
Digital Object Identifier (DOI) 10.1007/s00236-004-0144-0
Acta Informatica 40, 637–655 (2004)

On best transitive approximations to simple graphs

Steven Delvaux, Leon Horsten

University of Leuven, Department of Computer Science / Department of Philosophy,
3000 Leuven, Belgium

Received: 16 April 2003 / 9 May 2004
Published online: 8 July 2004 – c© Springer-Verlag 2004

Abstract. In this paper, we investigate both combinatorial and complexity
aspects of the problem of finding best transitive approximations to simple
graphs. These problems are addressed in an interlocked way. We provide
new and simple proofs of known results and in addition prove some new
theorems.

1 Introduction

Given any finite graph, which transitive graphs approximate it most closely
and how fast can we find them?

The answer to this question depends on the concept of “closest approx-
imation” involved. In [8,9] a qualitative concept of best approximation is
formulated. Roughly, a qualitatively best transitive approximation of a graph
is a transitive graph which cannot be “improved” without also going against
the original graph. A quantitative concept of best approximation goes back
at least to [10]. A quantitatively best transitive approximation is a transitive
graph that makes the minimal number of mistakes against the original graph.
In other words, the sum of the edges that are removed from and are added
to the original graph is minimal.

On both the qualitative and the quantitative conception, there usually
exists more than one best transitive approximation. In [7], partial results are
obtained for the number of quantitatively best transitive approximations.
And in [5] it is shown that finding a best approximation in the quantitative
sense is an NP-complete problem.

In this paper, we investigate both combinatorial and complexity aspects
of the problem of finding best approximations, and we investigate these



638 S. Delvaux, L. Horsten

aspects in an interlocked way. We give a new and simpler proof of the
important NP-completeness result of [5], but also prove some additional
results. We also extend the combinatorial results of [7].

Unless explicitly mentioned otherwise, when in the sequel we say “for
any G,...”, we mean “for any reflexive symmetrical graph G,...”. For the rest,
our notation is fairly standard. The notation uv stands for the edge between
vertex u and vertex v; by G we denote the graph with same set vertex set as
G, but with the complementary set of edges; by #A we denote the cardinal
number of a set A.

The problem that is addressed in this paper has applications in all sit-
uations in which an interconnected structure must be partitioned in a way
which reflects the actual interconnections as well as possible.1 Concrete
applications then follow from the actual structures under investigation.

2 The difference between graphs and transitive graphs

The definition of best equivalence-approximation of a graph G can be ex-
pressed as follows.

Definition 1 Let G, H be graphs with the same set of vertices. We define
the difference graph D (G, H) of G and H as the graph consisting of those
edges uv such that either uv ∈ G and uv /∈ H , or uv ∈ H and uv /∈ G.

Definition 2 For any G, the collection BA (G) (the collection of best tran-
sitive approximations to G) consists of all transitive graphs H such that
#D(G, H) is minimal.

In words, the idea can be expressed as follows. We consider G as a fixed
graph and the transitive graph H as an approximation of G. We see then that
H is obtained from G by removing and adding edges to/from G (cutting
and pasting). Every action of adding and of removing an edge is counted as
a mistake by H . A best transitive approximation to G is an approximation
which makes a minimal number of mistakes.2 It is a quantitative definition
because the number of mistakes is counted.

Definition 3 For any G and H , we define the graph D−(G, H) to be the
graph consisting of those edges which are in G but not in H . Similarly we
define D+(G, H) to be the graph consisting of the edges which are not in
G but are in H .

Definition 4 For any G, the collection BA− (G) (best transitive ap-
proximations from below) consists of all transitive graphs H such that
#D+(G, H) = 0 and #D−(G, H) is minimal.

1 See [10, p. 840], [2].
2 This definition goes back at least to [10, p. 840].



On best transitive approximations to simple graphs 639

In other words, we say that the best transitive approximations from below
are best equivalence-approximations that only remove edges from G (but do
not add edges). Every action of removing an edge is counted as a mistake.

Of course we can also define the set BA+ (G) consisting of the best
transitive approximations from above. But this is a rather trivial notion: for
any graph G, the set BA+ (G) will only contain one element, and this is
the graph which is the transitive closure of G. In the sequel, this notion will
be disregarded.

We will now investigate some combinatorial properties of the quantitative
cut-and-paste approach. Some of these results will also be used later in our
complexity calculations.

A simple upper bound for the number of modifications that need to be
made in order to make a graph transitive is 1

2

(
n
2

)
.3 The reason is the following.

Either the graph has ≤ 1
2

(
n
2

)
edges and we remove them all, or it has > 1

2

(
n
2

)
edges and we complete the graph using < 1

2

(
n
2

)
edges. We will now give

the exact upper bound, and investigate when this boundary is reached.
First we introduce a systematic series of definitions that includes the

definition of transitive graphs.

Definition 5 A graph is transitive if and only if there is no triple of vertices
which are connected by means of exactly 2 edges, i.e. if and only if every
triple of vertices is connected by 0,1, or 3 edges. Such graphs can be called
013-graphs. Similarly, we define the class of 02-graphs, 012-graphs, and so
on.

We will now consider a subclass of the transitive graphs (or 013-graphs).
Namely, we focus on the 13-graphs.

