ω∈Ωw (ω)

. (12)

Thus we have obtained the following theorem:

Theorem 12. Given (Ω, w, I), the triple (Ω, PI , JI) defined by eq. (12) and eq. (11)
is a NAP-space, namely it satisfies the axioms (NAP0),. . . ,(NAP4).

Definition 13. (Ω, PI , JI) will be called the NAP-space produced by (Ω, w, I) and PI

will be called the NAP-function produced by (Ω, w, I).
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4.3. The Λ-property

In section 4.2, we have seen that in order to construct a NAP-space, it is sufficient
to assign a triple (Ω, w, I). However, it is not possible to define I explicitly since its
existence uses Zorn’s lemma and no explicit construction is possible. In any case,
it is possible to choose I in such a way that the NAP-theory satisfies some other
properties which we would like to include in the model. Some of these properties
will be described in section 5 which deals with the applications. In this section, we
will give a general strategy to include these properties in the theory.

Definition 14. Directed set: A family of sets Λ ⊂ P0
fin(Ω) is called a directed set if

• if λ1, λ2 ∈ Λ, then ∃μ ∈ Λ such that λ1 ∪ λ2 ⊂ μ;
• the union of all the elements of Λ gives Ω.

The notion of directed set allows to enunciate the following property.

Definition 15. Λ-property: Given a directed set Λ, we say that a NAP-space (Ω, P,R)
satisfies the Λ-property: if, given A,B ∈ P(Ω) such that

∀λ ∈ Λ, P (A ∩ λ) = P (B ∩ λ),

then

P (A) = P (B).

Given any directed set Λ ⊂ P0
fin(Ω), it is easy to construct a NAP-space which

satisfies the Λ-property. Given Λ, we define the ideal

I0,Λ :=
{
ϕ ∈ F

(P0
fin(Ω),R

) | ∀λ ∈ Λ, ϕ (λ) = 0
}

;

by Krull’s theorem there exists a maximal ideal IΛ ⊃ I0,Λ. It is easy to check that
IΛ is a fine ideal. Then, given a weight function w, we can consider the NAP-space
produced by (Ω, w, IΛ) and we have that:

Theorem 16. The NAP-space produced by (Ω, w, IΛ) satisfies the Λ-property.

Proof. Given A,B ∈ P(Ω) as in def. 15, set

ϕ (λ) = P (A ∩ λ)− P (B ∩ λ);

then ∀λ ∈ Λ, ϕ (λ) = 0, and hence ϕ ∈ I0,Λ ⊂ IΛ and so J(ϕ (λ)) = 0. Then we
have:

P (A)− P (B) = J(P (A | λ))− J(P (B | λ))

= J

(
P (A ∩ λ)− P (B ∩ λ)

P (λ)

)
=

J(ϕ (λ))
J(P (λ))

= 0.

Then the Λ-property holds. �
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4.4. The Λ-limit

If we compare eq. (6) and eq. (7), it makes sense to think of J as a particular kind
of limit and to write eq. (7) as follows:

P (A) = lim
λ∈P0

fin(Ω); λ↑Ω
P (A | λ).

More in general, we can define the following limit:

J(ϕ) = lim
λ∈P0

fin(Ω); λ↑Ω
ϕ(λ),

where ϕ ∈ F(P0
fin(Ω),R). The above limit is determined by the choice of the ideal

IΛ ⊂ F(P0
fin(Ω),R), and, by Th. 16, it depends on the values that ϕ assumes on Λ;

we can assume that ϕ ∈ F (Λ,R) . Then, many properties of this limit depend on
the choice of Λ; so we will call it Λ-limit, and we will use the following notation

J(ϕ) = lim
λ∈Λ

ϕ(λ)

which is simpler and carries more information. Notice that the Λ-limit, unlike the
usual limit, exists for any function ϕ ∈ F (Λ,R) and that it takes its values in the
non-Archimedean field RIΛ .

The following theorem shows some other properties of the Λ-limit. These prop-
erties, except (v), are shared by the usual limit. However, (v) and the fact that the
Λ-limit always exists, make this limit quite different from the usual one.

Theorem 17. Let ϕ, ψ : Λ → R; then:

(i) If ϕr(λ) = r is constant, then

lim
λ∈Λ

ϕr(λ) = r.

(ii)
lim
λ∈Λ

ϕ(λ) + lim
λ∈Λ

ψ(λ) = lim
λ∈Λ

(ϕ(λ) + ψ(λ)) .

