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ABSTRACT
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1 Introduction

We have proposed a specific non-Archimedean probability theory (henceforth

called NAP), which allows the assignment of non-zero probabilities to infi-

nitely unlikely events (Benci et al. [2013]). Examples of such events include the

random or biased selection of an element from the set of the natural numbers

or the integers, or from an interval of the rational or real numbers.1 Like

classical probability theory, NAP is applicable in a wide range of situations

and can be employed to model different sources of uncertainty. As such, NAP

is of relevance both to scholars who are interested in objective probability (or

‘chance’) and to those interested in subjective probability (and in particular in

the rational kind thereof, ‘credence’). Moreover, we think that NAP can be

useful in the context of physics, where similar methods have found applica-

tions already (see Albeverio et al. [1986] and references in Cutland [1983]).

NAP is motivated by four desiderata for a theory of probability: regularity,

totality, perfect additivity, and weak Laplacianism. First, ‘regularity’ is the

constraint that the probability of a possible event (that is, a non-empty subset

of the sample space) should be strictly larger than that of the impossible event

(that is, the empty set). It is a special case of the Euclidean principle, which

requires that any set should be given a strictly larger probability than each of

its strict subsets.2 More generally, we want our probability function to be

maximally sensitive to differences in this partial order (inclusion) between

events. Second, ‘totality’ is the desideratum that all subsets of the sample

space must be assigned a probability value. In other words, all sets should

be measurable. Third, ‘perfect additivity’ is the requirement that the probabil-

ity of an arbitrary union of mutually disjoint events is equal to the sum of the

1 Outside the context of this article, it may be better to refer to our theory as NAP–BHW, to

distinguish it from related theories. Similar approaches have recently been developed by

Hammond ([1994]), Pivato ([2014]), and Pedersen ([unpublished]). (For more on related

work, see Pivato [2014], p. 55ff.)
2 Regularity as a norm for probability theory and the use of infinitesimals to attain this norm have

been discussed both in the context of objective probability (see, for example, Hofweber [2014]

and references therein) and in the context of subjective probability (see, for example, Pedersen

[2014] and references therein). See also the references in (Hájek [unpublished]).
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probabilities of the separate events, where ‘sum’ has to be defined in an appro-

priate way in the infinite case.3 Fourth, ‘weak Laplacianism’ is the require-

ment that a probability theory should allow for a uniform probability

distribution on sample spaces of any cardinality as well as many other prob-

ability ratios between the atomic events. That is, the theory should allow for a

mathematical representation of any probabilistic situation that is conceptually

possible (from a pretheoretic standpoint).

Non-Archimedean probability theories have been developed that are unob-

jectionable from a mathematical point of view. But in recent years, philoso-

phical arguments have been developed by Williamson ([2007]) Easwaran

([2014]), and others that purport to show on conceptual grounds that an

appeal to infinitesimal probability values is inherently problematic. The

main purpose of the present article is to defend non-standard probability

against these critiques. We shall argue that the mathematical details of the

non-Archimedean probability theory matter in this discussion. In particular,

we will show how NAP can provide a diagnosis of where the objections

against appealing to infinitesimals in probability theory go wrong.

The structure of this article is as follows: First, we describe the limitations of

the orthodox approach to probability theory (Section 2). Subsequently, we

describe one particular theory of non-standard probability, called NAP

(Section 3), which satisfies the four desiderata listed above. Then we discuss

various objections against the use of infinitesimals in probability theory and we

evaluate them in the context of NAP (Section 4). We show that the arguments

against infinitesimal probability values do not establish what they seek to estab-

lish and we argue that the proposed account cannot be dismissed on the basis of

the arguments that have been adduced in the literature. We then expand on the

virtues of infinitesimal probabilities. We explain how NAP provides satisfactory

models for the probabilistic scenarios that classical probability theory cannot

adequately describe; we show how NAP yields total, regular, and perfectly

additive probability functions even for uncountable domains, and we indicate

the role that NAP can play in decision theory (Section 5). In the concluding

section, we discuss some more general underlying concerns and evaluate the

viability of NAP in light of its advantages and its drawbacks (Section 6). In the

Appendix, more details are given about the construction of NAP models.

2 The Limits of Classical Probability Theory

The axioms of Kolmogorov constitute the basis of the received view of prob-

ability theory.

3 The requirement for perfect additivity is closely related to that of regularity and totality. Skyrms

([1983]) called it ‘ultra-additivity’ and analysed it as a Zenonian intuition.
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2.1 Classical probability functions

The set of atomic outcomes, �, is called the ‘sample space’; the �-algebra on

�, A, is called the ‘event space’. The following set of axioms is equivalent to

those presented by Kolmogorov ([1956]):

K0. Domain and Range: The events are the elements of a �-algebra

A � P �ð Þ and the probability function is a function

PK : A!R:

K1. Non-negativity: 8A 2 A;

PKðAÞ � 0:

K2. Normalization:

PKð�Þ ¼ 1:

K3. Additivity: If A and B are events and A \ B ¼ ;; then

PKðA [ BÞ ¼ PKðAÞ þ PKðBÞ:

K4. Continuity: Let

A ¼
[

n2N

An;

where An � Anþ1 are elements of A; then

PKðAÞ ¼ lim
n!1

PKðAnÞ: ð1Þ

Adding this last axiom to the previous ones is equivalent to requiring ‘coun-

table additivity’ or ‘�-additivity’.

The triple h�;A;PKi is called a ‘classical’ probability space. Classical prob-

ability theory is mathematically coherent and useful. The existence of models

for the axioms proves its consistency and the wide range of applications by

physicists, engineers, and economists shows its usefulness in modelling situa-

tions in the physical world. Nonetheless, there are probabilistic scenarios

involving infinite sample spaces that cannot be described in a satisfactory

manner in terms of probability functions that are governed by

Kolmogorov’s axioms.

2.2 Limitations

The axioms of Kolmogorov lead to a probability theory that does not respect

any of the four principles mentioned in the introduction. By considering

uncountable sample spaces, it is clear that the classical approach does not

guarantee regularity, totality, or perfect additivity (see, for example, Skyrms

[1983]). Moreover, the orthodox theory violates weak Laplacianism, since it

does not allow us to represent uniform probability distributions on countable
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sample spaces. Consider the fair lottery on N ¼ f1; 2; 3; . . .g, which is some-

times called the ‘de Finetti lottery’ (also discussed in Wenmackers and

Horsten [2013]). It is easy to see that there is no coherent way to describe it

in terms of classical probability functions. Because of the Archimedean prop-

erty of the real numbers (that are used in the value range of classical prob-

ability functions) and finite additivity, the probability of any particular ticket

winning has to be set to zero.4 This entails that either the normalization axiom

or the continuity axiom has to be abandoned. The first option relates to

proposals for unbounded probability (such as that of Rényi [1955]). With

NAP, however, we opt for the second option.

In the context of a subjective interpretation of probability, de Finetti

([1974]) advocated merely finite additivity. Whereas de Finetti did not require

that probabilities be assigned to all events of a �-algebra A, which is part of

K0, we also introduce the notion of ‘semi-classical’ probability functions that

satisfy K0–K3, and are thus only ‘finitely additive’. This is sufficient to satisfy

weak Laplacianism at least to a minimal extent: the uniform zero distribution

is now consistent with the axioms. However, probability theory lacks mathe-

matical power if it cannot make use of limit behaviour for calculating prob-

abilities.5 In NAP, countable additivity is replaced by an axiom that is

compatible with a stronger form of additivity (perfect additivity)

and that does provide an alternative sense of limit operations (as explained

further on).

There is a second aspect of a semi-classical description of the fair lottery on

N that is unattractive: by assigning probability zero to each natural number,

the semi-classical probability values collapse a distinction between any infi-

nitely improbable but possible event (‘remote contingency’) on the one hand,

and the impossible event (empty set) on the other hand. Of course, the same

violation of regularity occurs for classical probability functions—whether fair

or not—on uncountable domains, where they too have to assign probability

zero to many contingent events.

The assignment of probability zero to remote contingencies creates pro-

blems for formally modelling conditionals,6 utilities, and learning situations.

The following observations are phrased in terms of fair infinite lotteries, but

they apply to all situations that use (semi-)classical probability functions to

model (countably) infinite event spaces.

4 The Archimedean property of R says that given any strictly positive real number, r, and a larger

real number, R, there exists a natural number, N, such that the product N� r exceeds R; in other

words, R does not contain infinitesimals.
5 In practice, statisticians do not run into problems with the failure of weak Laplacianism, since

they have accustomed themselves to working on continuum-sized spaces, where �-additivity is

compatible with uniform distributions provided that all point events are given probability zero.
6 In particular, when one uses Adams’s thesis (see, for example, Arlo-Costa [2008]).
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First, the (semi-)classical approach with the ratio formula alone does not

give a satisfactory account of conditional probabilities. We are strongly

inclined to think that in the fair lottery on N or on R; the probability that

ticket number 1 wins given that one ticket of the set f1; 2; 3g wins, is 1
3

(see, for

example, Bartha and Hitchcock [1999], p. 407). According to the way of

defining conditional probability via a ratio, however, this conditional prob-

ability is undefined since it involves putting the probability of the conditioning

event—zero in this case—in the denominator. In the context of uncountable

sample spaces, it is well known that classical probability functions do not

contain enough information to compute all conditional probabilities and

the limiting operation must be specified separately.7

Second, the (semi-)classical approach leads to problems for decision theory.

If the probability of a single ticket winning is zero, then given the standard

mechanism for calculating expected utilities, participation in the fair lottery on

N could not have non-zero expected utility for an agent, even if the prize for

winning is very high. So, an agent should be indifferent between owning a

single (or any finite set of) ticket(s) and owning none at all. For a fair infinite

lottery on R, the agent should be indifferent between owning the set of all

rational number tickets and owning none at all. This seems incorrect.

Third, the (semi-)classical approach does not accommodate the possibility

of learning from remote evidence. Suppose that an agent does participate in a

fair lottery on an infinite sample space. Suppose that her credences are regu-

lated by a (semi-)classical probability function, as they should be according to

Bayesian accounts of subjective probability. Suppose further that our agent

happens to have drawn the winning ticket. Then she will want to update her

credences on the evidence that she has received, but she cannot update in the

normal, Bayesian manner a probability that started out as zero to any other

value. An important instance of this problem: if the probability of history

going as it actually goes is zero (according to some system of laws), one

cannot update on the present state (within this system).

2.3 Infinitesimals to the rescue?

The three problems discussed in the previous section can be avoided if the

probability functions are regular.8 The most straightforward suggestion to

obtain regular probability functions is to make room for attributing

7 When taking the limit of conditional probabilities to an empty conditioning event, this results in

puzzles like the Borel–Kolmogorov paradox (Kolmogorov [1956], pp. 50–1). Concerning such

cases, Jaynes ([2003], Section 15.7) has written: ‘In general, the final result will and must depend

on which limiting operation was specified’.
8 We are not suggesting that this is the only viable option to address these problems; in Section

5.4, we briefly discuss the relation between our approach and approaches that are based on

conditional probability functions or lexicographical probabilities.
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infinitesimally small but non-zero probability values to events. In the fair

lottery on N, for instance, it seems reasonable to judge the probability that

a given ticket wins to be infinitesimally small, but non-zero. This suggestion

was pursued by several authors on several occasions (see Footnote 2).

Regularity can be introduced in the axioms by strengthening K1, but it

also requires modifying principles K0 and K4. Regarding K0, the value

range of generalized probability functions must be extended. One require-

ment is that we should be able to calculate with the generalized probability

values much as we are able to calculate with classical probability values. In

particular, there must be a natural way of adding and multiplying them (to

allow computation of probabilities of unions and intersections of events).