Proposition 1 Let n vertices be given, on which a graph is defined in the
following way: (a) every vertex is given a sign + or −; (b) an edge is drawn
between two vertices if and only if they have the same sign. Then (1) the
result is always a 13-graph, and (2) every 13-graph can be so generated.

Proof. (1) This is immediate: to an arbitrary triple of vertices we have as-
signed either one sign only (this yields 3 edges) or two signs (this yields one
edge).
(2) Let a 13-graph G be given. We must find an assignment of signs that
yields G. A first vertex v0 is assigned +, and any other vertex v is assigned
+ if the edge v0v belongs to G, − otherwise. Let G′ be the 13-graph thus
generated. We claim that G = G′. This can be seen by considering an
arbitrary triple of vertices v0, v, w. We know that G and G′ agree on 2 of the
3 possible edges between v0, v, w, and since their number of edges is equal
modulo 2, they must also coincide on the third possible edge vw.

3 See [6].



640 S. Delvaux, L. Horsten

Definition 6 If we have a 13-graph in which p nodes have been assigned
+, and q nodes have been assigned −, then we call p and q the structure
numbers of the 13-graph.

From Proposition 1, we see that a 13-graph is just a transitive graph where
the vertices are distributed over 2 cliques. The sizes of these two cliques
are the structure numbers p and q (one of which may be zero). By passing
to the complementary graph G, we see that a 02-graph is a bipartite graph
with p vertices on the left and q vertices on the right, such that every of the
p vertices is connected with every of the q vertices. Such a graph is usually
called a complete bipartite graph and denoted as Kp,q. In this case, we still
call p and q the structure numbers of G.

We will define now a function ϕ which will be important in the sequel.

Definition 7 Let n be a positive integer, then we define ϕ(n) to be

–
(n

2
2

)
+

(n
2
2

)
= n

2

(
n
2 − 1

)
for n even, and

–
(n−1

2
2

)
+

(n+1
2
2

)
= n+1

2 · n−1
2 for n odd.

A small calculation shows that ϕ(n) can also be written as

ϕ(n) =
1
2

((
n

2

)
−

⌊n

2

⌋)

for every n. It is clear that, as n → ∞, the function ϕ (n) becomes asymp-
totically equivalent to 1

2

(
n
2

)
, i.e. to half of the possible edges on n points.

Now in order to gain information about the best transitive approxima-
tions of a graph G, we will first restrict ourselves to the best “13-graph”-
approximations of G. We first calculate the minimal number of edges that
need to be modified in order to transform a graph G of order n into a 13-
graph.

Lemma 2 The minimal number of edges that needs to be modified in order
to transform a graph G of order n into a 13-graph is

(a) at most equal to ϕ (n), and (b) exactly equal to ϕ (n) if and only if
G is a 02-graph.

Proof. First we will prove (a).
(a1) Suppose first that n is even. Let H be an arbitrary 13-graph and consider
the difference graph D (G, H). If u is a vertex which has at least ≥ n

2
neighbors in D(G, H), we can replace H by the graph H ′ which is obtained
by reversing the sign of u. We can iterate this operation until every point is
connected to ≤ n

2 − 1 edges in D (G, H). The number of mistakes of the
resulting 13-graph is then at most n

2

(
n
2 − 1

)
= ϕ (n).

(a2) Suppose that n is odd. We can then lower the degree of the vertices
in D(G, H) to n−1

2 , by using the same method. This does not yet suffice.



On best transitive approximations to simple graphs 641

But suppose that there are two vertices which have both degree n−1
2 in

D (G, H) and which are not connected. Then if we reverse the sign of these
two vertices, the total number of edges in D(G, H) will decrease. (This is
not hard to see.) We see from this that all the vertices of degree n−1

2 must be
connected with each other. Hence there are at most n+1

2 vertices which have
degree n−1

2 , and other vertices have lower degrees. The number of edges in
D(G, H) is then at most

1
2

(
n + 1

2
· n − 1

2
+

n − 1
2

· n − 3
2

)
=

n − 1
2

· n − 1
2

= ϕ(n)

Now we will prove (b).
(b1) First we do the ⇒-direction. (b1.1) Suppose that n is odd. From the
proof of (a), we see that the maximal number of mistakes can only be reached
when D (G, H) is the union of 2 disjoint cliques, of size n+1

2 , n−1
2 , respec-

tively. Such a D (G, H) is a 13-graph. The original graph G is then the
“superposition” of two 13-graphs, hence a 02-graph.
(b1.2) Suppose that n is even. In (a) we have lowered the degree to n

2 − 1.
Now we need the additional fact that if we have 3 vertices which are pairwise
unconnected in D(G, H) and all have degree n

2 − 1 in it, then changing the
sign of all these vertices will decrease the number of edges in D(G, H). This
implies that the maximum number ϕ (n) of mistakes is only reached when
D (G, H) consists of 2 cliques, both containing n

2 vertices, which leads to
the same situation as in (b1). (b2) Now we do the ⇐-direction.
If G is a 02-graph, then D (G, H) must be a superposition of a 02-graph
and a 13-graph and hence a 13-graph. The number of edges of such a graph

is at least
(n

2
2

)
+

(n
2
2

)
= ϕ (n) for n even and

(n+1
2
2

)
+

(n−1
2
2

)
= ϕ (n) for n

odd.