(iii)
lim
λ∈Λ

ϕ(λ) · lim
λ∈Λ

ψ(λ) = lim
λ∈Λ

(ϕ(λ) · ψ(λ)) .

(iv) If ϕ(λ) and ψ(λ) are eventually equal, namely ∃λ0 ∈ Λ : ∀λ ⊃ λ0, ϕ(λ) = ψ(λ),
then

lim
λ∈Λ

ϕ(λ) = lim
λ∈Λ

ψ(λ).

(v) If ϕ(λ) and ψ(λ) are eventually different, namely ∃λ0 ∈ Λ : ∀λ ⊃ λ0, ϕ(λ) =
ψ(λ), then

lim
λ∈Λ

ϕ(λ) = lim
λ∈Λ

ψ(λ).

(vi) If, for any λ, ϕ(λ) has finite range, namely ϕ(λ) ∈ {r1, . . . , rn}, then
lim
λ∈Λ

ϕ(λ) = rj

for some j ∈ {1, . . . , n}.
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Proof. (i) We have that

lim
λ∈Λ

ϕ(λ) = J(r · 1) = r · J(1) = r · 1 = r.

(ii) and (iii) are immediate consequences of the fact that J is an homomorphism.
(iv) Suppose that ∀λ ⊃ λ0, ϕ(λ) = ψ(λ); we set λ0 = {ω1, . . . , ωn} and

ζ (λ) = χλ(ω1) · . . . · χλ(ωn).

If λ0 \ λ = ∅, then ζ (λ) = 0 since some of the χλ(ωj) vanish; if λ0 \ λ = ∅, then
ϕ(λ)− ψ(λ) = 0 by our assumptions; therefore,

ζ (λ) · [ϕ(λ)− ψ(λ)] = 0. (13)

Moreover, by eq. (9), we have that

J(ζ) = J(χλ(ω1)) · . . . · J(χλ(ωn)) = 1

and so, by eq. (13),

lim
λ∈Λ

ϕ(λ)− lim
λ∈Λ

ψ(λ) = J (ϕ− ψ) = J (ϕ− ψ) · J(ζ)

= J ([ϕ− ψ] · ζ) = J(0) = 0.

(v) We set

θ(λ) =

{
1 if λ0 \ λ = ∅

1
ϕ(λ)−ψ(λ) if λ ⊃ λ0;

then ∀λ ⊃ λ0,

(ϕ(λ)− ψ(λ)) · θ(λ) = 1

and hence, by (i) and (iv),

1 = lim
λ∈Λ

[(ϕ(λ)− ψ(λ)) · θ(λ)]

= lim
λ∈Λ

(ϕ(λ)− ψ(λ)) · lim
λ∈Λ

θ(λ).

From here, it follows that limλ∈Λ (ϕ(λ)− ψ(λ)) = 0 and by (ii) we get that
limλ∈Λ ϕ(λ) = limλ∈Λ ψ(λ).

(vi) We have that

(ϕ(λ)− r1) · . . . · (ϕ(λ)− rn) = 0;

then, taking the Λ-limit,(
lim
λ∈Λ

ϕ(λ)− r1

)
· . . . ·

(
lim
λ∈Λ

ϕ(λ)− rn

)
= 0;

and hence, there is a j such that

lim
λ∈Λ

ϕ(λ)− rj = 0

and so limλ∈Λ ϕ(λ) = rj . �
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If we use the notion of Λ-limit, def. (7) becomes more meaningful; in this case
in order to define an infinite sum

∑
ω∈A u(ω), we define the partial sum as follows∑

ω∈A∩λ
u(ω), with λ ∈ P0

fin(Ω)

and then, we define the infinite sum as the Λ-limit of the partial sums, namely∑
ω∈A

u(ω) = lim
λ∈Λ

∑
ω∈A∩λ

u(ω).

Moreover, the notion of Λ-limit provides also a meaningful characterization of
the field RIΛ :

RIΛ =
{

lim
λ∈Λ

ϕ(λ) | ϕ ∈ F (Λ,R)
}
. (14)

Concluding, we have obtained the following ‘general strategy’ for defining NAP-
spaces:

General strategy. In the applications, in order to define a NAP-space we will assign
• the sample space Ω;
• a weight function w : Ω → R+;
• a directed set Λ ⊆ P0

fin(Ω) which provides a notion of Λ-limit and, via eq. (14),
the appropriate non-Archimedean field.