Fortunately, since the work of Robinson ([1961]), we know a precise sense in

which systems of real numbers that include infinitesimals can be taken to

form a field.

Nonetheless, the question remains of how non-standard probability values

should be attached to events of a sample space. Ideally, we want to be able to

do this in such a way that perfect additivity is also satisfied, by replacing K4

with a different infinite additivity axiom. Applied to the fair lottery on N, there

is a very simple (and, as we will see very shortly, na€ıve) proposal how this can

be done. The ‘measure’ of the ordered set of the natural numbers N, one might

say, is !: the smallest infinite ordinal number. Therefore, ‘1
!’ might be thought

of as an infinitesimally small number, which seems a good candidate for

assigning to any point event as a probability value after normalization.9

After all, this appears to yield a very natural countable additivity property:

! � ð1!Þ ¼ 1:10

Unfortunately, this idea does not work. We want our generalized probabil-

ity function to be maximally sensitive to distinctions in sizes of events. We

want P to be such that

Pðf;gÞ5Pðf1gÞ5Pðf1; 2gÞ5Pðf1; 2; 3gÞ5 . . .

This means that we must exhaust all the finite numbers to measure the finite

sets. But then the set f2; 3; 6; . . .g of even numbers, for instance, must surely

already be assigned an infinite measure before normalization. And therefore

the measure of the ordered set N (which must be strictly larger than that of the

set of the even numbers) must be much larger than the first infinite ordinal !.

More generally, we would like the generalized probability function to

satisfy the ‘Euclidean principle’: For all events A and B, if A is a proper

9 We have put it between quotation marks, since the reciprocal of an ordinal number is undefined.
10 These considerations may provide motivation to explore the use of Conway’s surreal numbers as

probability values. We are grateful to Kenny Easwaran for this observation; see also his

(Easwaran [2014], p. 38).
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sub-event of B, then PðAÞ5PðBÞ (see Section 3.6; Benci et al. [2006]; Parker

[2013]). This desideratum, which is equivalent to the aforementioned regular-

ity demand, makes it a not altogether trivial task to describe even the fair

lottery on N in terms of infinitesimals.

Consistent theories of probability functions that draw on ideas from non-

standard analysis (NSA) have been proposed in the literature. A classification

of them is given in Table 1. Two well-known examples are the theory of Loeb

measures ([1975]) and Nelson’s ([1987]) ‘radically elementary probability

theory’. However, Loeb’s and Nelson’s theories describe lotteries on non-

standard domains, so they simply do not address the problem of describing

the fair lottery on N (or its natural generalizations to Q; 2N,. . .). The task

before us is to describe fair lotteries on such standard domains. Loeb’s

theory has a standard co-domain (R), whereas in Nelson’s theory, the co-

domain is also non-standard.

It is not difficult to construct non-standard probability models that are the

exact analogues of semi-classical models, namely, models with a standard

sample space that assign non-standard real numbers to events and that in

addition satisfy Kolmogorov’s axioms except �-additivity (and K0, of

course). One can even force such models to be regular (McGee [1994]).

However, it is not straightforward to construct a class of such models that

in addition have plausible infinite additivity properties. This requires a new

concept of a ‘limit of probabilities’, which was developed in (Benci et al.

[2013]). The resulting theory, NAP, will be described in Section 3 below;

NAP occupies the fourth quadrant in Table 1.11

Note that we have not started out from a non-standard measure theory that

we then applied to the concept of probability. Instead, we started from four

intuitive requirements about probability. The model for this happens to

require a fine free ultrafilter (or equivalently, a maximal ideal), just like

NSA does, but this does not reduce NAP to NSA—nor vice versa: NSA

and NAP have different motivations and interpretations, which turn out to

be related to the same underlying mathematical structure.

Table 1. Quantitative probability theories

Domain:

Standard Non-standard

Range: R Kolmogorov Loeb

Non-Archimedean field NAP Nelson

11 Pivato ([2014]) develops an approach that should also be situated in this quadrant.
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3 NAP Theory

In this section, we describe NAP in an axiomatic way so that it can be com-

pared directly with Kolmogorov’s axioms. We start with the first four axioms

of NAP. Then we discuss the last axiom, which is the most delicate one.

3.1 First four axioms of NAP

The first four axioms of NAP are the following:

NAP0. Domain and Range: The events are all the subsets of �, which is

a finite or infinite sample space. Probability is a total function

P : P �ð Þ!R;

where P(�) is the powerset (set of all subsets) of � and R is a

superreal field (that is, an ordered field that contains the real

numbers as a subfield).

NAP1. Regularity: Pð;Þ ¼ 0 and 8A 2 P �ð Þn ;f g;
PðAÞ > 0: ð2Þ

NAP2. Normalization:

Pð�Þ ¼ 1: ð3Þ

NAP3. Additivity: If A and B are events and A \ B ¼ ;; then

PðA [ BÞ ¼ PðAÞ þ PðBÞ:

Observe that in the axioms NAP0–NAP3, the field R is not specified.12,13 It

is important to notice that NAP uses the domain to build the range. For

example, consider the case with � ¼ a; bf g; Pð af gÞ ¼ 1=
ffiffiffi
2
p

, and hence Pð bf gÞ

¼ 1� 1=
ffiffiffi
2
p
: In this case the natural field is Q

ffiffiffi
2
p� �

: However, as long as there

is no need to introduce infinitesimal probabilities, all these fields are contained

in R and hence it is simpler to take 0; 1½ �R as the range.

Immediate consequences of the axioms are14:

Proposition 1

If NAP0, NAP1, NAP2, and NAP3 hold, then:

(1) 8A 2 Pð�Þ; PðAÞ 2 0; 1½ �R

(2) PðAÞ ¼ 1, A ¼ �

12 If we would specify some range upfront, even if it would be a non-Archimedean set, we would

not be able to guarantee regularity. This can be seen from a cardinality argument introduced by

Hájek ([unpublished]) and formalized by Pruss ([2013]): these impossibility results assume a

fixed range and hence do not apply to NAP.
13 This need not be surprising: in finite probability theory, the same happens. In many games, such

as games involving fair dice, we have R ¼ Q, but it is possible to have less familiar fields.
14 For a proof of this (elementary) proposition, see (Benci et al. [2013]).
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(3) Moreover, assume that one of the following holds:

� � is countable and the theory is fair, namely, 8!; � 2 �;

P !f gð Þ ¼ P �f gð Þ

� � is uncountable

then R is a non-Archimedean field.

This proposition demonstrates that non-Archimedean fields arise quite natu-

rally from axiom NAP1.

3.2 Continuity and conditional probability

We have noted that a retreat to finite additivity is unsatisfactory because it does

not allow the calculation of infinitely disjunctive events on the basis of limit

behaviour. For the same reason the probability theory consisting solely of

NAP0–NAP3 is too weak. We need to add an axiom that replaces axiom K4

of classical probability theory and that allows some kind of infinite sum. The

trouble with this point, however, lies with the limit operation. In fact, if we want

to take the limit of a sequence of points an 2 X , it seems desirable for X to be

complete since otherwise the Cauchy sequences might not be convergent and

this fact prevents the development of any interesting calculus. In probability

theory, X needs to be an ordered field as well. But the only complete ordered

field is R; no non-Archimedean field is complete. This is the main technical

problem in dealing with non-Archimedean fields. We proposed to solve this

problem by constructing a different notion of limit, which we here call the ‘�-

limit’. (In Benci et al. [2013] this limit was called the ‘�-limit’.)

In order to present the �-limit in a natural way, we will introduce the following

principle, which states that fixing the conditional probability, PðAjlnÞ, for a

sufficiently large family of finite sets, ln, determines the value of PðAj�Þ, which

is nothing but the unconditional probability P(A). The same idea is also present in

Kolmogorov’s classical setting, only the details of the limit operation are different:

Conditional Probability Principle (CPP): Let flng be a family of events such

that ln � lnþ1 and � ¼
[

n2N

ln; then, eventually

PK lnð Þ > 0;

and, for any event, A, we have that

PKðAÞ ¼ lim
n!1

PKðAjlnÞ:

It is easy to prove that CPP is equivalent to K4 (Benci et al. [2013]); the

advantage of CPP is that it is easier to reformulate it in an NAP context.

More precisely: we shall give an appropriate notion of limit that allows us to

formulate a variant of CPP within NAP, and this will be the final axiom of NAP.
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3.3 The final axiom of NAP Theory

It is possible to associate a hyperreal number with any real-valued function

that is defined only on the finite subsets of the sample space, such that certain

natural algebraic properties hold among these numbers. The details are given

in the Appendix. We call this operation the ‘�-limit’ (denoted as liml"�) and

one may interpret the resulting hyperreal number as the function’s ‘value at

infinity’ (though it is not to be confused with the usual Archimedean limit,

denoted as limn!1). With the help of this non-Archimedean limit operation,

we can now formulate the CPP in NAP, which in some sense replaces axiom

K4 of classical probability theory. Please note that PfinðAÞ denotes the collec-

tion of finite subsets of a set A. This axiom is the keystone of NAP.

NAP4. CPP in NAP: For any A 2 P �ð Þ and any l 2 Pfin �ð Þ;

P Ajlð Þ 2 R ð4Þ

and

PðAÞ ¼ lim
l"�

PðAjlÞ: ð5Þ

This limit can be rigorously defined and shown to exist (see Appendix), and

the functions resulting from NAP0–NAP4 can be shown to satisfy the four

desiderata for probability functions that were discussed in the introduction.
The intuitive meaning of Equation (5) is obvious: the probability of an event

A is the �-limit of the conditional probability P Ajlð Þ obtained by a finite

sample set l. We can give a suggestive interpretation to Equations (4) and

(5) as follows: We may think of the real number PðAjlÞ as the result of

experiments. The probability, P(A), of event A is the ‘abstract’ extrapolation

from the results of all possible finite experiments.

Formally, CPP and NAP4 are similar, and they are also similar in inter-

pretation. But from a technical point of view, they are quite different. For

example, since l is a finite set, usually in classical theory PK ðlÞ ¼ 0 and hence

PK Ajlð Þ cannot be defined. In NAP, in contrast, PðAjlÞ plays a central role.15

3.4 Infinite sums

The Weierstrass notion of the classical limit is assumed in the rigorous defini-

tion of the sum of an infinite sequence. Analogously, the �-limit allows us to

define the sum of infinitely many real numbers. In this section, we will inves-

tigate this operation and, in the next section, it will be applied to NAP.

15 By CPP, PK �jlð Þ is used to define PK ð�Þ, but PK �jlð Þ cannot always be retrieved from the infor-

mation encoded in PK ð. . .Þ. In NAP, Pð�jlÞ is important both in the construction of Pð�Þ and it

can be retrieved from it by the usual ratio formula.

Infinitesimal Probabilities 519



Let x! be a family of real numbers indexed by ! 2 E � �. The �-sum of all

x!s is defined as follows:
X

!2E

x! ¼ lim
l"�

X

!2E\l

x!: ð6Þ

Notice that, since l is always finite, the function

’ðlÞ :¼
X

!2E\l

x!

of l is well defined, always yielding a real number as function value.
The main differences between our new type of infinite sum and the classical

series are:

. As shown in the Appendix, the �-sum depends on the choice of a free

ultrafilter, U�. This is not the case with the usual series. So it would

actually be more appropriate to write
P

!2E;U�
x! rather than

P
!2E x!:

. The Weierstrass-sum of a series exists only for certain countable sets of real

numbers, while the �-sum exists for every family of real numbers indexed

by ! 2 E � �. In principle, � and hence E may have any cardinality.