This proposition generalizes a result of [7], where it is shown that in order
to transform a graph of order n into a transitive graph with 2 components, at
most ϕ (n) mistakes have to be made, and this maximum value is reached
on a graph Kp,q.

We will now investigate the best transitive approximations of a graph G
which is a 012-graph (equivalently, a graph with maximum clique number at
most equal to 2). First we prove the following lemma for the complementary
graph G, which is a 123-graph.

Lemma 3 Let G be a 123-graph of order n. Then: 1. G contains at least
ϕ (n) edges and 2. This minimum value is reached when G consists of 2
disjoint but equally large cliques, i.e., when G is a 13-graph with structure
numbers

{
n
2 , n

2

}
(n is even) or

{
n−1

2 , n+1
2

}
(n is odd).

Proof. Let u be a vertex with a minimal number d − 1 of neighbors. There
must then be n − d vertices which are not connected with u (excluding u



642 S. Delvaux, L. Horsten

itself). Since every triple of vertices in G must contain at least one edge
(by definition of 123-graph), these n − d vertices must form a clique. On
the other hand, by the minimality of d, we see that every vertex must have
degree at least d − 1. So the minimal number of edges is reached when:

a. there are no additional edges to the clique of n − d vertices, and

b. each of the d vertices has degree d − 1.

It is clear that there is exactly one way in which these conditions can be
satisfied, namely if G consists of 2 disjoint cliques. Therefore G must be a
13-graph. As in the proof of the previous lemma, we see that such a graph
has at least ϕ (n) edges, and that this minimum is reached when the structure
numbers of the graph differ by at most 1.

Incidentally, we note that this lemma can be generalized somewhat:

Lemma 4 Let G be a graph of order n, and µ an integer such that there
is at least one edge in every collection of µ + 1 vertices (or, equivalently,
that its complementary graph has maximum clique number at most µ). Then
the minimal number of edges of G approximately equals 1

µ

(
n
2

)
, and this

minimum is reached when G consists of µ disjoint, almost equally large
cliques.

Proof. Again let u be a vertex with a minimal number d − 1 of neighbors.
By assumption between every µ-tuple of vertices not connected with u there
has to be at least one edge. We then reason inductively: the number of edges
on these n − d vertices can only be minimal if they consist of µ− 1 disjoint
cliques. As in the previous lemma, the other d vertices must then also form
a clique in order to be minimal. So G consists of µ disjoint cliques, and it
is easy to see that the minimal number of edges of such a graph can only
be reached when the difference in size of each pair of cliques amounts to at
most 1.

Now we will prove that, for a 012-graph, we can always find a best
cut-and-paste-approximation that does not paste.

Theorem 5 Let G be a graph with maximum clique number 2. Then there
is an element H of BA (G) which belongs to BA− (G).

Proof. Suppose k vertices, with k ≥ 3, which a best transitive approxima-
tion transforms into a clique. Let G′ be the graph G restricted to these k
vertices. By renaming, we take G to be the graph G′ (which is also a 012-
graph), and it will then suffice to show that there exists a best approximation
from below of G which does not make more mistakes than an approximation
which transforms whole of G into a clique.



On best transitive approximations to simple graphs 643

(a.) First we assume that the number of disjoint edges δ of G is maximal,
i.e. δ =

⌊
n
2

⌋
. By the previous lemma, G can have at most

(
n
2

)−ϕ(n) edges.
Therefore a best approximation from below of G will make at most

(
n

2

)
− ϕ(n) − δ = 2ϕ (n) − ϕ (n) = ϕ (n)

mistakes against G. On the other hand, the approximation which transforms
G into a clique will make at least ϕ(n) mistakes. This, then, is never more
profitable than the best approximations from below. So there indeed exists
a best cut-and-paste approximation which nowhere pastes.

(b.) Now let us assume that the maximal number δ of disjoint edges of G is
smaller than

⌊
n
2

⌋
. We choose a partition of the vertices of G into two equally

large sets G1 and G2, both containing n
2 vertices if n is even and containing

n−1
2 and n+1

2 vertices respectively if n is odd. We do this in such a way
that a maximum matching is reached between G1 and G2. Let A1 ⊆ G1
and A2 ⊆ G2 be the sets of end vertices of this matching, both containing
δ vertices. We will then remove all edges u1v1 from G1 in the following
manner:

First case: both end-vertices of u1v1 belong to A1. Remove this edge, and
also remove the “opposite” edge u2v2 if there is one. In their place we add
the “crossing” edges u1v2 and u2v1, which were not yet present since G
has clique number 2. In this way the total number of edges of G has not
diminished.

Second case: one of the end-vertices v1 does not belong to A1 but the other
one u1 does. Remove the edge u1u2 and replace it by the “crossing” edge
u2v1. Again the total number of edges cannot be diminished.
Third case: neither of the end-vertices belong to A1. This situation does not
occur, since it would contradict the maximality of δ.
In the same way, we can remove the remaining edges between vertices of
G2 (we have to consider only the second case). In all these operations the
total number of edges has not diminished. To conclude, we add all edges
running from one of the c1 vertices of G1 which do not belong to A1, to one
of the c2 vertices of G2 which do not belong to A2. This gives us c1c2 extra
edges.
Now by construction, the resulting graph is bipartite, therefore with max-
imum clique number 2, and it has the maximal number of disjoint edges
δ =

⌊
n
2

⌋
. So the inequalities in the proof of part (a) of this proof are valid

for this resulting graph. Also since 0 	= c1c2 ≥ max{c1, c2}, we have
added more edges to G than we have increased the number δ, and so these
inequalities are also valid for G itself.