4.5. The field R∗

In this section, we will describe a non-Archimedean field R∗ which contains the
range of any non-Archimedean probability P one may wish to consider in applied
mathematics.

To do this, we assume the existence of uncountable, non-accessible cardinal
numbers and, as usual, we will denote the smallest of them by κ. If we assume the
existence of κ, then there exists a nonstandard model R∗ of cardinality κ and κ-
saturated. This fact implies that it is unique up to isomorphisms. We refer to [14]
(p. 195) for details.

Given a NAP-space (Ω, PI ,RI), with Ω infinite, we have that also RI is a
nonstandard model of R and if |Ω| < κ, we have that RI ⊂ R∗.

So using R∗ and the notion of Λ-limit, axioms (NAP0) and (NAP4) can be
reformulated as follows:
• (NAP0)* Domain and range. The events are all the elements of P (Ω) and the
probability is a function

P : P (Ω) → R∗

where R∗ is the unique κ-saturated nonstandard model of R having cardinality
κ.

• (NAP4)* Non-Archimedean Continuity. Let P (A | B), B = ∅, denote the
conditional probability, then, P (A | λ) ∈ R and

P (A) = lim
λ∈Λ

P (A | λ)



Vol.81 (2013) Non-Archimedean Probability 139

for some directed set Λ ⊂ F
(
P0
fin(Ω),R

)
.

Remark 18. The previous remark shows some relation between NAP-theory and
nonstandard analysis. Actually, the relation is deeper than it appears here. In fact,
NAP could be constructed within a nonstandard universe based on the notion of
Λ-limit (see [8]). The idea to use NSA in probability theory is quite old and we refer
to [15] and the references therein; these approaches differ from ours since they use
NSA as a tool aimed at finding real-valued probability functions. Another approach
to probability related to NSA is due to Nelson [20]; however, recall that also his
approach is quite different from ours since it takes the domain of the probability
function to be a nonstandard set too.

5. Some applications

5.1. Fair lotteries and numerosities

Definition 19. Fair: If, ∀ω1, ω2 ∈ Ω, p(ω1) = p(ω2), then the probability theory
(Ω, P, J) is called fair.

If (Ω, P, J) is a fair lottery and Ω is finite, then, if we set ε0 = p(ω0) = 1/|Ω|, it
turns out that, for any set A ∈ P0

fin(Ω),

|A| =
P (A)
ε0

.

This remark suggests the following definition:

Definition 20. Numerosity: If (Ω, P, J) is a fair lottery, the numerosity of a set
A ∈ P(Ω) is defined as follows:

n (A) =
P (A)
ε0

where ε0 is the probability of an elementary event in Ω.

In particular if A is finite, we have that n (A) = |A|. So the numerosity is the
generalization to infinite sets of the notion of “number of elements of a set” different
from the Cantor theory of infinite sets.

The theory of numerosity has been introduced in [2] and developed in various
directions in [11], [3], and [5]. The definition above is an alternative way to introduce
a numerosity theory.

We now set

Q∗ =
{

lim
λ∈Λ

ϕ(λ) | ∀λ ∈ Λ, ϕ(λ) ∈ Q for some Λ with |Λ| < κ

}
.

We will refer to Q∗ as the field of hyperrational numbers.

Proposition 21. If (Ω, P, J) is a fair lottery, and A,B ⊆ Ω, with B = ∅, then

P (A | B) ∈ Q∗.
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Proof. We have that

P (A | B) =
P (A ∩B)
P (B)

= lim
λ∈P0

fin(Ω)

P (A ∩B ∩ λ)
P (B ∩ λ)

= lim
λ∈P0

fin(Ω)

|A ∩B ∩ λ|
|B ∩ λ| .

The conclusion follows from the fact that
|A ∩B ∩ λ|
|B ∩ λ| ∈ Q. �

5.2. A fair lottery on N

Let us consider a fair lottery in which exactly one winner is randomly selected from
a countably infinite set of tickets. We assume that these tickets are labeled by the
(positive) natural numbers. We call such a lottery the “de Finetti lottery”.7 Now let
us construct a NAP-space for such a lottery using the general strategy developed in
section 4.4.