. The Weierstrass-sum of a sequence—if it exists—is a real number, while

the result of an �-sum is a hyperreal number in R.

3.5 Definition of NAP functions via infinite sums

One of the main consequences of axiom K4 is �-additivity, which defines

infinite sums and relates them to probabilities of unions of countably many

events. In this section, we will see that its non-Archimedean counterpart,

axiom NAP4, also allows us to relate the infinite sums defined in the previous

section to (generalized) probability functions and to generalize well-known

properties used in finite probability theory.

Weight Function:

w : �!R:

A weight function describes the relative probability of elementary events.

Notice that two different weight functions that are proportional to each

other are equivalent for all practical purposes.
The following can be shown (Benci et al. [2013]):

Proposition 2

The function w takes its values in R and for any finite l, the following holds:

PðAjlÞ ¼
P

!2A\l w !ð ÞP
!2l w !ð Þ

: ð7Þ
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Taking the �-limit of both sides of Equation (7), we get

PðAÞ ¼

P
!2A w !ð ÞP
!2� w !ð Þ

: ð8Þ

More generally, we have for any A;B 2 Pð�Þ;

PðAjBÞ ¼

P
!2A\B w !ð ÞP
!2B w !ð Þ

: ð9Þ

These properties generalize well-known properties that hold when � is a

finite probability space. But these formulas say more: they say that in order to

know the probability of any event, A; it is sufficient to know the relative

probability, wð!Þ, of each elementary event, !, and the rule that allows us

to take an infinite sum, that is, the rule that allows us to take the �-limit

(which is defined by Equation (A.2) via a free ultrafilter, U�; see

Appendix). Since Equation (8) holds for arbitrary w, weak Laplacianism is

fulfilled.

The main result, that NAP functions on infinite sample spaces exist, was

shown in (Benci et al. [2013]), but it can be seen from combining the proof in

the Appendix concerning �-limits, the definition in Equation (5), and

Proposition 2.

So the NAP space is a triple h�;w;UPfinð�Þi where:

. � is the sample space;

. w : �!Rþ is a weight function;

. UPfinð�Þ is a free ultrafilter on Pfinð�Þ:

Regularity is imposed by requiring the ultrafilter to be ‘fine’ (see Kanamori

[1994], p. 301).

3.6 Relation to numerosity theory

NAP is related to the theory of numerosity introduced in (Benci [1995]) and

developed in various directions (Gilbert and Rouche [1996]; Benci and Di

Nasso [2003]; Benci et al. [2006]). We briefly sketch the main tenets of this

theory.

In order to count the elements of a set, A, it is necessary to have a set of

numbers, N, and a rule, s, that specifies the number of elements, sðAÞ 2 N,

that belong to set A. More precisely, we can say that the operation of counting

consists of a triple ðU;N;sÞ, where U is the family of sets that can be counted,

N is the set of numbers, and s : U!N is a function. In the following, we shall

call a triple, ðU;N;sÞ, that satisfies the basic properties related to our intuition

of counting a ‘counting system’. We highlight the following two principles

governing counting systems, which are important for the basic view:
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Euclidean Principle (EP): If AˆB, then sðAÞ'sðBÞ

Humean Principle (HP): If the elements of A can be put in a one-to-one

correspondence with the elements of B, then sðAÞ ¼ sðBÞ:

If we take U ¼ Fin (the class of finite sets), N ¼ N (the set of natural

numbers), and s ¼ j � j (the usual function that gives the number of elements

of a finite set), then we obtain the ‘natural numbers counting theory’

ðFin;N; j � jÞ: Of course, it satisfies all the intuitive properties of counting

plus EP and HP, since those properties are extracted from intuitions that

are largely based on dealing with finite sets and natural numbers. If infinite

sets with strict subsets of the same cardinality are included in U, then it is well

known that the properties EP and HP are inconsistent with each other.

However, then there remain consistent counting theories that are based on

either EP or HP.

Cantor was the first to realize this. He abandoned EP and constructed on

the basis of HP the theory of cardinal numbers ðS;Card; j � jÞ, where S is the

class of all sets and Card denotes the class of cardinal numbers.

Cantor also understood that if you count an infinite set, the result (that is,

the type of number) obtained depends on the method that you employ for

counting. In fact, he generalized the operation of counting in two different

ways and he obtained not only the theory of cardinal numbers ðS;Card; j � jÞ

but also the theory of ordinal numbers ðWO;Ord; ordÞ; here WO denotes the

class of well-ordered sets, Ord the class of ordinal numbers, and ord the order

type of a well-ordered set.16 The two counting systems give different results

when applied to infinite sets. Also, it is well known that the arithmetic in Card

and Ord does not satisfy the usual algebraic rules that we are used to based on

our experience with natural numbers. For instance, reciprocals are not defined

for either (cf. Section 2.3).

Now, the following question arises naturally: ‘Is there a different way to

count the elements of infinite sets satisfying EP and such that the operations

‘+’ and ‘�’ satisfy the usual algebraic properties?’

The answer is yes, and we will see that the notion of �-limit can be used to

construct such a counting system. A counting system ðU; N; nÞwhich satisfies

EP will be called a ‘numerosity theory’: n will be called the numerosity func-

tion and nðEÞ is the numerosity of the set E.

The numerosity theory relevant for this article is given by ðPð�Þ; N�0; nÞ

where for every A 2 Pð�Þ; n is given by

nðAÞ ¼ lim
l"�
jA \ lj;

16 For an account of the history of the measurement of sets of infinite size, see (Mancosu [2009]).
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where l ranges over finite subsets of � and N�0 is a non-standard model of the

natural numbers. In a numerosity theory, the numerosity of N is denoted by �.17

Given the following definition, numerosity theory can be related to NAP in

the case of fair lotteries:

Definition 3: If 8!1; !2 2 �; wð!1Þ ¼ wð!2Þ; then the probability function

ð�;PÞ is called fair.

Without loss of generality, we can set wð!Þ ¼ 1 for every ! 2 � in the fair case.

Hence, if ð�;PÞ is a fair lottery:

P Að Þ ¼

P
!2A w !ð ÞP
!2� w !ð Þ

¼

lim
l"�

P
!2A\l w !ð Þ

lim
l"�

P
!2l w !ð Þ

¼

lim
l"�
jA \ lj

lim
l"�
jlj

¼
nðAÞ

nð�Þ
:

This formula is an expression of Laplace’s famous ‘First principle’ ([1902],

pp. 6, 9): the probability, P(A), of an event, A, is the ratio between the number

nðAÞ of favourable cases and the number of all cases, nð�Þ, provided that they

are equiprobable.18

Consider again the infinite set N ¼ f1; 2; 3; . . .g. Now consider the set

S ¼ f2; 3; . . .g. We may describe this set relative to N in two ways, which

may promote different intuitions about its relative size (cf. Section 4.2):

. If we describe S as fnjn 2 N ^ n 6¼ 1g ¼ Nnf1g, then we emphasize that S

is a strict subset of N, which suggests that S has a smaller size than N

(following the Euclidean principle of size).

. If we describe S as fnþ 1jn 2 Ng ¼ Nþ 1, then we convey that S can be

obtained via a re-labelling or translation of the elements of N, which sug-

gests that S has the same size as N (following the Humean principle of size).

Although the expression ‘Nnf1g’ refers to the same set S as the expression

‘Nþ 1’, the corresponding intuitions about the size of S relative to N cannot

hold simultaneously: two sizes cannot both be different and the same. This is a

simple illustration of the incompatibility of EP and HP.

The theory of cardinal numbers adopts HP as a criterion of identity. But

probability theory cannot accept HP as a criterion of identity. Probability

functions should not assign equal probability to all equinumerous sets of

the sample space; otherwise it would lead to absurd conclusions, such as

½0; 1
2
� always being equiprobable to ½0; 1�. But even though HP has to be

17 � can be related to @0 or to !, but it should not be confused with either. Their relation is quite

involved and we refer interested readers to (Benci et al. [2006]), where this question has been

analysed.
18 For definiteness, the reader may consider a fair lottery on N; see (Wenmackers and Horsten [2013],

Section 6.2; Benci et al. [2013], Section 5.2). In particular, it is possible to assign probabilities that are

equal to 1=n for each of the sets nNþ i for any natural number, n, and i 2 f0; . . . ; ng. This case has

been discussed in terms of numerosities in (Mancosu [2009], Section 6.2).
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abandoned, there is the possibility of adopting EP, which entails regularity in

the context of probabilities. At least in infinite lottery situations, EP has a

strong intuitive pull.19 And we have seen that NAP constructs probability

functions on infinite sample spaces that satisfy EP.

4 Objections and Replies

Various authors have formulated objections against the use of infinitesimal

probability values. Some of these objections are presented as general argu-

ments, not aimed against a particular theory, but rather against any hypothe-

tical theory that involves non–Archimedean probability values. If any of these

arguments are accepted as decisive, then any attempt to work out the details of

such a theory is nipped in the bud. NAP shows that it is possible to develop a

consistent non-Archimedean theory of probability meeting key conceptual

desiderata. We now evaluate the general objections to infinitesimal probabil-

ities in the light of NAP. It will turn out that the arguments against infinite-

simal probabilities crucially depend on certain assumptions regarding the

properties of probability functions that are taken to be uncontroversial by

their authors, but which do require careful scrutiny.20

4.1 Cantor and the Archimedean property

We start off with a historically important argument against infinitesimal num-

bers in general that was formulated by Cantor ([1966], pp. 407–9). His argu-

ment is very cryptic: he merely states that not even a transfinite sum of

infinitesimals can exceed a non-infinitesimal bound. What is behind this asser-

tion can plausibly be spelled out as follows.

Consider the fair lottery on N again. Let us entertain the supposition

that equal infinitesimal probability � is assigned to each point event. Define

Probðf1; 2gÞ ¼ Probðf1gÞ þ Probðf2gÞ;

Probðf1; 2; 3gÞ ¼ Probðf1gÞ þ Probðf2gÞ þ Probðf3gÞ; . . .

Then consider the following !-sequence:

Probðf1gÞ;Probðf1; 2gÞ;Probðf1; 2; 3gÞ; . . .

This sequence is bounded (by 1), so there must be a least upper bound, which

we may call ! � �. But it is easy to see that between ! � �� � and ! � � at most

19 For a vivid description of the intuitive pull of EP in infinite lottery situations, see (McCall and

Armstrong [1989]).
20 In this section, we use the notation ‘Prob’ for probability functions in arguments that do not

specify the formalism to which the function belongs. In cases where the formalism is clear, we

stick to the notations PK and P for Kolmogorovian and NAP functions, respectively.
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one n � � (with n 2 N) can lie. After all, for any n 2 N that lies in this open

interval, we must then have:

ðn� 1Þ � �5 ð! � �Þ � �5 n � �5! � �5 ðnþ 1Þ � �:

This must mean that ! � � does not exceed an infinitesimal value. This

argument carries over to all limit ordinals, and the conclusion then is that

l � � does not exceed an infinitesimal value for any transfinite number l. But

this means that the infinitesimals are ‘disconnected’ from the standard num-

bers. It means that even an arbitrarily large transfinite ordinal cannot carry �

above a finite number value. One might sum this up by saying that infinitesi-

mals are not even ‘ordinal-Archimedean’ (as opposed to ‘natural number

Archimedean’).

4.1.1 Reply: The least upper bound principle

A response to Cantor’s objection was given by Zermelo in his comments on

Cantor’s cryptic argument ([1966], p. 439).21 He states that Cantor’s argument

establishes that the number ! � � does not exist, rather than that it does not

exceed the infinitesimals. In other words, multiplication of infinitesimals by

transfinite ordinal numbers is meaningless.