644 S. Delvaux, L. Horsten

Corollary 6 For every 02-graph G with structure numbers {p, q} (with
p ≤ q), the number of mistakes of every element of BA (G) is exactly
p (q − 1).

Proof. By the previous theorem we know that there exists a best cut-and-
paste approximation of G which does not paste. Since our 02-graph con-
tains pq edges and its maximal number of disjoint edges δ equals its small-
est structure number p, the total number of mistakes made by a best cut-
approximation is exactly pq − p = p (q − 1).

Corollary 7 For every 012-graph G, there exists a polynomial time algo-
rithm for finding an element of BA (G).

Proof. There exists a polynomial time algorithm which finds, given a graph
G, a maximum matching of G. See for instance [1], which describes an
algorithm to find a maximum matching, with running time equal to O(n3).
So in particular, given a graph G with maximum clique number 2, there
exists a polynomial time algorithm for finding an element of BA− (G) and
hence, by Theorem 5, for finding an element of BA (G).

We can also obtain a characterization of the least transitive graphs:

Corollary 8 For every n there is a graph of order n which makes exactly
ϕ (n) mistakes. For n even these are the graphs Kn

2 , n
2

and Kn
2 −1, n

2 +1 and
for n odd this is the graph Kn−1

2 , n+1
2

.

Proof. By Lemma 2, we know that the value ϕ (n) can only be reached in a
02-graph. If we evaluate the expression p (q − 1) from the previous lemma
for (p, q) =

(
n
2 , n

2

)
and

(
n
2 − 1, n

2 + 1
)

for n even, we obtain

n

2

(n

2
− 1

)
=

(n

2
− 1

) n

2
= ϕ (n) .

If we evaluate p (q − 1) for (p, q) =
(

n−1
2 , n+1

2

)
for n odd, we obtain also

n − 1
2

· n − 1
2

= ϕ (n) .

Other structure numbers yield smaller values.

3 Qualitative approximations

In this section, we will work with a qualitative notion of best approximation:

Definition 8 H is a qualitatively best transitive approximation of G (H ∈
BAQL (G)) if for every equivalence relation H ′, D(G, H ′) � D(G, H).
H is a qualitatively best transitive approximation from below of G (H ∈
BA−

QL (G)) if H ⊆ G and H ∈ BAQL (G).



On best transitive approximations to simple graphs 645

Thus H is a qualitatively best transitive approximation of G if and only
if progress can only be made (with respect to H) by also at some places
going against the original graph G, and H is a qualitatively best transitive
approximation from below of G if additionally H ⊆ G. 4 In fact, it is
easy to see that H ∈ BA−

QL (G) is equivalent with H ⊆ G and for every
equivalence relation H ′, D−(G, H ′) � D−(G, H). Note that these notions
are qualitative because we do not count mistakes.

Proposition 9 There exists a polynomial-time algorithm for generating, for
any given G, elements of BA−

QL (G).

Proof. It is not hard to verify that the algorithm below does the job.

Algorithm 1 1. Wellorder the domain of G.
2. Build the equivalence classes of G− in stages as follows:

(a) Start with the first element u1 in the wellordering. Assign to it an
equivalence class H1.

(b) Move on to the next element (u). If it can be added to one of the
already partially constructed equivalence classes Hi in such a way
that all elements of Hi ∪ {u} are G-related, do so. Otherwise, start
a new equivalence class containing u.

(c) Repeat step b. until the domain of G is exhausted.

In fact, it is not hard to see that all elements of BA−
QL (G) are generated

by this algorithm.

Definition 9 An element of BA−
QL (G) is said to meet the minimal cell

requirement 5 if there exists no best transitive approximation of G with
fewer cliques.

One can easily check that for elements of BA−
QL (G), satisfying the

minimal cell requirement does not guarantee belonging to BA− (G). We
have the following result.

Proposition 10 The problem of finding, for any given G, an element of
BA−

QL (G) that meets the minimal cell requirement is NP -complete.6

Proof. Let G be given. Consider the complement G of G. A (minimal)
coloring of G corresponds to an equivalence relation H on the set of vertices
of G such that (i) H ⊆ G and (ii) H consists of a minimal number of cliques.

4 With a slightly other, but equivalent definition, this set BA−
QL (G) has also been con-

sidered by Timothy Williamson in [8,9].
5 See also Williamson [9, p. 72–73]
6 Hannes Leitgeb pointed this out to us in private communication.



646 S. Delvaux, L. Horsten

Fig. 1. Graph G of which the largest clique is split by best approximations

(i) is true because if two nodes are given the same color, then they cannot
be acquainted according to G, which means that they must be acquainted to
G. (ii) also holds: the chromatic number of G is identical to the number of
partition classes in optimal partitions of G. But generating optimal colorings
is NP -complete.7

4 Complexity questions

In the preceding section, we investigated some questions concerning the
complexity of best qualitative approximations. Now we return to the usual,
quantitatively best approximations of Sect. 2, and these problems will be
more difficult. We first look at approximations from below. Our strategy will
be to reduce the clique problem to the problem of finding a quantitatively
best transitive relation from below.8 This is not completely straightforward,
for there are graphs G such that every quantitatively best approximation
from below breaks the largest cliques in G. For instance, consider the graph
G in Fig. 1.
The transitive approximation H1 which consists of the four corner triangles
has #D(G, H1) = 6, whereas the transitive approximation H2 which con-
sists of the maximum clique, i.e. the middle square, plus 4 isolated edges has
#D(G, H2) = 8. Therefore, H1 is the (unique) best approximation from
below, and it breaks the maximum clique.