We take
Ω = N,

w : N→ R+ identically equal to one
and

Λ[n] =
{
λn ∈ P0

fin(Ω) | n ∈ N
}

(15)
where

λn = {1, 2, 3, . . . , n} .
In this case we have that, for every A ∈ P(Ω)

P (A | λn) =
|A ∩ {1, . . . , n}|

n

and hence

P (A) = lim
λn∈Λ

|A ∩ {1, . . . , n}|
n

.

Using the notion of numerosity as defined in section 5.1, we set

α := n(N) =
1

p(1)
;

then the probability of any event A ∈ P(Ω) can be written as follows:

P (A) =
n(A)
α

.

So, the probability of A is ratio of the “number” of the elementary events in A
and the total “number” of elements α (where “number” is understood in terms of
numerosity).

One of the properties which our intuition wants to be satisfied by the de Finetti
lottery is the ‘Asymptotic Density Property’, which relates the non-Archimedean
probability function P to a classical limit (in as far as the latter exists):

7This example has been discussed by multiple philosophers of probability, including de Finetti

[10]; at the end of this section, we indicate how our solution relates to his approach. The solution

presented here rephrases the one given in [23] within the more general NAP framework.
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Definition 22. Asymptotic Density Property. Let A ∈ P(N) be a set which has an
asymptotic density (or natural density), namely there exists L ∈ [0, 1] such that

lim
n→∞

|A ∩ {1, . . . , n}|
n

= L.

We say that the Asymptotic Density Property holds if we have

P (A) ∼ L. (16)

It is easy to check that

Proposition 23. If P is the NAP-function produced by
(
N, 1, IΛ[n]

)
, it satisfies the

Asymptotic Density Property.

Now, we will consider additional properties which would be nice to have and
we will show how the choice of Λ works. For example, the probability of extracting
an even number seems to be equal to that of extracting an odd number; thus we
must have

P (E) = P (O) (17)

and since by (NAP2) and (NAP3), we have

P (E) + P (O) = 1,

it follows that
P (E) = P (O) =

1
2
. (18)

Now, let us compute for example P (E). We have that

P (E) =
n(E)
α

so we have to compute n(E) :

n(E) = lim
λn∈Λ

|E ∩ {1, . . . , n}|

= lim
λn∈Λ

∣∣∣{2, 4, 6, . . . , 2 ·
[n
2

]}∣∣∣
= lim

λn∈Λ

[n
2

]
= lim

λn∈Λ
n

2
− lim

λn∈Λ
cn

where [r] denotes the integer part of r and

cn =

{
1/2 if n is odd

0 if n is even.

Then, by Theorem 17(vi), limλn∈Λ cn is either 0 or 1/2, but this fact cannot be
determined since we do not know the ideal IΛ. However, if we think that this fact is
relevant for our model, we can follow the strategy suggested in section 4.3 and make
a better choice of Λ. If we choose a smaller Λ, it carries more information.

For example, we can replace the choice of eq. (15) with the following one:

Λ[2m] := {{1, 2, . . . , 2m} | m ∈ N} .
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In this case we have that

n(E) = lim
λn∈Λ[2m]

[n
2

]
= lim

λn∈Λ[2m]

n

2
=

α

2
.

On the other hand, we can choose

Λ = Λ
[2m−1]

:= {{1, 2, . . . , 2m− 1} | m ∈ N}
and in this case

n(E) = lim
λ∈Λ

[2m−1]

([n
2

]
− 1

2

)
= lim

λ∈Λ
[2m−1]

(
n− 1

2

)
=

α− 1
2

.

Thus P (E) = 1
2 or 1

2 − 1
2α depending on the choice of Λ. Also, it is possible to prove

that any choice of Λ ⊆ Λ[n] gives one of these two possibilities.

Remark 24. The equality
P (A) = L (19)

cannot replace eq. (16) for all the sets which have an asymptotic density; in fact
take two sets A and B = A ∪ F where F is a finite set (with A ∩ F = ∅). Then, if
L is the asymptotic density of A, then it is also the asymptotic density of B since

lim
n→∞

|B ∩ {1, . . . , n}|
n

= lim
n→∞

|A ∩ {1, . . . , n}|
n

+
|F ∩ {1, . . . , n}|

n
= L + 0 = L.

On the other hand, by (NAP3)

P (B) = P (A) + P (F )

and by (NAP1), P (F ) > 0 and hence P (B) = P (A). Thus, it is not possible that
P (A) = L and P (B) = L.