The theory NAP is neutral about the existence or non-existence of transfi-

nite ordinal numbers. So a fortiori it does not give a verdict about whether

multiplication of transfinite ordinals with infinitesimals makes sense. Rather,

it denies that the probability associated with the !-sequence

Pðf1gÞ;Pðf1; 2gÞ;Pðf1; 2; 3gÞ; . . .

is the least probability that is ‘infinitely larger’ than the probability of the point

events. The above !-sequence is indeed bounded, but it does not have a least

upper bound, since the range of our non-Archimedean probability functions is

not complete. Nonetheless, this sequence has a limit in a generalized sense (an

�-limit). And the existence of this limit is sufficient for the existence of the

probability of any event in the sample space of the fair lottery on N.

In sum, there simply is no need for us to make sense of ! � � in order to

compute the probability of any event. Indeed, the theory of well-order types is

not the right tool for computing limits of non-standard probabilities.

4.2 Ticket missing from an infinite lottery

Williamson’s ([2007]) argument, which will be discussed shortly, involves

!-sequences of fair coin tosses that can be represented as a fair lottery on

the Cantor space 2N, which is a non-countably infinite sample space. We first

21 For an extensive discussion of Cantor’s objections against infinitesimals, see (Ehrlich [2006]).
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present a new argument against infinitesimals that is inspired by Williamson’s

argument, but which only requires a countably infinite sample space. As far as

we know, this variation is not endorsed by Williamson or any other author.

We present it as an intermediate step to clarify both the structure of the coin

toss argument and our reply to it.

Imagine an urn containing a countably infinite collection of tickets and a

mechanism to implement a fair lottery on the tickets in the urn.

In situation (1), all tickets are in the urn and we denote the probability of

winning of each arbitrary single ticket in such a lottery as ProbðE1Þ, leaving

open the possibility that this may be an infinitesimal.

In situation (2), one ticket is removed from the urn prior to the drawing of

the winning ticket. There is one competing ticket less, so the probability of

winning of each remaining ticket is ProbðE2Þ ¼
1

1�ProbðE1Þ
ProbðE1Þ (renorma-

lization). Taken in isolation, however, situation (2) looks exactly as before the

removal of a ticket, which is situation (1). Because of this isomorphism

between situation (1) and situation (2), we find that the probability of winning

of each individual ticket is equal to ProbðE2Þ ¼ ProbðE1Þ.

We have thus arrived at the following equations:

ProbðE2Þ ¼
1

1� ProbðE1Þ
ProbðE1Þ;

ProbðE2Þ ¼ ProbðE1Þ:

Even in a non-Archimedean field, these equalities can only hold simulta-

neously if ProbðE1Þ ¼ ProbðE2Þ ¼ 0; it cannot be the case that ProbðE1Þ or

ProbðE2Þ is a non-zero infinitesimal.

4.2.1 Reply: Changing the sample space mid-game

For standard probability functions, the range is fixed to be the unit interval of

R. Nevertheless, changing the sample space mid-game is, in general, not

allowed, because the actual probability assignments still depend on the

sample space. For NAP functions, the dependence on the sample space is

more pronounced than for real-valued functions, because (the collection of

finite subsets of) the sample space is used explicitly to construct the hyperreal

field on which the function takes its values (see the Appendix for details).22

Moreover, even if the sample space is kept fixed, the way in which the event of

interest is embedded in the event space may influence the probabilities that are

assigned to events. This is clear in the uniform case (in which NAP coincides

with a non-Archimedean measure of relative sparseness, or normalized

numerosity), but the issue generalizes to the non-uniform case.

22 We are grateful to Marcus Pivato to encourage us to make this aspect more explicit.
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These observations can be related to what has earlier been discussed as a re-

labelling paradox (Bartha and Hitchcock [1999], Section 5). However, it is not

the labelling itself that is essential,23 but rather the choice of sample space and

the embedding of events therein, which requires a form of holism in the assign-

ment of probabilities that is captured by our demand for perfect additivity (see

also Hofweber [2014]).

We can construct an NAP function, P, that describes a fair lottery on N in a

regular way. This function will assign an infinitesimal probability to each single-

ton, namely, PðfngÞ ¼ 1=� for all n 2 N (with � is the numerosity of N). The

function that we have thereby constructed crucially co-depends on the choice of

the sample space (in this case N). In particular, the non-Archimedean field on

which the probability function takes it values depends on this choice.

Given some countable collection of tickets, situation (1) is a fair lottery on

all of the tickets in this collection. The original argument only requires this

collection to be countably infinite, without further specification. Hence, we

need to fix a choice for the sample space before we can apply NAP to this

scenario. In model A, we choose N to play the role of the sample space �A of

the probability function P. We use ProbAðE1Þ as shorthand for the probability

of winning of an arbitrary single ticket in situation (1) on model A. On model

A, event E1 is represented by singleton SE1
¼ fng (for some n) of �A. Clearly,

ProbAðE1Þ is equal to PðfngÞ ¼ 1=� for any n 2 N.

Situation (2) is a fair lottery on all but one of the initial collection of tickets

(call this i). We use ProbAðE2Þ as shorthand for the probability of winning of

an arbitrary single ticket in situation (2) on model A. Since we are using the

same sample space as in the previous step, we can use the same probability

function, P, and find ProbAðE2Þ via conditionalization:

ProbAðE2Þ ¼ PðfngjNnfigÞ

¼
1

�� 1
ðassuming n 2 Nnfig; 0 otherwiseÞ:

This entails that

ProbAðE2Þ ¼
1

1� ProbAðE1Þ
ProbAðE1Þ:

Since in situation (2) one ticket is not playing any role, and we are still faced

with a countably infinite collection of tickets, we may consider representing

the remaining tickets by N instead of by Nnfig. This is fine too, but we should

realize that we can only do this by changing the sample space: we are now

switching from model A to a new model B. In model B, we use the same

probability function on the same sample space as in model A, but now

23 We are grateful to Thomas Hofweber for pressing us on this point.
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there is a different correspondence between sets in the event space and situa-

tions in the (hypothetical) world. In model A, we express the probability of a

single ticket from the whole collection of tickets as PðfngÞ ¼ 1=�, whereas in

model B, PðfngÞ ¼ 1=� is used to express the probability of a single ticket from

all but one of the initial collection of tickets.

The observation that E2 can be described with the same labels as E1 does not

show that ProbðE1Þ ¼ ProbðE2Þ (as was claimed in the initial presentation of

the objection), but only that ProbBðE2Þ ¼ ProbAðE1Þ.

In sum, we have:

ProbAðE2Þ ¼
1

1� ProbAðE1Þ
ProbAðE1Þ;

ProbBðE2Þ ¼ ProbAðE1Þ:

This is insufficient to rule out the possibility that these probabilities might be

infinitesimals. For this to follow, it would need to be the case that

ProbAðE2Þ ¼ ProbBðE2Þ. The fact that model A and model B can both be

used to model the same situation, namely, situation (2), does not force this.

Using the initial notation, however, ProbAðE2Þ ¼ ProbBðE2Þ would be glossed

as ProbðE2Þ ¼ ProbðE2Þ, making it impossible to tell them apart. To model the

situation both before and after the removal of a ticket from the urn, we need a

model like model A. From the viewpoint of NAP, a ‘fair and countable

lottery’ is a highly underdetermined specification of a probability function

(see also Wenmackers and Horsten [2013]).

4.3 Williamson’s infinite sequence of coin tosses

Williamson ([2007]) has proposed an argument that purports to show that

infinitesimals cannot be used to describe the probability of a fully specific

outcome (for example, ‘all heads’) of a countably infinite sequences of

tosses with a fair coin (endorsed in Hájek [unpublished]).

Williamson considers two infinite sequences of fair and independent coin

tosses that all land heads: Hð1 . . .Þ and Hð2 . . .Þ. Hð1 . . .Þ is an !-sequence of

coin tosses that all land heads. Hð2 . . .Þ is the subsequence of Hð1 . . .Þ, which

consists of the second toss of Hð1 . . .Þ and all the coin tosses that follow it.

Williamson argues that

ProbðHð1 . . .ÞÞ ¼
1

2
ProbðHð2 . . .ÞÞ;

ProbðHð1 . . .ÞÞ ¼ ProbðHð2 . . .ÞÞ:

The assertion ProbðHð1 . . .ÞÞ ¼ 1
2

ProbðHð2 . . .ÞÞ follows from the fairness and

independence of the coin tosses, together with the finite additivity property.
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The assertion ProbðHð1 . . .ÞÞ ¼ ProbðHð2 . . .ÞÞ is motivated by a symmetry

consideration: as physical processes, ProbðHð1 . . .ÞÞ and ProbðHð2 . . .ÞÞ are

isomorphic.

But even in non-Archimedean fields these two equalities can hold simulta-

neously only if ProbðHð1 . . .ÞÞ ¼ ProbðHð2 . . .ÞÞ ¼ 0; it cannot be the case that

ProbðHð1 . . .ÞÞ or ProbðHð2 . . .ÞÞ is a non-zero infinitesimal. The conclusion

that ProbðHð1 . . .ÞÞ ¼ ProbðHð2 . . .ÞÞ ¼ 0 is of course exactly what classical

probability theory tells us it has to be.

4.3.1 Reply: The embedding of events in a sample space

Williamson’s argument turns on the claim that the sequences Hð1 . . .Þ

and Hð2 . . .Þ are identical in all relevant aspects (they are ‘isomorphic’).

This, however, is challenged by Weintraub ([2008]). She claims that the fact

that Hð2 . . .Þ is a proper subset of Hð1 . . .Þ is significant.

Weintraub’s reply is correct as far as it goes, but it seems incomplete. A

further point is that, as discussed in Section 4.2, the assignment of probabil-

ities does not make sense in the absence of a well-defined sample space that is

applied in a consistent way. In the case of Williamson’s argument, a crucial

aspect of fixing the sample space is an answer to the question, ‘When does the

count of events start?’.

Let 2N be the sample space of model A, which reflects that the count of

events starts at the first toss of Hð1 . . .Þ. Let C ¼ 2Nnf1g be the conditioning

event, which reflects that the count of events starts at the first toss of Hð2 . . .Þ.

In model B, the sample space is also 2N. Although it is the same set as in model

A, this set is now used in a different way, namely, to reflect that the count of

events starts at the first toss of Hð2 . . .Þ.

We again introduce some shorthand notations. In situation T1, a coin

is tossed on all of some countably infinite collection of occasions. We use

ProbAðHð1 . . .ÞÞ as shorthand for the probability that such a coin comes

up heads each time on model A. In situation T2, a coin is tossed on all but

one (the first) of the countably infinite collection of occasions. We use ProbA

ðHð2 . . .ÞÞ as shorthand for the probability that such a coin comes up heads

each of the remaining occasions on model A and ProbBðHð2 . . .ÞÞ for the

corresponding probability on model B.

Williamson exploits the intuition that ProbAðHð1 . . .ÞÞ ¼ ProbBðHð2 . . .ÞÞ.

But he glosses this as ProbðHð1 . . .ÞÞ ¼ ProbðHð2 . . .ÞÞ, thus turning the prob-

abilities involved into evaluations within the same model. On the other hand,

Williamson convincingly argues that ProbðHð1 . . .ÞÞ ¼ 1
2

ProbðHð2 . . .ÞÞ.