However, generalizing from Fig. 1, we see that this phenomenon is
bounded:

Proposition 11 Let µG be the maximum clique number of a given graph
G. Then the maximum clique number of every best transitive approximation
from below to G is at least µG+1

2 .
7 See [4, p. 154].
8 The clique problem is known to be NP -complete. See [4, p. 155].



On best transitive approximations to simple graphs 647

Proof. Let C be a subclique of G which reaches the maximal value of µG

vertices. Let H be a best transitive approximation to G, with maximum
clique number µH , and let e ≤ (

µG
2

)
be the number of edges between

vertices in C in this graph H . Now we can transform H into a new transitive
graph H ′, by removing all the edges joining a vertex of C with a vertex
outside of C, and then rejoining all the vertices of C with each other. This
yields a new transitive graph H ′. The number of removed edges is at most
equal to µG(µH −1)−2e. The number of added edges is equal to

(
µG
2

)−e.
Because of our choice of H as a best transitive approximation to G, we
must then have that µG(µH − 1) − 2e ≥ (

µG
2

) − e. It follows a fortiori that
µG(µH − 1) ≥ (

µG
2

)
, and hence µH − 1 ≥ µG−1

2 . So we conclude that
µH ≥ µG+1

2 .

This proposition shows that from the best transitive approximation, we
can deduce information about the maximum clique number of the graph.
In the next theorem we will deduce an even tighter connection, from which
we will be able to prove the NP-completeness of finding the best transitive
approximation from below to G. (Remark that it suffices to prove the NP-
hardness, because this problem obviously belongs to NP.)

The idea of the proof is illustrated in Fig. 2. The original graph G consists
of the thick solid lines and their endpoints; this is the graph of Fig. 1. The
thinner edges and vertices are added to G, thereby transforming it into a
graph G′. By adding one vertex to G, and connecting it with all the vertices
of G, one makes it slightly less profitable to split large cliques. So by adding
sufficiently many vertices to G and connecting them to each other and to
all of G, as in Fig. 2, one makes the resulting graph markedly unprofitable
to split all maximum cliques. So a maximum clique of G can be recovered
from every cut-approximation to G′. The precise calculation is given in the
proof of the theorem, to which we turn now.

Theorem 12 The problem of finding, for any given graph G, an element of
BA− (G) is NP -complete.

Proof. Let G be given, and let n be the number of vertices of G. We now
construct a graph G′ as follows:
1. Add a clique C of n2 vertices to G;
2. Draw an edge from every vertex of C to every vertex of G. Now suppose
that there would be a polynomial time algorithm A for finding a quantita-
tively best cut-approximation, and let the resulting graph A (G) be called H .
Then we claim that (1) C remains intact in H , and (2) C will be connected
with a clique of maximal size of the graph G. We will now prove these two
assertions.
(1) Note that every clique of H is the union of a subclique of C with a clique
of G. Let C1 ∪ G1 and C2 ∪ G2 be two such cliques of H , and suppose



648 S. Delvaux, L. Horsten

clique

Fig. 2. Modified graph G′ in which it is no longer profitable to split largest cliques

that C1 	= C2. Assume also that n1, n2, c1, c2 are the number of elements of
G1, G2,C1, C2 respectively, and that n1 ≥ n2. Then we can reunite C1 and
C2 and join the resulting clique with G1. This yields

c1c2 + c2n1 − c2n2 > 0

edges, which is quantitatively better.

(2)Assume thatC ends up with a clique with< µ edges, withµ the maximum
clique number of G. Then this total clique contains at most

(
n2+µ−1

2

)
edges.

All other cliques of H together can contain at most
(
n
2

)
edges. However, a

calculation shows that(
n2 + µ

2

)
−

(
n2 + µ − 1

2

)
= n2 + µ − 1 ≥ n2 >

(
n

2

)
,

whereby C must belong to a clique which reaches the maximum size µ.

Remark 13 Consider the problem of finding, for a given graph G, a coloring
of G such that

∑
i

(
number of vertices of color i

2

)

is maximal. This problem is equivalent to finding a best transitive approxi-
mation from below for the complementary graph G of G. Hence this problem
is also NP -complete. In fact, we did not have to use the binomial function
in stating this remark. By the same token, we can consider the problem of
finding a coloring of G such that∑

i

f(number of vertices of color i)



On best transitive approximations to simple graphs 649

⇒

Fig. 3. Graph G Fig. 4. Graph G′

is maximal. Then if f is such that limn→∞ f(n + 1) − f(n) = ∞, this
problem will also be NP-complete.

We will now turn to the problem of the complexity of finding a best
cut-and-paste approximation to a given graph. In [5] it was shown that the
problem is NP -complete. Here a new and simpler proof of this theorem is
given. We will give a detailed description of a construction that can also be
used to prove the corollaries following our proof.