Even if eq. (19) cannot hold for all the sets, our intuition may suggest that in
some cases it should be true and it would be nice if eq. (19) holds for a distinguished
family of sets. For example, if we have eq. (17) then eq. (18) holds, and hence
P (E) and P (O) have the probability equal to their asymptotic density. So, the
following question arises naturally: is it possible to have a ‘de Finetti probability
space’ produced by {N, 1, IΛ} such that

P (Nk) =
1
k

where
Nk = {k, 2k, 3k, . . . , nk, . . .} .

The answer is yes; it is sufficient to choose

Λ = Λ[m!] := {{1, . . . ,m!} | m ∈ N} . (20)
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In fact, in this case, we have

P (Nk) =
limλn∈Λ[m!]

|Nk∩{1, . . . ,m!}|
α

=
limλn∈Λ[m!]

[
n
k

]
α

=
limλn∈Λ[m!]

n
k

α
=

1
k
.

More in general, if Λ = Λ[m!], we can prove that the sets

Nk,l = {k − l, 2k − l, 3k − l, . . . , nk − l, . . .} , with l ∈ {0, . . . , k − 1}
have probability 1/k, namely the same probability as their asymptotic density. This
generalizes the situation which we have analyzed before where E = N2 and O = N2,1.

Remark 25. Our construction of a non-Archimedean probability P, allows to con-
struct the following Archimedean probability function:

PArch(A) = st(P (A))

where st (ξ) denotes the standard part of ξ, namely the unique standard number
infinitely close to ξ. PArch is defined on all the subsets of A, it is finitely additive
and it coincides with the asymptotic density when it exists. Although we prefer a
theory based on non-Archimedean probabilities, we regard de Finetti’s reaction to
the infinite lottery puzzle as an equally valid approach.8 The construction of PArch

shows how the two approaches are connected.

5.3. A fair lottery on Q

A fair lottery on Q, by definition, is a NAP-space produced by (Q, 1, I) for any
arbitrary I; however, as in the case of de Finetti lottery, we are allowed to require
some additional properties which appear natural to our intuition and then, we can
inquire if they are consistent.

For example, if we have two intervals [a0, b0)Q ⊂ [a1, b1)Q , we expect the con-
ditional probability to satisfy the following formula:

P ([a0, b0)Q | [a1, b1)Q) =
b0 − a0
b1 − a1

. (21)

In fair lotteries, the probability is strictly related to the notion of numerosity
and the above formula is equivalent to the following one

n([a, b)Q) = (b− a) · n([0, 1)Q) (22)

namely that the “number of elements contained in an interval” is proportional to
its length.

Clearly, eq. (21) follows from eq. (22). In fact,

P ([a, b)Q) =
n([a, b)Q)
n(Q)

= (b− a) · n([0, 1)Q)
n(Q)

.

8De Finetti was aware that probability could be treated as a non-Archimedean quantity, but rejected

this approach as “a useless complication of language”, which “leads one to puzzle over ‘les infiniment

petits’ ”[10] (Vol. 2, p. 347). He proposed to stay within an Archimedean range, but to relax

Kolmogorov’s countable additivity to finite additivity.
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Then

P ([a0, b0)Q | [a1, b1)Q) =
P ([a0, b0)Q)
P ([a1, b1)Q)

=
b0 − a0
b1 − a1

.

Also, it is easy to check that eq. (22) follows from eq. (21).
In order to prove that the property of eq. (22) is consistent with a NAP-theory,

it is sufficient to find an appropriate family Λ ⊂ P0
fin(Q).

We will consider the family

ΛQ := {μn | n = m!, m ∈ N} (23)

with

μn =
{ p

n
| p ∈ Z,

∣∣∣ p
n

∣∣∣ ≤ n
}

(24)

=
{
−n,−n2 − 1

n
, . . . ,− 1

n
, 0,

1
n
, . . . ,

n2 − 1
n

, n

}
.

In this case we have that:

Proposition 26. If P is the NAP-function produced by (Q, 1, IΛ) with Λ = ΛQ defined
by eq. (23), then eq. (22) holds.

Proof. We write a and b as fractions with the same denominator:

a =
pa
q

; b =
pb
q
.

Then, if you take n sufficiently large (e.g. n = m!, m ≥ max(a, b, q)), q divides
n and we have that∣∣∣[a, b)Q ∩ μn

∣∣∣ =
∣∣∣∣
{
a, a +

1
n
, a +

2
n
, . . . , b− 1

n

}∣∣∣∣ = (b− a) · n.