Although we would rather represent this as ProbAðHð1 . . .ÞÞ ¼
1
2

ProbAðHð2 . . .ÞÞ, leaving out the choice of model here is not as harmful as

before, since we are now comparing probabilities within the same model, in
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the sense that the sample space 2N is used in the same way. The two glosses

indeed contradict each other unless ProbðHð1 . . .ÞÞ ¼ ProbðHð2 . . .ÞÞ ¼ 0. But

the contradiction can only be obtained when the difference between the sample

spaces is glossed over. In particular, there is no uniform application of an NAP

model, M, such that ProbMðHð1 . . .ÞÞ ¼ ProbMðHð2 . . .ÞÞ can be obtained.

At this point, it may be asked what the ‘correct’ sample space for evaluating

the probability of Hð1 . . .Þ and of Hð2 . . .Þ is. In this article, we do not commit

ourselves to there being a single correct sample space for evaluating probabil-

ities associated with idealized scenarios such as lotteries on infinite spaces (see

Section 6.1.1). But if what Williamson is envisaging is a possible physical

universe consisting of an !-sequence of coin tosses starting with toss

number 1 (rather than with toss number 2), and if we regard the probabilities

of the two sequences as objective probabilities, then evidently model A is the

correct setting for evaluating both ProbðHð1 . . .ÞÞ and ProbðHð2 . . .ÞÞ.24

4.4 Point sets on a circle

Williamson’s argument crucially turns on translation symmetry.25 Other sym-

metry considerations can be invoked to arrive at the same conclusion in other

examples with a similar structure. Parker ([2013]) has given one such argument

that turns on rotation symmetry; see also (Bernstein and Wattenberg [1969];

Barrett [2010]).

Consider the unit circle. Select the point on the circle with coordinates (1, 0),

and let it be called p1. Now move an arc length 1 clockwise along the circle

from this point; call this point on the circle p2. Again move arc length 1

clockwise along the circle to obtain p2. Continuing in this way, and taking

account of the irrationality of the length of the unit circle, we obtain an !-

sequence p1; p2; p3; . . . of points on the unit circle. Now abstract from the

ordering to obtain set fp1; p2; p3; . . .g of points on the circle; call this set S1.

Rotating the !-sequence p1; p2; p3; . . . by arc length 1 yields the set

fp2; p3; p4 . . .g; call this set S2. Now consider the probabilities, ProbðS1Þ and

ProbðS2Þ, of a point on the circle being in S1 or S2, respectively. Invariance of

probability under rotation symmetry suggests that ProbðS2Þ ¼ ProbðS1Þ. But

if, in addition, the probability of a point being identical with pi is equal for

each i 2 N (uniformity), then since ProbðS1Þ ¼ ProbðS2Þ þ Probðfp1gÞ, pi must

24 Williamson ([2007]) also considers a second sequence of tosses with a separate coin, which is

tossed at the same points in time as the first coin, except that the second coin’s first toss occurs at

the first coin’s second toss. Even without analysing it in full, it ought to be clear that considering

two coins allows for even more freedom in choosing the sample space and embedding the events

in it. So, we agree with Hofweber ([2014]) and Easwaran ([2014]) that the probability associated

with the second sequence resulting in all heads does not need to equal that of Hð2 . . .Þ.
25 In particular, on a temporal translation symmetry. It could be turned into a spatial translation

symmetry by considering a countably infinite row of coins that are tossed simultaneously.
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be zero for each i 2 N. In particular, point events cannot be assigned non-zero

infinitesimal probability values. Again we have an a priori, conceptual argu-

ment for the conclusion that classical probability theory models fair lotteries

on uncountable sets correctly.

It will be clear to the reader by now that our diagnosis of the argument from

rotational symmetry against infinitesimal probabilities is structurally identical

to our diagnosis of Williamson’s argument. Hence, we do not describe it in

detail here.

4.5 Easwaran and Pruss

Easwaran ([2014]) has proposed a conceptually new argument to the

effect that infinitesimals cannot be used to describe the fair lottery on the

Cantor space 2N. He aims to show that for every infinitesimal � we have

that ProbðHð1 . . .ÞÞ > �;where Hð1 . . .Þ is again Williamson’s infinite sequence

of coin tosses. If this is so, then ProbðHð1 . . .ÞÞ can indeed not be an infinite-

simal. The subsequence Hð2 . . .Þ does not play a role in Easwaran’s argument.

Instead, he considers Hð1 . . . NÞ: a sequence of heads of non-standard length,

where N is an infinite hypernatural number of heads.

His argument goes as follows: Consider a standard infinite sequence of coin

tosses of all heads, Hð1 . . .Þ. Now take any infinitesimal, �. Then 1
� > n for any

n 2 N. Now take a non-standard integer power 2N such that

2N 5
1

�
	 2ð2N

Þ:

Such a non-standard integer power must exist,26 and this number, N,

must then be an infinite hypernatural number. Now consider the probability

ProbðHð1 . . . NÞÞ of the non-standard (hyperfinite) sequence of N heads. Then

we have

ProbðHð1 . . .ÞÞ � ProbðHð1 . . . NÞÞ ¼
1

2N
> �;

which yields the desired result. Easwaran’s conclusion is not that the prob-

abilities involved should all be zero, but rather that it is illegitimate to compare

probabilities on standard sample spaces to probabilities on non-standard

sample spaces.

26 By the ‘transfer principle’ for NSA. This principle says that if a first-order property holds of the

standard real numbers, then it also holds of the non-standard reals. In the case under considera-

tion, the property in question is

y > 1!9n 2 N : 2n 5 y5 2nþ1:
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Easwaran’s argument is closely related to the following recent argument

against infinitesimals put forward by Pruss ([2014], Section 3): Suppose

that Prob1 is a probability function on N that assigns an infinitesimal � > 0

to every singleton and represents a countably infinite fair lottery. Choose a

hypernatural infinite number M so that 1
� is much larger than M. Now consider

an infinite lottery on the infinite set f1; . . . ;Mg. While in the case of a fair

lottery on N it is perhaps not clear which infinitesimal should represent the

probability of a singleton, there is an obvious answer as to what that infini-

tesimal probability here should be: Prob2ð nf gÞ ¼ 1
M

for all n 2 f1; . . . ;Mg. But

we know that Nˆ f1; . . . ;Mg. So we are in a situation where the probability of

drawing the winning ticket in a fair lottery with more tickets is higher than

that of drawing the winning ticket in a lottery with fewer tickets. This is

patently unreasonable.

Before presenting the former argument, Pruss offers an argument that he calls

an ‘intuition pump’. He compares an assignment of (not necessarily equal)

infinitesimal probability values to each singleton of N to the countably additive

function that assigns probability 1=2n to the singleton n for each n 2 N.27 Pruss

observes that, in the former case, the probability assigned to each singleton is

infinitely smaller than the probability assigned to it in the latter case. By an

analogy to the former case, he argues that this cannot be correct.

4.5.1 Reply: Internal versus external probabilities

The crucial move in Easwaran’s argument was the introduction of a probabil-

ity assigned to a non-standard sequence N of heads; he assumes this probability

has to be 1
2N . This is not true in NAP, which will assign a strictly smaller

probability value to this event. Likewise, the crucial move in Pruss’s argument

was the introduction of a probability assigned to a particular outcome of a

lottery on infinite hyperfinite set f1; . . . ;Mg; he assumes this probability has to

be 1
M

. Again, NAP assigns a strictly smaller probability value to this event.

To argue for these claims, we first make two statements that are indispu-

tably correct, then try to combine them into a contradiction, and show why

this fails. For a fair lottery on N, NAP assigns 1
� as the probability of a

particular singleton outcome. For a fair lottery on the infinite hyperfinite set

f1; . . . ;Ng, an internal probability theory assigns 1
N

as the probability of a

27 Observe that the countably additive function 1=2n is not an NAP function. In particular, it is not

normalized: the NAP sum yields 1� 1=2� rather than 1. For the relevant NAP function, it holds

8n 2 N that

Pð nf gÞ ¼
1

2n �
2�

2� � 1
;

which differs pointwise by an infinitesimal from the function Pruss considers.
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particular outcome.28 Now it may seem like we can arrive at a contradiction:

Nˆ f1; . . . ;Ng for any infinite N. Yet, by choosing N '�, ‘the probability’ of

a singleton event is smaller on a strictly smaller sample space (1
� '

1
N

).

The contradiction is only apparent, however, since we are mixing assign-

ments across probability theories—that is why we put ‘the probability’ between

quotation marks: different theories may assign probability values differently. If

we want to compare probability values in a meaningful way, we have to do this

in a context that allows us to assign probabilities to all events of interest.

In order to explain this, we have to introduce a technical distinction familiar from

non-standard model theory: it is the distinction between internal and external objects

in the non-standard universe. ‘Internal’ refers to information available from within

the non-standard model using the transfer principle, which only applies to first-order

properties. ‘External’ refers to information available in the non-standard universe in

which the non-standard model is embedded—concerning properties that cannot be

obtained by transfer alone. Internal approaches to probability theory do not assign

probabilities to lotteries on N (or on any infinite standard domain), since these sets

are external objects in the non-standard model. Hence, such theories do not allow us

to compare a lottery on N to a hyperfinite lottery at all. In such a context, these sets

are incommensurable, and there is no contradiction.

In contrast, NAP is an external approach to probability theory. It has been

claimed that external probability functions cannot assign probabilities to

hyperfinite lotteries (Easwaran [2014], p. 27). However, NAP functions can

do this; it requires a second iteration of the range-building procedure and the

results are different from those of an internal approach. Since this is an

important point, we elaborate on it. Although we originally intended NAP

theory to model probability functions on standard domains (cf. Table 1), our

formalism is perfectly general. Its machinery can be used to construct a uni-

form probability distribution on an infinite hyperfinite set f1; . . . ;Ng.

Moreover, since NAP yields total probability functions, the NAP function

on f1; . . . ;Ng will also assign a probability to the sub-event N: a fundamental

reason for taking NAP to be preferable over Nelson’s theory. The NAP value

associated with a singleton event on f1; . . . ;Ng will not be equal to 1
N

. Instead,

it will be a strictly smaller infinitesimal. This ought to be clear immediately,

since NAP functions respect the Euclidean principle. For instance, for the

probability of ticket 1 winning in a fair lottery on f1; . . . ;Ng we have:

Pð1j 1; . . . ;Nf gÞ5Pð1jNÞ ¼
1

�
:

So, in NAP the events are comparable, yet there is no contradiction either.

28 This can be obtained directly by considering fair lotteries on finite sample spaces and by apply-

ing the transfer principle from NSA to it; see, in particular, Nelson’s ([1987]) probability theory.
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Another way to see this is via an analogy with set size: the numerosity

assigned to N is � and the internal cardinality of f1; . . . ;Ng is N, which may

be chosen smaller than �. Yet, this does not suffice to conclude that ‘the size’

of N is strictly smaller than that of a strict superset. To compare sizes, we have

to pick a particular theory for assigning sizes. N has no internal cardinality, so

this measure is not useful for comparing its size with a hyperfinite set.

However, N and f1; . . . ;Ng do have an external cardinality and a numerosity

and for f1; . . . ;Ng both of these measures are (much) larger than N.29

In short, the way in which NAP describes a (fair) lottery on a hyperfinite set

is fundamentally different from the way in which Nelson’s theory describes it.

In an internal theory, we perform one ultrafilter construction and within the

resulting ultrapower model find a non-standard number, N, and the probabil-

ity values associated with a fair lottery on f1; . . . ;Ng. In the NAP description,

however, we need two ultrafilter constructions to find an NAP function that

describes a fair lottery on a hyperfinite set. In particular, if we already have an

NAP function that describes a fair lottery on N, in general the probability

values required to describe a fair lottery on N� or infinite hyperfinite subsets

thereof will not yet be in the range of this function. A second NAP construc-

tion is required to obtain the required range.