Theorem 14 The problem of finding, for any given graph G, an element of
BA (G) is NP -complete.

Proof. The main idea of the proof is the following. We suppose an arbitrary
algorithm A which, given a graph G, yields an element A (G) ∈ BA (G).
Then we construct a polynomial-time transformation of G into a graph
G′ such that, from the graph BA (G′), we are able to find a best cut-
approximation for our original graph G. But we know form the previous
theorem that this latter problem is NP -complete.

We will now describe this reduction. Suppose that a graph G of order n
is given. We then transform this graph into a graph G′ in the following way:

1. We replace every vertex u of G by a clique Cu consisting of a huge
number of vertices (say, 2n10 vertices).

2. We connect each pairCu,Cv by exactly half of the possible edges between
them (i.e., 2n20 edges). We do not do this in an arbitrary way, but in a
specific manner that we describe below.

3. Finally we introduce the information contained in the original graph G.
– If there was no connection between a pair of vertices u and v in the

original graph G, then we remove n2 edges from the connections
between Cu and Cv.

– If there was a connection between u and v in the original graph G,
then we add 1 more edge between Cu and Cv.



650 S. Delvaux, L. Horsten

This completes the description of the transformed graph G′. As an illustra-
tion, consider the simple graph G in Figure 3, which is transformed into the
graph G′ in Figure 4.

Now we formulate the following claim:

Claim We can draw the edges in step 2 of this construction in such a way
that when the algorithm A (the cut-and-paste-algorithm) is applied to G′, it
leaves all the cliques Cu of G′ intact.

Suppose for a moment that this claim is true.Then it is clear that the algorithm
A, when applied to G′, will yield us a best approximation from below for
the original graph G. For if there is no edge between a pair of vertices u
and v in G, then pasting Cu and Cv in G′ gives us an extra cost of 2n2

edges, compared with non-pasting. Cutting an edge gives us an extra cost
of 2 edges, compared with non-cutting. So we see that the algorithm A will
nowhere paste an edge in G′, and that it will cut a minimal number of times.
The graph A(G′) yields us then a best approximation from below for the
original graph G. This ends the proof of the theorem. A.

The hard part in finishing the proof is then to prove the claim that we
made in the proof. To this end we must describe in which way we have to
draw the 2n20 edges between Cu and Cv in step 2 of the construction of
G′. First, we regard each clique Cu as consisting of an upper part C1

u and
a lower part C2

u, each containing n10 vertices. Then we connect each pair
Cu,Cv crosswise, i.e., we fully connect C1

u with C2
v and we fully connect C2

u

with C1
v . This construction is illustrated in Fugure 4. With this construction,

we will be able to prove the claim. We will do this in two steps. The first
step is as follows:

Lemma 15 Suppose for the moment that for the transitive graph A(G′),
each of the cliques Cu is either preserved or split into its two components
C1

u, C2
u. Then, neglecting the O(n2) changes in step 3 of the construction of

G′, splitting can never be more profitable than leaving each Cu intact.

Proof. Suppose that in the transitive graph A(G′), k of the cliques Cu are
split into their components C1

u, C2
u, and the other n − k cliques Cv are left

intact. We will try to find a reduction of the problem by gradually eliminating
edges in A(G′). First, remark that we may freely eliminate all the edges
between a split clique C1

u (say) and an entire clique Cv. Indeed, due to
the construction of G′ there were originally only half of the possible edges
between C1

u and Cv, so there will be no extra costs if we eliminate these
edges instead of completing them.

The same reasoning holds for the edges between two cliques Cu, Cv

which were left intact in A(G′): by construction only half of the possible
edges between these cliques were present in the graph G′, so for the costs it
does not matter whether we eliminate or complete them.



On best transitive approximations to simple graphs 651

Then let us look at the mutual edges between the split cliques C1
u, C2

u,
C1

v , C2
v . Suppose l vertices ui with corresponding indices xi ∈ {1, 2} such

that the cliques Cxi
ui

form a big clique in A(G′). We want to measure how
much mistakes were necessary to create this clique. For this, we define an
auxiliary graph H on the l vertices ui: we draw an edge between ui, uj in
the graph H if and only if the cliques Cxi

ui
, C

xj
uj were originally connected

with each other in G′. Due to the construction of G′, this reduces to saying
that the corresponding indices xi, xj are different from each other. As a
consequence, using the terminology of Sect. 2 we can say that this graph H
must necessarily be a 02-graph (see Proposition 1), and so its complementary
graph H , which will be a 13-graph, has at least ϕ(l) edges.

Using this, we see that to transform the Cxi
ui

into a big clique in A(G′), we
needed to make at least ϕ(l)n20 mistakes, and the number of preserved edges
was at most (

(
l
2

) − ϕ(l))n20. The difference between these two coefficients
is (

l

2

)
− 2ϕ(l) =

⌊
l

2

⌋
.

In contrast with the previous cases, we see that this number can be different
from zero. So there may have been an effective profit induced by the splitting.
But this effect is bounded: since there are exactly 2k cliques Cxi

ui
in the graph

A(G′), summing over all the big cliques in A(G′) which are consisting of
these Cxi

ui
, we have that their sizes l must satisfy

∑
l,
∑

l=2k

⌊
l

2

⌋
≤ k.