From here, eq. (22) easily follows. �

Let us compare the NAP-spaces produced by (N, 1, IΛN
) and

(
Q, 1, IΛQ

)
, where

we have set
ΛN = {μn ∩ N | μn ∈ ΛQ} . (25)

We want to show that this choice of ΛN and ΛQ makes these two NAP-theories
consistent in the sense described below. First of all, notice that ΛN defined by eq. (25)
coincides with Λ[m!] defined by eq. (20) and that λn = μn ∩ N.

If we denote by PN and PQ the respective probabilities and we take A ⊂ N ⊂ Q,
we have that

PN(A) = PQ(A | N). (26)
In fact

PQ(A | N) =
n (A ∩ N)
n (N)

=
n (A)
n (N)

= PN(A).

Moreover, if we set, as usual, α := n (N), it is easy to check that

n
(
Q+

)
= α2

n (Q) = 2α2 + 1.
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Thus, in this model, in a ‘lottery with rational numbers’ the probability of extracting
a positive natural number is

PQ(N) =
n (N)
n (Q)

=
α

2α2 + 1
=

1− ε

2α

where ε is a positive infinitesimal.

5.4. A fair lottery on R

Now let us consider a fair lottery on R, namely a NAP-space produced by (R, 1, IΛR
)

and let us examine the other properties which we would like to have.9 Considering
the example of the previous section, we would like to have the analog of eq. (21)
just replacing Q with R. This is not possible. Let us see why not. If in eq. (21) we
take [a0, b0)R = [0, 1)R and [a1, b1)R =

[
0,
√

2
)
R
, we would get

P
(
[0, 1)R | [0,

√
2)R

)
=

1√
2

and this fact is not possible by Prop. 21 (in fact 1√
2
/∈ Q∗ by Th. 17 (v) and the

definition of Q∗). However, we can require a weaker statement, namely that, given
two intervals [a0, b0)R ⊂ [a1, b1)R ,

P ([a0, b0)R | [a1, b1)R) ∼ b0 − a0
b1 − a1

. (27)

Actually, in terms of numerosities, we can require that

∀a, b ∈ Q, n([a, b)R) = (b− a) · n([0, 1)R (28)

∀a, b ∈ R, n([a, b)R) = [(b− a) + ε] · n([0, 1)R (29)

where ε is an infinitesimal which might depend on a and b.
Now we will define ΛR ⊂ P0

fin(R) in such a way that eq. (28) and eq. (29) are
satisfied; first, we set

Θ = Pfin([0, 1]R \ [0, 1]Q)

namely Θ is the family of the non-empty finite sets of irrational numbers between 0
and 1. Then for any n ∈ N and θ ∈ Θ, we set

μn,θ := μn ∪
{
p + a

n
| p
n
∈ μn\ {n} , a ∈ θ

}
where μn is defined by eq. (24). You may think to have “constructed” μn,θ in the
following way: you start with the segment [−n, n] and you divide it in n2 parts of
length 1/n of the form

[
p
n ,

p+1
n

]
, p = −n2,−n2+1, . . . , n2−1. In each of these parts

you put a “rescaled” copy of θ, namely points of the form p+a
n with a ∈ θ. Thus, the

set μn,θ contains n2 + 1 rational numbers and n2 · |θ| irrational numbers.

9The problem of a fair lottery on a non-denumerable sample space is usually presented as a fair

lottery (or random darts throw) on the unit interval of R (or a darts board whose perimeter is

indexed by this interval), see e.g. [12]. The related problem of a random darts throw on the unit

square of R2 is considered in [1].
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Then we set

ΛR = {μn,θ | n = m!, m ∈ N, θ ∈ Θ} . (30)

Proposition 27. If P is the NAP-function produced by (R, 1, IΛ) with Λ = ΛR given
by eq. (30), then eq. (28) and eq. (29) hold.

Proof. Take an interval [a, b) with a, b ∈ Q; then, if n is sufficiently large [a, b)∩μn,θ

contains n (b− a) rational numbers and n |θ| (b− a) irrational numbers so that

|[a, b) ∩ μn,θ| = n (b− a) (|θ|+ 1) .

Then, if we choose a = 0 and b = 1, we have that

n([0, 1)R) = lim
μn,θ∈ΛR

|[0, 1) ∩ μn,θ| = lim
μn,θ∈ΛR

n (|θ|+ 1) .