Regarding Pruss’s intuition pump, in this example all finite initial segments

of sums of probabilities of singletons are such that the former is infinitely

smaller than the latter. The intuition pump only works if we assume that

this implies that the same holds for the infinite sum. However, in the case of

NAP and the corresponding non-Archimedean limit of the sum, the implica-

tion does not hold. The key observation is that in order to determine which

sum is larger, one has to compare the summands (as Pruss does) as well as the

sum operation. The standard infinite sum, appropriate for adding CA prob-

ability values, is fundamentally different to the non-Archimedean sum

(Section 3.4) that is appropriate for summing NAP values.

5 Dividends

Now that the objections against non-Archimedean probabilities have been

addressed, we turn to the advantages of using non-Archimedean probabilities.

We describe problems that classical probability theory cannot model in a

satisfactory manner, but which can be modelled elegantly by NAP.

29 N is the internal cardinality of f1; . . . ;Ng, which means that there is no internal bijection of

f1; . . . ;Ng onto a smaller initial segment of the hypernatural numbers. However, the external

cardinality of f1; . . . ;Ng is much bigger than N: there exist no external bijection of N onto

f1; . . . ;Ng, so the set f1; . . . ;Ng has uncountably many elements. For the distinction between

internal and external cardinality, see, for instance (Albeverio et al. [1986], p. 67).
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5.1 Measure and utility

According to classical probability theory, uncountable sample spaces contain

non-measurable subsets (Truss [1997], Chapter 11, Section 4). The probability

functions that are produced by NAP are ‘total’: they assign probabilities to all

subsets of the sample space, which can be finite, countably infinite, or uncoun-

table. This is a virtue of the account, as non-measurable sets are widely

regarded as ‘pathologies’ by probability theorists.

If NAP is adopted, then utilities can be calculated in the usual way even for

events that are judged to be non-measurable by classical probability theory.

Contingent events that have measure zero on the classical theory can have a

non-zero probability if NAP is adopted. Thus NAP seems to provide a sui-

table background theory for a utility theory for infinite spaces.

Mixing hyperreal probability assignments with standard utility theory may

lead to sub-optimal results. A non-Archimedean utility theory for infinite

outcome spaces has been worked out by Pivato ([2014]) and by Pedersen

([unpublished]).30 In the resulting theory, utilities do not satisfy the

Archimedean principle. As Pivato himself notes, this is not a defect of the

theory since many utility theorists are wary of this principle as a constraint on

utilities (see, for example, Krantz et al. [1971], Sections 1.5.2, 6.5.1, and 9.1).

5.2 Regularity and uniformity

Lewis ([1980]) has argued that only impossible events must be assigned prob-

ability zero, that is, probability functions should be ‘regular’. The main reason

for this requirement is that probability functions ought to be maximally fine-

grained; they are expected to distinguish between impossibility and infinitely

improbable contingency. Lewis’s stance harmonizes with our preferred non-

standard probability theory. We have seen that NAP gives us ways of building

regular probability functions even for infinite sample spaces. Indeed, NAP

functions satisfy the Euclidean principle. The fineness of the grain is always

sufficient for the problem at hand, since the range of the NAP function is

constructed using the relevant domain.

It is sometimes held that for reasons of symmetry, certain uniformity

assumptions should also be imposed. This lies behind versions of Laplace’s

([1902]) principle of insufficient reason, later called the ‘principle of indiffer-

ence’. So one might require that in the absence of evidence to the contrary, all

atomic propositions should be given the same probability value. It is well

known that the fact that sample spaces can be carved up in different ways

spells trouble for the principle of indifference (see van Fraassen [1989],

30 As mentioned before, Pivato’s construction of non-standard utility functions for infinite sets of

outcomes is very similar to the construction of NAP models.
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Chapter 12). Nonetheless, uniform probability distributions on infinite spaces,

and even regular uniform distributions, certainly seem conceptually possible.

So our probability theory should at least allow for them; this is captured in our

demand of weak Laplacianism that was discussed in the introduction, and

which is satisfied by NAP.

In sum, even if we agree with those philosophers of probability who argue

that the principle of indifference involves an illegitimate inference from ignor-

ance to knowledge, the regular uniform probability distributions on infinite

sample spaces should fall within the scope of the mathematical treatment of

probability.

5.3 Credence and chance

Perhaps the best known principle relating subjective probability and chance is

Lewis’s ([1980]) principal principle, which can be roughly stated as follows:

ProbðAjChðAÞ ¼ xÞ ¼ x;

where ‘Prob’ is subjective probability, Ch is a chance measure, and x is a real

number.

In classical probability theory, it would seem that if A represents the value

of a continuous observable (say, a position measurement for an electron in a

superposition state), Ch(A) will be zero in a non-determinist context for

every value A. Hence, according to Lewis’s principal principle

ProbðAjChðAÞ ¼ 0Þ ¼ 0. This will render any probability conditional on the

posterior ProbðAÞ undefined, essentially leading to the problems flagged in

Section 2.2. NAP can guarantee regularity, so non-zero infinitesimal values

can unproblematically be assigned to Ch(A) in such cases. Indeed, Lewis

himself advocated the use of infinitesimal probabilities both for subjective

credences and for objective chances for precisely such reasons.

In addition, NAP contains the resources for resolving the so-called zero-fit

problem for classical probability, which goes as follows: Suppose that the

actual world is a ‘Williamson-world’. It consists entirely of an !-sequence,

A, of coin tosses (not necessarily fair). And suppose that the world is chancy.

In particular, it is governed by a law that states that the limiting relative

frequency of heads is 1
10

.31 Then we can define a notion of ‘goodness of fit’

31 This example is taken from (Elga [2004]). Observe that an NAP function describing a coin with a

fixed bias is not the same as an NAP function that expresses a law concerning its limiting

frequency. The prior NAP function is regular on 2N and assigns some non-zero probability to

sequences with a limiting frequency unequal to the bias (such as a sequence of all heads pro-

duced by a fair coin). By conditionalizing on the relevant hypothesis, a posterior NAP function

can assign probability zero to all sequences in 2N that do not have the required limiting

frequency.
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of a hypothesis with respect to the actual world. We say that hypothesis T1 has

better fit than T2 if and only if ChðAjT1Þ > ChðAjT2Þ.

But this presents a problem for classical probability. Let T1 be the ‘right’

theory: it says that the limiting frequency of actual coin tosses is 1
10

. And let T2

be a theory that fits less well: it says that the limiting frequency lies in the

interval ½ 1
20
; 1

2
�. Kolmogorov’s principles require that ChðX jT1Þ must be zero

for almost all !-sequences X that satisfy T1 (since there are continuum many

such). Indeed, if there are no further laws governing the actual world beside

T1, then ChðX jT1Þ will have to be zero for all !-sequences X that satisfy T1.

But that means that classical probability predicts that the fit of T1 is no better

than that of T2, which is incorrect.

Again, NAP can be used to generate chance functions that assign non-zero

(but infinitesimal) chances only to !-sequences X that satisfy T1. Then, by the

Euclidean principle (satisfied by NAP), ChðAjT1Þ > ChðAjT2Þ, which is the

right outcome.

Lewis’s principal principle assumes that for each moment in time there

exists a unique objective physical chance function that governs physical

events in the actual world. In the present article we do not wish to commit

ourselves to this assumption. Indeed, whereas this assumption is compatible

with everything that is claimed in this article, it is not a view that is congenial

to the spirit of NAP. We will return to this issue below (see Section 6.1.1).

5.4 Conditional probability

In Section 2, we discussed three problems due to the assignment of

probability zero to contingent events in the (semi-)classical approach and

mentioned that they can also be addressed without the use of non-

Archimedean probabilities. One of these approaches consists in regarding

conditional probabilities as the fundamental notion; Popper functions are

one way of realizing this idea. Another approach is to consider sequences of

probability functions: lexicographical probabilities. In this section, we explore

the relations between NAP and these alternatives (although we will not be able

to do justice to their history here).

NAP is based on axioms phrased in terms of unconditional (or absolute)

probability functions, just as Kolmogorov’s axioms. Nevertheless, conditional

(or relative) probabilities play a central role in the construction of uncondi-

tional NAP functions, just as they do in the classical theory (recall the CPP in

Section 3.2). So, the mathematics of NAP harmonizes with the philosophical

observation that the notion of conditional probability is at least as fundamen-

tal as that of unconditional probability (see, for example, Hájek [2003]).

Hence, it should not come as a surprise that deep connections exist between
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NAP functions and axiomatizations phrased in terms of conditional probabil-

ity functions.

Even if conditional probabilities with impossible antecedents are meaning-

less, conditional probabilities involving infinitely unlikely contingencies

should be well defined. As mentioned before, in the fair lottery on N or R,

for instance, it seems that we ought to be able to say that

Probð 1f gj 1; 2; 3f gÞ ¼ 1
3
. On the (semi-)classical description of infinite lotteries,

all such conditional probabilities are undefined. Precisely for this reason,

Popper functions have been introduced.

A Popper function is a (non-classical) conditional probability function

C(A, B) that is defined for all A;B 2 Pð�Þ (where � is a finite or infinite

sample space). Popper functions take their values in the real interval ½0; 1�,

just like classical probability functions. If E 6¼ ;, then Cð�;EÞ is required to be

a classical probability function.32 The conditional probability Cð�;;Þ is defined

as one. This is an arbitrary choice; it reflects the fact that we do not care what

value is assigned to events conditional on an impossible event.33 A notion of

unconditional probability can be defined in terms of a given Popper function

as follows: ProbðAÞ ¼ CðA;�Þ, where � is the sample space. The crucial point

is that Popper functions impose restrictions on Cð�;EÞ even if E is an event

that has unconditional probability zero. This is where Popper functions differ

from classical probability functions. In the example concerning the lottery of

the natural numbers above, a description in terms of Popper functions will

indeed predict that Cð 1f g; 1; 2; 3f gÞ ¼ 1
3
. Thus Popper functions generate an

interesting account of conditional probabilities.

NAP can be seen as a generalization of classical probability. It is not hard to

see that the following representation theorem holds (Benci et al. [2013]):

Theorem 4

(1) For every classical probability function, PK, there exists an NAP

function P that is pointwise infinitely close to it, that is, for every E

such that PK ðEÞ is defined, jPK ðEÞ � PðEÞj5 r for every r > 0 2 R.

(2) For every NAP function, P, there is a classical probability function,

PK, that is infinitely close to it for every event on which the latter is

defined.

There exists a representation theorem relating regular non-standard prob-

ability functions that only satisfy finite additivity (and not necessarily NAP’s

32 So, in that case we require Cð�;EÞ to satisfy �-additivity. Totality and �-additivity are not

imposed by all authors and in general cannot be satisfied jointly.
33 For a complete list of the axioms governing Popper functions and a discussion of it, see (McGee

[1994]). It may be more natural to leave Cð�;;Þ undefined; see, for instance, (Easwaran [2014], p.

16).
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infinite additivity property) on the one hand, and Popper functions on the

other hand (see Krauss [1968]; McGee [1994]). However, Brickhill and

Horsten ([unpublished]) has recently shown that this result can be strength-

ened to a representation theorem that relates regular (and perfectly additive)

NAP functions with Popper functions34:

Theorem 5

(1) For every Popper function, Cð�; �Þ, there exists an NAP function, P,

that is pointwise infinitely close to it.

(2) For every NAP function, P, there is a Popper function, Cð�; �Þ, that is

pointwise infinitely close to it.