So there will be at most a profit of kn20 in the splitting compared to the
non-splitting case. However, there is still a cost that we did not take into
consideration: of course the splitting itself of these k cliques Cu into C1

u,
C2

u will induce kn20 extra costs compared to non-splitting! So, globally, we
see that there can be no netto profit in the splitting case.

We see however that this lemma was very “close”, in the sense that it can
be exactly as profitable to split as not to split, and because we neglected the
O(n2) edges from step 3 of the construction of G′. Therefore we modify the
construction of G′ slightly, to make absolutely sure that it is not profitable
to split a clique in two. To this end, in the construction of G′ we remove
each time n5 (say) of the “crossed” edges between C1

u and C2
v and replace

them by “straight” edges, i.e., n5 edges between C1
u and C1

v . We modify the
connections between C2

u with C1
v in a similar way.

Note that after this modification there are still exactly2n20 edges between
each pair of cliques Cu and Cv, and all our previous results remain valid.
These modifications make it non-profitable to split because, in order to



652 S. Delvaux, L. Horsten

make the splitting case as profitable as the non-splitting case, the number
of preserved edges between cliques Cxi

ui
, C

xj
uj must surely have been greater

then the number of them which is not preserved.
Now the second and final step in proving the claim will be the following,

technical lemma.

Lemma 16 In the transitive graph A(G′), each of the cliques Cu is either
preserved or split into its two components C1

u, C2
u.

Proof. Suppose some clique Cu0 which is divided into a number of sub-
cliques Di, i = 1, 2, . . . , N , where N is a certain integer. Define Dx

i =
Di ∩ Cx

u0
, x ∈ {1, 2}, and let dx

i be the number of vertices of Dx
i .

We define the profit W x
i ∈ Z which an “average” vertex w in Dx

i makes,
i.e., W x

i is the number of preserved edges starting from w, minus the number
of modified edges. Hereby we do not take into account the connections inside
the clique Cu0 itself, nor do we take into account the O(n5) “extra modified”
edges between each pair Cu0 , Cu, arising from the remark before this lemma.
(Remark that an analogous notion of profit already appeared in the proof of
the previous lemma). Also, let W x

max = max{W x
i }N

i=1, x ∈ {1, 2}.
Now consider the first scenario: we destroy all the Di and build up the

two subcliques C1
u0

, C2
u0

. For the connections with vertices in the other
cliques Cu, we first destroy all these edges and then rebuild them, following
the pattern encountered in W x

max. Then the cost of splitting the cliques Di

yields each time d1
i d

2
i mistakes. On the other hand, the profit inside D1

i of
reconnecting C1

u0
is 1

2d1
i

(
n10 − d1

i

)
. (The factor 1

2 is there because each of
these edges is counted for two i-values.) Moreover, the “better” connections
with the other cliques Cu yield also a profit of d1

i ∆W 1
i , where ∆W 1

i =
W 1

max − W 1
i ≥ 0 (neglecting the nO(n5) = O(n6) “modified” edges.) So

to be non-profitable, at least for one block Di we must have that

d1
i d

2
i ≥ 1

2
d1

i

(
n10 − d1

i

)
+ d1

i ∆W 1
i (plus O(n6))

and thus

∆W 1
i ≤ 1

2
d1

i + d2
i − 1

2
n10 (plus O(n6)) (1)

Now suppose that this inequality is satisfied for some block Di. Let us
then consider the second scenario: joining all of Cu0 , i.e., adding to Di all
of the n10 −d1

i other vertices in the upper part. (The adding of the lower part
can be handled separately, in exactly the same way). For the connections
with the other cliques Cu, we just choose the pattern that was present in Di.
Due to the reconnection of Di, we obtain a profit of

(
n10 − d1

i

) (
d1

i + d2
i

)
edges. On the other hand, the possible loss by a “worse” connection with



On best transitive approximations to simple graphs 653

the other cliques Cu is at most
(
n10 − d1

i

)
∆W 1

i . So for this operation to be
non-profitable, we must have

∆W 1
i ≥ d1

i + d2
i (plus O(n6)) (2)

But then it is clear that (1) and (2) can not be satisfied simultaneously, because
this would imply that d1

i ≤ −n10 plus O(n6), which is a contradiction.

This establishes the claim. Therefore we have completed the proof of
Theorem 15. We will now list some corollaries of the construction that was
used in the proof of this theorem.

Corollary 17 The problem of finding, for any given G, a best transitive
approximation of G consisting of at most 3 components is NP -complete.

Proof. Suppose, for a reduction, that there exists a polynomial time algo-
rithm A which yields, for any G, such a transitive approximation A (G).
Using the same construction as in the main theorem, we can find in poly-
nomial time a best approximation which adds a minimal number of edges.
In particular, we will be able to know whether it is possible to find such a
transitive approximation without “pasting” edges. Equivalently, we would
know in polynomial time for every graph G whether its complement G al-
lows a 3-coloring. But the problem 3-color is known to be NP -complete,9

so we have reached the desired contradiction.

This corollary can easily be extended for a number of components k ≥ 3.
We use the following reduction: given a graph G, we construct a graph G′ by
addingk−3disjoint cliques toG (so that the resulting graph is disconnected).
Then an algorithm for finding a best transitive approximation consisting of
at most k components for the graph G′, would also yield us a best transitive
approximation for G consisting of at most 3 components.

We will now prove the corollary for the value k = 2.