Then, in general we have that

n([a, b)R) = lim
μn,θ∈ΛR

|[a, b) ∩ μn,θ| = lim
μn,θ∈ΛR

[n (b− a) (|θ|+ 1)]

= (b− a) · lim
μn,θ∈ΛR

n (|θ|+ 1) = (b− a) n([0, 1)R).

Then eq. (28) holds. Now let us prove eq. (29).
If a ∈ R \Q or b ∈ R \Q, then [a, b)∩μn contains at most n (b− a)+1 rational

numbers, in fact, in [a, b) you can fit at most n (b− a) intervals of the form
[
p
n ,

p+1
n

]
.

Moreover, since you have at most n (b− a) intervals of the form
[
p
n ,

p+1
n

]
and two

smaller intervals at the extremes of the form
[
a, pan

]
and

[pb
n , b

]
for a suitable choice

of pa and pb, [a, b)∩μn,θ contains at most [n (b− a) + 2] |θ| irrational numbers; then

|[a, b) ∩ μn,θ| ≤ n (b− a) + 1 + [n (b− a) + 2] |θ|
= n (b− a) (|θ|+ 1) + 2 |θ|+ 1

≤ n

(
b− a +

2
n

)
(|θ|+ 1) .

Thus

n([a, b)R) = lim
μn,θ∈ΛR

|[a, b) ∩ μn,θ| ≤ lim
μn,θ∈ΛR

[
n

(
b− a +

2
n

)
(|θ|+ 1)

]

≤ lim
μn,θ∈ΛR

(
b− a +

2
n

)
· lim
μn,θ∈ΛR

n (|θ|+ 1)

=
(
b− a +

2
α

)
n([0, 1)R).
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Moreover, since [a, b) contains at least n (b− a)− 1 intervals of type
[
p
n ,

p+1
n

]
,

arguing in a similar way as before, we have that

|[a, b) ∩ μn,θ| ≥ n (b− a) + [n (b− a)− 1] |θ|
= n (b− a) (|θ|+ 1)− |θ|

≥ n

(
b− a− 1

n

)
(|θ|+ 1) .

Then,

n([a, b)R) = lim
μn,θ↑R

|[a, b) ∩ μn,θ| ≥ lim
μn,θ↑R

[
n

(
b− a− 1

n

)
(|θ|+ 1)

]

≥ lim
μn,θ↑R

(
b− a− 1

n

)
· lim
μn,θ↑R

n (|θ|+ 1)

=
(
b− a− 1

α

)
n([0, 1)R).

Thus eq. (29) follows with

|ε| ≤ 2
α
. �

So, if we have two intervals [a0, b0)R ⊂ [a1, b1)R , using the above proposition,
we get eq. (27). Moreover, it is easy to prove that the NAP-space produced by
(R, 1, IΛR

) is consistent with
(
Q, 1, IΛQ

)
, namely that the analog of eq. (26) holds: if

A ⊂ Q, then
PQ(A) = PR(A | Q).

5.5. The infinite sequence of coin tosses

Let us consider an infinite sequence of tosses with a fair coin.10 In the Kolmogoro-
vian framework, the infinite sequence of fair coin tosses is modeled by the triple
(Ω,A, μ), where Ω = {H,T}N is the space of sequences which take values in the set
{H,T} namely Heads and Tails. We will denote by ω = (ω1, . . . , ωn, . . .) the generic
sequence.

A is the σ-algebra generated by the ‘cylindrical sets’. A cylindrical set of codi-
mension n is defined by a n-ple of indices (i1, . . . , in) and an n-ple of elements in
{H,T} , namely (t1, . . . , tn) where tk is either H or T.

A cylindrical set of codimension n is defined as follows:

C
(i1,...,in)
(t1,...,tn)

= {ω ∈ Ω | ωik = tk} .

From the probabilistic point of view, C(i1,...,in)
(t1,...,tn)

represents the event that that
ik-th coin toss gives tk for k = 1, . . . , n.

10This example is used byWilliamson in an attempt to refute the possibility of assigning infinitesimal

probability values to a particular outcome of such a sequence [24]. As observed by Weintraub,

Williamson’s argument relies on a relabeling of the individual tosses, which is not compatible with

non-Archimedean probabilities [22].
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The probability measure on the generic cylindrical set is given by

μ
(
C

(i1,...,in)
(t1,...,tn)

)
= 2−n. (31)

The measure μ can be extended in a unique way to PKA on the algebra A (by
Carathéodory’s theorem).