So, NAP functions can be regarded as generalizations of Popper functions.

However, since even infinitesimal differences may change the order of NAP

values, corresponding Popper functions and NAP functions may lead to dif-

ferent decisions (see the following section).

Popper functions are related by means of representation theorems to classes

of classical probability functions.35 So, indirectly, the representation theorems

of Krauss, McGee, and Brickhill connect non-standard probabilities to classes

of classical probability functions.

Since the work of Adams, classical probability functions play a central role

in the theory of indicative and subjunctive conditionals. But it is well known

that conditionals with contingent probability zero antecedents cannot be trea-

ted in a satisfactory manner.36 Popper functions have been used to construct

better theories of conditional sentences (Leitgeb ([2012]). Given the connec-

tion between Popper functions and NAP functions, it is clear that there is an

important role to be played here for non-standard probability theories, too.

Popper functions have in turn been related to possible worlds semantics for

counterfactuals (Leitgeb [2012]), Part A, Section 3). So, again, there is a deep

relation between possible worlds semantics for conditionals and NAP models.

Conditional probabilities play a prominent role in learning from evidence.

They figure crucially in standard update rules. In classical probability theory,

we cannot use Bayes’s rule, for instance, to learn from infinitely improbable

contingencies that actually obtain. They cannot be used to update our sub-

jective probability distribution in such situations. But if our subjective

34 The proof of the second part of this theorem is easy; the proof of the first part is much more

complicated.
35 See (van Fraasen [1976]), which associates finite dimensions with Popper functions. For NAP

functions, van Fraassen’s notion of dimension can be extended into the transfinite. It would take

us too far afield to pursue this in the present article. See also (Császár [1955]); Rényi [1956]).
36 Such as, ‘If in the lottery on the natural numbers ticket 3 is (was) drawn, then one of the tickets 1,

2, 3 is (was) drawn’.
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probability distribution is regular, then Bayes’s rule can be used to revise our

probability distribution.37

Halpern ([2010]) has carried out a systematic investigation of the relation-

ships between non-standard probability spaces, conditional probability spaces

(including Popper spaces), and lexicographical probability spaces. However,

his results do not suffice to show how NAP spaces relate to the two other

approaches, since the non-standard probability spaces considered by Halpern

lack the perfect additivity property that is encoded by axiom NAP4 (which

was not formulated at the time). Instead, Halpern ([2010], p. 166) considered a

pointwise limit on the hyperreals to obtain a proxy for countable additivity

that applies to non-standard probabilities. We suspect that considering NAP

spaces may lead to an interesting restriction on the class of lexicographical

probability spaces with which they are equivalent.

6 General Considerations

In this final section, we consider misgivings that are somewhat more diffuse,

and that relate to more general philosophical questions about the nature of

probability and about the way in which probability relates to the real world. In

particular, we address the non-uniqueness of NAP functions and revisit the

failure of NAP to validate certain invariance principles. We will see that these

issues are connected.

In the introduction, we motivated NAP on the basis of four desiderata

(regularity, totality, perfect additivity, and weak Laplacianism). The existence

of models for NAP theory shows that these four initial desiderata can be

combined in a consistent way. We may consider further desiderata, but not

all subsets of these desiderata can be combined harmoniously within a single,

consistent probability theory. In particular, the desideratum of totality is in

tension with that of uniqueness and the desideratum of regularity is in tension

with that of invariance.38

6.1 Non-uniqueness

NAP functions are non-unique in the following sense: Given a conceptually

possible probabilistic scenario, there may be uncountably many NAP func-

tions that describe the scenario equally well. The functions differ from each

other because their construction relies on a different free ultrafilter (see

37 Pruss ([2012]) argues that updating on infinitesimal probabilities is coherent but can give coun-

terintuitive results in certain situations. We reserve discussion of Pruss’s objection for another

occasion.
38 It has also been observed by Skyrms ([1980], Appendix 4) that there is a trade-off between

various requirements—he considered additivity, translation invariance, totality, and regulari-

ty—for standard and non-standard measures.
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Appendix). Although not any free ultrafilter will do,39 the relevant collection

still contains uncountably many filters.40

Given a particular subset of the sample space, this plurality of ultrafilters

may lead to variations in the associated NAP values. The difference between

two NAP assignments to an event that does not receive a classical probability

value may be non-infinitesimal (and, in some cases, as high as one minus an

infinitesimal). Concerning a non-standard probability function for a fair lot-

tery on the natural numbers from (Wenmackers and Horsten [2013]), Kremer

([2014]) has shown that there is a set that can be given any rational number

between zero and one as (the standard part of) its probability value; this

observation generalizes to NAP.

Offhand, this non-uniqueness seems undesirable. However, Kremer sug-

gests that ‘maybe this indeterminacy is a feature, not a bug’, because intui-

tively it is not clear at all what probability should be assigned to the set that he

constructs. In order to assess the issue of non-uniqueness, we first discuss all

the parameters that need to be fixed to define an NAP space and how these

choices relate to the notion of uniquely determined physical chance.

6.1.1 Parameters and objective probability

An NAP space is a triple h�;w;UPfinð�Þi, with � a sample space, w a real-

valued weight function defined on the elements of �, and UPfinð�Þ an ultrafilter

on the class of finite subsets of � (see Section 3.5). (We focus on situations

where � is infinite.)

This means that in order to model a given conceptually possible probabil-

istic situation, three choices need to be made. The first two choices are familiar

from classical probability theory. If one believes in the existence of objective

probabilities, then these choices can be constrained: one can require � to be a

subset of the ‘universal sample space’ of physically possible point events, and

one can take the weight function to be physically determined.

In the classical setting, a third choice has to be made (in uncountably infinite

sample spaces): one has to pick a �-algebra of events. The defender of NAP

also has a third choice to make: the choice of an ultrafilter. In both

approaches, this third choice may involve arbitrariness. In the classical setting,

when totality fails, we have to take some sets to be non-measurable. It is not

easy to convince oneself that the subsets of � that are non-measurable have no

probability (physical propensity) of occurring, but we leave that as a problem

for the classical probabilist who is also a fan of objective probabilities. Of

course, the classical probabilist is not forced to take this position; if she is a

39 We need a fine ultrafilter (see Kanamori [1994], p. 301) and may impose further conditions on

the filter (as discussed, for instance, in (Benci et al. [2013], Section 5.2).
40 For an infinite set of cardinality �, there are 22� ultrafilters to choose from.
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subjectivist, then she will take the weight function to be an expression of a

person’s subjective expectations.

In NAP, the ultrafilter is defined on a ‘directed set’, �, which is included in,

but does not have to be all of,Pfinð�Þ. In (Benci et al. [2013], Section 5), we have

shown how choosing a smaller � (which also reduces the number of ultrafilters)

influences the properties of the resulting NAP function. Nonetheless, it is hard

to see how one could ever have conclusive grounds for preferring one particular

ultrafilter over all the others (see also Wenmackers and Horsten [2013], Section

6.2). A fan of objective probability can probably still maintain that the choice of

ultrafilter is, ultimately, physically determined. Nonetheless, given the empirical

inaccessibility of this ultrafilter,41 this position does not help us to select a

unique NAP function in our models.

So on both the classical approach and in NAP, probability is partially

arbitrary, in the sense that it involves a choice that is not empirically acces-

sible. Once a choice has been made (for a particular �-algebra of events or an

ultrafilter, respectively), the probability function is unique (relative to this

choice).42 Even if it is assumed that there is a single true �-algebra of events

or ultrafilter, it is empirically inaccessible, so making a particular choice to

represent this physical chance function remains partially arbitrary.

Thus, at most, we can hold that the probability of physical events is objec-

tive in a weaker sense. What one could say is the following: There is such a

thing as physical chance. And it is a legitimate task of our mathematical

models to track this property. But our models can only track physical

chance in a mediated way. In order to describe a physical system and its

behaviour, our probabilistic models have to select a sample space and label

the point events (that is, establish a connection between reality and point

events in the model). For finite sample spaces, the labelling does not matter;

but for infinite sample spaces, different labellings can result in different prob-

ability assignments. All this induces a degree of relativity in probability values

of events. But it in no way contradicts the objectivity of physical chance.

We advocate an even weaker position vis-à-vis the objectivity issue. As

stated in the introduction, we see the task of probability as being one of

mathematically modelling ‘conceptually possible’ probabilistic situations

(weak Laplacianism). The resulting mathematical models should preserve as

much of our pre-theoretical intuitions concerning probability as possible.

Viewed in this light, the choice of an ultrafilter does not appear to be a

41 We can only perform finitely many experiments. Hence, even if we would assume that there is

such a thing as a particular ultrafilter in reality, there is no way to establish empirically which

one it is.
42 In the real-valued case, it is well known that we can trade this partial arbitrariness of the event

space (due to the failure of totality) for the partial arbitrariness of measure values (due to failure

of uniqueness) by introducing generalized limits (or Banach limits); see, for instance,

(Wenmackers and Horsten [2013], Section 3.2).
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problem, for there is no reason to assume that there is a unique best way to

model certain infinite probabilistic situations (such as infinite lotteries).

6.1.2 Order and subjective probability

The regularity axiom NAP1 and the associated Euclidean principle require prob-

ability values to respect the ordering induced by the subset relation on the event

space. The sum and product rule require numerical probabilities to have more

structure than just this partial order: we require the probability values to be part

of a totally ordered field of numbers. Hence the subset relation underdetermines

the order of the probability values. We need an additional degree of freedom to

allow for various kinds of probability assignments to the same event space.

In part, this is accomplished by selecting a weight function (Section 3.5),

which encodes probability relations between atomic events, and thus the order

between many disjoint events (in particular, for finite and co-finite events). But

the subset relation together with a specification of a weight function still

underdetermines the order of the probability values.43 For some events, the

difference in probability can be more than infinitesimal, depending on the

properties of the free ultrafilter.44 Yet, even infinitesimal differences may

change the order (for example, in a fair lottery on the natural numbers, the

probability of the set of even numbers may be equal to or infinitesimally

smaller than that of the set of odd numbers).

The observation that the subset relation is a partial order whereas any sort

of numbers (real or hyperreal) require a total order has been made by others,

and recently by Hofweber ([2014]) and Easwaran ([2014]). Easwaran observes

that real-valued probability functions leave out part of the structure of the

partial order, whereas hyperreal-valued probability functions add structure in

an arbitrary way. He prefers the former approach, since even if one assigns

probabilities to an algebra, one can still consult the order of the subset relation

on the algebra. Nothing prevents you from using both sources of information

when you have to make decisions. For instance, if you get the opportunity to

choose between betting on the occurrence of {1} and of {1, 2} in a lottery on N

or R, both real-valued probabilities are zero, but that does not prevent you

from preferring the largest event.

43 In the context of real-valued probabilities, this has prompted some researchers to strengthen the

notion of ‘uniformity’ on a countably infinite sample space beyond the assignment of equal

weights to atomic events. Kerkvliet and Meester ([2016]) assign uniquely determined,

real-valued probabilities to a large collection of subsets of the sample space. Although their

results may lead to interesting suggestions to explore in the context of NAP, we do not pursue

those here.
44 In the case of a fair lottery in N, these are the sets that do not have an asymptotic density (see, for

example, Wenmackers and Horsten [2013], Section 3.1). In general, a necessary (not sufficient)

condition is for the event to be infinite and not co-finite.
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One might think that ignoring relevant existing structure (a sin of omission)

is not as grave as adding structure (a sin of misinformation).45 However, it has

to be borne in mind that one can always consider the entire family of NAP

functions modelling a given situation, rather than an—arbitrary—representa-

tive of it (see also Wenmackers and Horsten [2013]). Such a family is the set of

all NAP functions that meet a common specification, such as ‘a fair lottery on

R’, which fixed the sample space and the weight function, and possibly addi-

tional constraints on the directed set. As a whole, the family shows us how

much the probabilities of a given event, and the order of probabilities of

multiple events, can vary (dependent on the choice of ultrafilter).46

To put it differently,47 there may be multiple, equally good ways to model the

same situation, corresponding to different choices of the ultrafilter. What mat-

ters is what is true (or false) on all ways of making these arbitrary choices—what

is supertrue (or superfalse)—as well as the spread of possible assignments. We

need not project these arbitrary choices onto what is being modelled.