Corollary 18 The problem of finding, for any given G, a best transitive
approximation of G consisting of at most 2 components (i.e., a best approx-
imating 13-graph) is NP -complete.

Proof. Suppose that there exists a polynomial algorithm A which yields,
for any G, such a best approximation A (G). Using the construction of the
proof of the main theorem again, we can give a huge relative “weight” to each
paste-operation. Thus we will be able to find a division of G into 2 disjoint
cliques, such that a minimal number of edges has to be added. Passing to the
complement G, this means that we have a partition of the vertex set into two
disjoint parts such that there is a minimal number of edges lying entirely in

9 See [4, p. 154].



654 S. Delvaux, L. Horsten

one of them. Equivalently, we have a partition such that there is a maximal
number of edges running from the first to the second part. But it is known
that the latter problem is NP -complete.10

In our earlier applications of the best transitive approximations of a
graph, we assigned to both cutting and pasting a penalty of 1. But we can
also use weighted penalties. For every a, b ∈ R+, we can define the notion
of best a-b-approximation by stipulating that every paste-action carries a
cost of a and every cut-action carries a cost of b. The construction of our
main theorem then shows that these notions of best transitive approximation
also lead to NP -completeness, provided that b 	= 0. We will prove this in
the following corollary.

Corollary 19 Let a ∈ R+, b ∈ R+
0 . The problem of finding for any G a best

a-b-approximation is an NP -complete problem.

Proof. This follows by using the same construction as in the proof of the
main theorem. There are, however, some slight differences in the construc-
tion of G′. In step 3 of the construction, in the case where there is no edge
between u and v in the graph G, we must remove a

b n2 more edges between
Cu and Cv, because of the weights. To be sure that this number a

b n2 can
be neglected when compared with the number of vertices in each Cu, we
substitute in step 1 each point u by a clique Cu consisting of a

b n10 vertices
and in the construction of step 2 we modify each time a

b n5 “straight” edges.
(Of course the number a

b does not have to be an integer, but it suffices to
round it up.)

We do not have to assign constant weighs to cutting and pasting edges.
We can allow each vertex u to have a different penalty a(u) for pasting
an edge and a penalty b(u) for cutting an edge. Consider the problem of
finding a best “weighted” transitive approximation for a graph G, using the
weights a(u) and b(u). When these weights are such that the quotient a(u)

b(u)
of the largest value of a(u) by the smallest value of b(u) increases at most
as a polynomial function of n, this problem is NP-complete. This follows
immediately by using the same technique as in the previous corollary.

5 Conclusion

In this paper, we have investigated complexity and combinatorial questions
concerning best approximations to arbitrary graphs. From our research, a
fairly complete picture emerges.

10 See [3], where this problem is called Max Cut.



On best transitive approximations to simple graphs 655

For different kinds of graphs, we have calculated the minimal number of
edges that need to be removed or added in order to obtain a transitive graph.
We have seen how this number can be expressed as a function of the order
of the graph and we have investigated the structure of the particular graphs
for which this minimal value is reached.

The combinatorial facts which were thus obtained were subsequently
used in complexity calculations. It was shown that there is a polynomial-
time algorithm for finding a best approximation for graphs with maximal
clique number 2. But most of the natural complexity problems that can be
posed turn out to be NP-complete. The task of finding a best transitive ap-
proximation which only removes edges is NP-complete. The task of finding
a best transitive cut-and-paste approximation is also NP-complete. Even
when we look for a best cut-and-paste approximation consisting of n com-
ponents (with n > 1), the task is NP-complete. And also when the cost of
removing and adding edges is (possibly non-uniformly) weighed, we face
an NP-complete task. For qualitative approximations, the task becomes NP-
complete when we look for an approximation with a minimal number of
equivalence-classes.

Acknowledgements. We are indebted to Rafael De Clercq, Hannes Leitgeb and Bruno
Leclerc for helpful discussions and suggestions. We have a second reason for being grateful
to Rafael De Clercq: he has generously assisted us with drawing the figures in Latex.

References

1. Blum, N. (1990) A new approach to maximum matchings in general graphs. In: Pa-
terson, M. (ed.) ICALP 90: Automata, Languages and Programming (LNCS 443) 17:
586–597

2. De Clercq, R., Horsten, L. Closer. Synthese (to appear)
3. Garey, M.R., Johnson, D.S., Stockmeyer, L. (1976) Some simplified NP-complete graph

problems. Theoretical Computer Science 1: 237–267
4. Krantz, S. (2002) Logic and proof techniques for computer science. Birkhäuser
5. Krivanek, M., Moravek, J. (1986) NP-hard problems in hierarchical tree-clustering.

Acta Informatica 23: 311–323
6. Moon, J.W. (1966) A note on approximating symmetric relations by equivalence

classes. SIAM Journal of Applied Mathematics 14: 226–227
7. Tomescu, I. (1974) La réduction minimale d’un graphe à une réunion de cliques. Dis-

crete Mathematics 10: 173–179
8. Williamson, T. (1986) Criteria of identity and the axiom of choice. Journal of Philosophy

83: 380–394
9. Williamson, T. (1990) Identity and discrimination. Blackwell

10. Zahn, C.T., Jr. (1964) Approximating symmetric relations by equivalence relations.
SIAM Journal of Applied Mathematics 12: 840–847