In this particular model, you can see the problems with the Kolmogorovian
approach which we discussed in section 2.2:
• every event {ω} ∈ Ω has 0 probability but the union of all these ‘seemingly

impossible’ events has probability 1;
• if F is a finite set and {ω} ⊂ F, then the conditional probability PKA({ω} | F )

is not defined; nevertheless, you know that the conditionalizing event is not the
empty event, so the conditional probability should be defined: it makes sense
and its value is 1

|F | ;
• there are subsets of Ω for which the probability is not defined (namely the

non-measurable sets).
Now, we will construct a NAP-space so that we can compare the two different

approaches. We need to construct a NAP-function P produced by (Ω, w, IΛ) which
satisfies the following assumptions:
(i) if F ⊂ Ω is a finite non-empty set, then

P (A | F ) =
|A ∩ F |
|F | ;

(ii) eq. (31) holds for P, namely

P
(
C

(i1,...,in)
(t1,...,tn)

)
= 2−n. (32)

Experimentally, we can only observe a finite numbers of outcomes: both cylin-
drical events (cf. (ii)) and finite conditional probability (cf. (i)) are based on a finite
number of observations. In some sense, (i) and (ii) are the ‘experimental data’ on
which to construct the model.

Property (i) implies that we get a fair probability, thus we have to take w ≡ 1;
so every infinite sequence of coin tosses in Ω = {H,T}N has probability 1/n(Ω).
Property (ii) is the analog of eq. (28) in the case of a fair lottery on R.11 So, we have
to choose Λ in such a way that eq. (32) holds.

To do this, we need some other notation; if b = (b1, . . . , bn) ∈ {H,T}n is a finite
string and c = (c1, . . . , cn, . . .) ∈ {H,T}N is an infinite sequence, then we set

b� c = (b1, . . . , bn, c1, . . . , ck, . . .)

namely, the sequence b�c is obtained by the sequence b followed by the infinite
sequence c. Now, if σ ∈ P0

fin

(
{H,T}N

)
and n ∈ N, we set

λn,σ = {b�c | b ∈ {H,T}n and c ∈ σ}
11Eq. (32) implies that for any μ-measurable set E, we have that P (E) ∼ μ(E) and this relation is

the analog of eq. (27).
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and
ΛCT :=

{
λn,σ | σ ∈ P0

fin

(
{H,T}N

)
and n ∈ N

}
.

Notice that
(
{H,T}N , 1, IΛCT

)
produces a well-defined NAP-space since ΛCT is a

directed set; in fact
λn1,σ1 ∪ λn2,σ2 ⊂ λmax(n1,n2),σ3

for a suitable choice of σ3 ∈ P0
fin

(
{H,T}N

)
.

Moreover ΛCT is the ‘wise choice’ as the following theorem shows:

Theorem 28. If P is the NAP-function produced by
(
{H,T}N , 1, IΛCT

)
, then eq. (32)

holds.

Proof. We have

n(Ω) = lim
λN,σ∈ΛCT

|λN,σ| = lim
λN,σ∈ΛCT

(
2N · |σ|) . (33)

Now consider the cylinder C
(i1,...,in)
(t1,...,tn)

and take N = max in. Then, for every σ,
we have that

λN,σ ∩ C
(i1,...,in)
(t1,...,tn)

= {ω ∈ λN,σ | ωik = tk} .
Then ∣∣∣λN,σ ∩ C

(i1,...,in)
(t1,...,tn)

∣∣∣ =
|λN,σ|

2n
= 2N−n · |σ|

and hence, by eq. (33),

n
(
C

(i1,...,in)
(t1,...,tn)

)
= lim

λN,σ∈ΛCT

∣∣∣λN,σ ∩ C
(i1,...,in)
(t1,...,tn)

∣∣∣ = lim
λN,σ∈ΛCT

(
2N−n · |σ|)

= 2−n lim
λN,σ∈ΛCT

(
2N · |σ|) = 2−n · n(Ω).

Concluding, we have that

P
(
C

(i1,...,in)
(t1,...,tn)

)
=

n
(
C

(i1,...,in)
(t1,...,tn)

)
n(Ω)

= 2−n. �
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