In the context of decision theory, a family of NAP functions leads to more

subtle decisions. Let us consider a fair lottery on the natural numbers (starting

at one) and suppose you are given a choice between betting on the occurrence

of the set of even numbers and of the set of odd numbers. If you make

decisions based on real-valued probabilities, you are indifferent between

these two options. Since the choice concerns disjoint events, taking into

account the subset relation on the event space (as Easwaran [2014] suggests)

does not change this, either. By considering the family of NAP functions,

however, you may reasonably favour the set of odd numbers: some NAP

functions assign a higher probability to this set than to the even numbers,

whereas the others assign equal probabilities to both events.48 For some other

subsets of the sample space, you do not have any information based on real-

valued probability assignments. By considering the family of NAP functions,

it turns out that some events that are non-measurable on the classical account

have probabilities that vary between zero plus an infinitesimal and unity minus

an infinitesimal; but others vary within a smaller interval, for instance,

between one-third and two-thirds (plus minus an infinitesimal) (see Kremer

[2014]; Kerkvliet and Meester [2016]). Given the choice between such a subset

of N, S, and the set Nmod 4, you do not need to know the exact hyperreal-

45 But recall from the previous subsection that the classical approach may also be subject to this

criticism: it adds structure by declaring which sets are measurable and which are not.
46 This is familiar from the context of real-valued probabilities, where a family of probability

functions is used to represent imprecise probabilities; see, for example, (Walley [2000];

Halpern [2003]).
47 We are grateful to Alan Hájek for this suggestion.
48 See also Halpern’s ([2010], p. 167) example in which infinitesimal probabilities lead to decisions

that cannot be captured by Popper functions.
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valued probability of the former to know that it has a higher probability of

winning than the latter (see also Wenmackers [unpublished]).

At the same time, a family of NAP functions is more definite since it spe-

cifies the relevant limit process. The Borel–Kolmogorov paradox (mentioned

in Footnote 7) demonstrates that classical probability functions alone do not

contain enough information to define all conditional probabilities; informa-

tion on the limiting process has to be supplemented. In the context of NAP,

specifying the limit process is reflected in a reduction of the family of free

ultrafilters and the corresponding family of NAP functions.

6.1.3 Domain and co-domain

NAP functions in the same family do not even have the same domain and co-

domain. Believers in objective probability hold that there is one ultimate

universal sample space. But NAP does not want to be restricted to sub-

domains of this sample space (if it exists at all). We also want to model

situations that are outside the physical realm. It may (or may not) be the

case, for instance, that the universal physical sample space is of the size of

the continuum. Then we would still want NAP to be able to model lotteries on

the function spaces on the real numbers, for instance.

Easwaran has objected to hyperreal credences using a complexity argument

([2014], Section 5.4). His conclusion, that physical agents cannot have hyperreal

credences, relies on four premises, two of which ‘might be controversial’ ([2014],

p. 29): ‘Credences supervene on the physical’ and ‘All physical quantities can be

entirely parametrized using the standard real numbers’. Bascelli et al. ([2014], p.

850) reject the second controversial premise, by referring to physical models that

do employ hyperreal numbers. We want probability theory to be applicable to

thought experiments, as well as to models in physics. Hence, we argue that a

probability theory should not depend on current physical theories, nor on con-

siderations about credences of actual agents (informed by such theories).

In classical probability theory, the interval ½0; 1� 
 R serves as the value

range of all probability functions, even those that have R as its sample

space. The situation is different for non-standard probability theory. The

co-domain, R, of an NAP function, P, depends, inter alia, on its domain,

P �ð Þ.

Hájek ([unpublished]) remarks that a probability theory that allows for reg-

ularity will have to look very different from Kolmogorov’s theory. By examining

NAP as an example of such a theory, we can make this claim more precise. A

cardinality argument easily shows that regularity cannot be ensured for arbitrary

sample spaces if the range of the function is fixed (cf. Footnote 12). One crucial

difference between NAP and Kolmogorov’s theory is precisely that NAP con-

structs the range based on the sample space. However, this difference need not be
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a problematic one. On the assumption that there is a strongly inaccessible car-

dinal, it can easily be shown that there are regular NAP probability functions

that are defined on all sets according to certain models of Zermelo–Fraenkel set

theory (with the axiom of choice).

6.2 Invariance

Now we return to the observation that the desideratum of regularity is in

tension with that of invariance. The arguments by Williamson, Parker, and

Barrett do show that NAP is incompatible with certain constraints on prob-

abilities that have some intuitive pull. One-to-one correspondence is a cele-

brated criterion of identity for cardinal number of sets: this is the Humean

principle (Section 3.6). But one-to-one correspondence is not the correct cri-

terion of identity for an ordinal number of a well-ordering: for finite sets, one-

to-one correspondence works fine; for infinite sets, it does not. So the criterion

of identity in terms of one-to-one correspondence is a symmetry principle that

holds for one concept (cardinal number) and not for another (ordinal

number). Does it hold for the probability of a set in a uniform distribution

context? As we have argued in Section 3.6, for finite sets it does, but for infinite

sets it does not; otherwise, we would be forced in any countably infinite sample

space to give all infinite sets a measure of one. This is something we do not

want, for the concept of a sparse infinite sets lies within the scope of our pre-

theoretical concept of probability. We have seen that we also have to give

up certain other invariance principles, such as translation-invariance

(Williamson’s coin tosses) and rotation-invariance (Barrett and Parker).

This again becomes clear only when one considers infinite sample spaces: if

we want a maximally fine-grained concept of probability, then we are forced to

accept the Euclidean principle. And this principle imposes limits on the

amount of invariance that a fine-grained probability function can support

(Benci et al. [2013], Section 5.4).

It is likely that Williamson intends his argument to be given a physical

interpretation. We know, one might say, that the laws of physics are time-

translation invariant. But Williamson’s argument purports to show that the-

ories assigning infinitesimal probabilities to particular infinite sequences of

fair coin tosses are not time-translation invariant. So, there is something

wrong with modelling infinite sequences of coin tosses in this way.

Williamson’s infinite series of fair coin tosses probably already transports us

out of the physical world. The scenario as described by Williamson is pre-

sumably inconsistent with our best current scientific theories. But ignoring

that, it is still not easy to see why the NAP treatment of Williamson’s scenario

has to violate time-translation invariance. We have to keep track of the sample
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space in which we are working. In the time-translated scenario, there just is a

new sample space (containing one point event less than the original scenario).

For some purposes, we may want certain invariance properties even when

dealing with a fine-grained concept of probability. For instance, when considering

uniform distributions over the rational numbers, we may want the probability of

an interval to be proportional to the length of the interval. To a large extent, such

intuitions can be accommodated (Benci et al. [2013], Sections 5.3 and 5.4).

For other purposes, invariance behaviour (and simplicity) is more important

than fine-grainedness. In all such situations, classical probability suffices. Still, as

we have argued, there are kinds of probabilistic situations that cannot be mod-

elled by classical probability but that can be modelled well by NAP theory.

We end by concluding that there is a legitimate place for non-Archimedean

theories of probability. In the philosophical literature, infinitesimal probabilities

have received much criticism, but most of it does not hold up to scrutiny. We

have looked into NAP as a particular theory that contains infinitesimal prob-

abilities. Although this theory has some counterintuitive consequences, it also

has advantages over classical probability theory: it exhibits regularity, totality,

perfect additivity, and weak Laplacianism. On balance, we find NAP to be a

serious contender for a theory of probability, which we expect to be fruitful in

shedding new light on old puzzles that combine probability and infinity.

Appendix: ,, the :-limit

Let � be the family of the finite subsets of � ð� ¼ Pfin �ð ÞÞ49 and consider the

class of real-valued functions, F �;Rð Þ, defined on �: Notice that if we fix

A 2 P �ð Þ; we have that, for l 2 �; the conditional probability

PðAjl Þ 2 F �;Rð Þ. Thus, in order to formulate CPP for NAP, we are led to

the following axiomatic definition of ‘�-limit’50:

Axiom 1 (Existence Axiom)

Every function ’ 2 F �;Rð Þ has a unique ‘�-limit’ in a superreal field R � R,

which will be denoted by

lim
l"�

’ðlÞ:

Axiom 2 (Real Numbers Axiom)

Let ’ 2 F �;Rð Þ be eventually equal to c 2 R, namely, assume that

49 In general, � is a directed set � Pfin �ð Þ. As explained in (Benci et al. [2013]), some properties of

the resulting probability functions depend on the choice of �. However, in order to understand

the construction of the limit, it is easiest to think of � as Pfin �ð Þ.
50 An anonymous referee suggested that it is more intuitive to require the following: if ’ � c

eventually, then lim l"� ’ðlÞ � c. Please observe that this follows from the axioms.

Infinitesimal Probabilities 547



9l0 2 �; 8l � l0; ’ðlÞ ¼ c. Then:

lim
l"�

’ðlÞ ¼ c:

Axiom 3 (Sum and Product Axiom)

If ’; 2 F �;Rð Þ; then

lim
l"�

’ðlÞ þ  ðlÞð Þ ¼ lim
l"�

’ðlÞ þ lim
l"�

 ðlÞ;

lim
l"�

’ðlÞ �  ðlÞð Þ ¼ lim
l"�

’ðlÞ � lim
l"�

 ðlÞ:

First of all, we want to show that these axioms are consistent, so we will build a

model. If � is finite, the above axioms are trivially satisfied taking R ¼ R and

defining

lim
l"�

’ðlÞ ¼ ’ð�Þ:

If � is infinite, we take a fine and free ultrafilter, U�; over �, and we set51,52

R ¼ F �;Rð Þ=U�: ðA:1Þ

The �-limit is defined by

lim
l"�

’ðlÞ ¼ ’½ �U�
: ðA:2Þ

This model then has the required properties, with the fineness of the ultrafilter

guaranteeing regularity.

It is also possible to show that all the models of �-limit have this form.

More precisely, assume that we have a structure ðR; lim l"�Þ, where R is a

superreal field and

lim
l"�

F �;Rð Þ!R

is an operator that satisfies axioms (1), (2), and (3). Then there is an ultrafilter

such that Equations (A.1) and (A.2) hold. We refer to (Benci et al. [2013]) for

further details on the �-limit.

By Equation (A.1), it follows that R is a non-standard model of the real

numbers. For this reason, we refer to R as a field of hyperreal numbers. The

relation of NAP with NSA is quite deep, particularly from the technical point of

view and we refer to (Benci et al. [2013]) for a discussion of this point as well.

51 F �;Rð Þ=U� denotes the set of equivalence classes ’½ �U�
with respect to the relation &U�

, defined

by

’&U�
 , 9Q 2 U�; 8l 2 Q; ’ðlÞ ¼  ðlÞ:

52 Since we want to identify R with a subset of R; the equivalence class of a function ’c identically

equal to c must be identified with the real number c.
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Hájek, A. [2003]: ‘What Conditional Probability Could Not Be’, Synthese, 137, pp.

273–323.
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