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Abstract
Iterated reflection principles have been employed extensively to unfold epistemic commitments that are incurred by accepting
a mathematical theory. Recently this has been applied to theories of truth. The idea is to start with a collection of Tarski-
biconditionals and arrive by iterated reflection at strong compositional truth theories. In the context of classical logic, it is
incoherent to adopt an initial truth theory in which A and ‘A is true’ are inter-derivable. In this article, we show how in the
context of a weaker logic, which we call Basic De Morgan Logic, we can coherently start with such a fully disquotational
truth theory and arrive at a strong compositional truth theory by applying a natural uniform reflection principle a finite number
of times.
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1 Introduction

In the article we pursue the strategy of iterating reflection principles on a basic truth theory TS0
that encapsulates, or so we argue, the fundamental building blocks of truth-theoretic reasoning. Its
components are: a theory of the objects of truth (syntax theory in our case), basic truth-theoretic
principles that enable us to infer T�φ� from a sentence φ and vice-versa. To remain faithful to
these assertability conditions for truth ascriptions, classical logic cannot be used on account of the
liar paradox. In particular, one should be prepared not to have the rule of conditionalization for all
sentences. Also, it is desirable to work at the right level of generality by, for instance, reasoning
without committing oneself to paracomplete or paraconsistent options. We employ a logic that does
this and call it, following [9], Basic De Morgan logic (cf. §2 for the definition).

The theory TS0, however, may not be all there is to truth. Many authors have discussed further
desiderata for truth — such as full compositionality — that are out of reach for our basic theory TS0.
Recently, Leon Horsten and Graham Leigh have studied iterations of reflection over a basic theory in
classical logic [18]. Their classical starting point, however, leads to a loss of the intimate connection
between truths and their assertability that is present in TS0. In the following we therefore extend
Horsten and Leigh’s strategy in the framework of Basic De Morgan logic.

Reflection is rooted in the fundamental intuition that we are committed to the truth of the sentences
that are provable in a theory that we accept. This operation can be expressed in different ways: as
global reflection, where we make explicit use of the truth predicate, or as uniform reflection, where
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2632 Iterated reflection over full disquotational truth

we express this intuition schematically without direct reference to truth. In the classical case, global
and uniform reflection are provably different operations: a variety of well-known theories of truth
can be closed under uniform reflection but not under global reflection.1 However, this is not so in the
case of Basic De Morgan logics and variations thereof, where global and uniform reflection coincide
for a wide class of theories containing the truth principles of TS0.

The theories that we study in this work, resulting from iterating reflection over TS0, can be
characterized as internal axiomatizations of Kripke’s fixed point construction — specifically, its
four-valued version based on Basic De Morgan Logic as it can be found in [14] — because their
principles and rules are all sound with respect to this class of models. The paradigmatic case of an
internal theory is the theory PKF introduced in [15]. These theories are faithful to the fixed-point
models and interact well with the process of reflection. There is an alternative array of theories
capturing Kripke’s construction externally. They are couched in classical logic and they are meant to
be faithful to the set-theoretic definition of this class of models. Among the external theories we find
the well-known classical axiomatization KF of Kripke’s construction [8], and also the iteration of
reflection studied by Horsten and Leigh [18].Although external axiomatizations invoke principles that
are not valid in the intended semantics and they usually cannot be closed under global reflection, they
are proof-theoretically stronger than the corresponding internal axiomatizations. As a consequence,
they also deem true more sentences that belong to the intended extension of the truth predicate than
the corresponding internal axiomatizations; for some authors (cf. [14, 16]), this is considered a clear
advantage over internal theories.

For instance, KF is proof-theoretically much stronger than its natural internal counterpart PKF.
The former proves transfinite induction for all sentences of the language with the truth predicate up
to any ordinal smaller than ε0, the latter only up to any ordinal smaller than ωω. The main result of
the present article is that two steps of reflection over TS0 enbles us to recapture all principles of PKF
and prove significantly more transfinite induction than what is available in PKF. Moreover, iterated
reflection on TS0 enables us to reach the strength of KF.

2 The core laws of truth

In this section we introduce the main components of the theory TS0. We first introduce a two-sided
sequent version of Basic De Morgan logic and state some simple properties of this calculus. We then
introduce the principles governing the objects to which truth is ascribed, which will amount to the
axioms of a very weak arithmetical theory. Finally we state the truth theoretic principles of TS0.

2.1 Basic De Morgan logic

We employ a two-sided sequent calculus BDM reminiscent of the one employed in [14]; sequents are
expressions of the form �⇒� where �,� are finite sets of formulas. We write ¬� for {¬A |A∈�}.
BDM is a subsystem of a suitable two-sided classical calculus; its axioms and rules are listed in
Table 1. Intuitively, BDM is obtained from classical logic by replacing the usual clauses for negation
with (CP1) and (CP2) below. However, the general negation rules (CP1-2) enable us to derive
the sequents A⇒¬¬A and ¬¬A⇒A for all formulas A and make the following contraposition rule
admissible in BDM:

�⇒� (Cont)¬�⇒¬�
.

1Examples are the system KF from [8] plus the axiom stating that the extension of the truth predicate is consistent and the
system FS from [13] originating in [11].
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Iterated reflection over full disquotational truth 2633

Table 1. The system BDM

A⇒A for A∈LT

�⇒� (LW)
A,�⇒�

�⇒� (RW)
�⇒�,A

�⇒�,A A,�⇒�
(Cut)

�⇒�

¬�⇒� (CP1)¬�⇒�
�⇒¬� (CP2)
�⇒¬�

A,B,�⇒�
(L∧)

A∧B,�⇒�

�⇒�,A �⇒�,B
(R∧)

�⇒�,A∧B

A,�⇒� B,�⇒�
(L∨)

A∨B,�⇒�

�⇒�,A,B
(R∨)

�⇒�,A∨B

�,A(t)⇒�
(L∀)

�,∀xA⇒�

�⇒�,A(t)
(R∃)

�⇒�,∃xA

�⇒�,A(x)
(R∀)

�⇒�,∀ x A
�,A(x)⇒�

(L∃)
�,∃ x A⇒�

x not free in �,� x not free in �,�

The following closely related lemma will be extensively used in what follows:

Lemma 1

For a language L0 with signature S ={P1,...,Pn}, if for all atomic formulas A of L0 we can prove
⇒A,¬A, then BDM formulated in L0 is closed under the following classical rules for negation:

�⇒�,A
(¬L)¬A,�⇒�

A,�⇒�
(¬R).

�⇒�,¬A

BDM enjoys standard properties of Gentzen-type sequent calculi such as substitution, inversion and
cut elimination.

A natural semantics for BDM is given in terms of four-valued models, that is we also allow
predicates with a partial or a paraconsistent behaviour (gaps and gluts).2 The intended satisfaction
relation has a double clause: a sequent is satisfied in a model M just in case if all formulas in the
antecedent are true in M there is a formula in the consequent true in M, and if all formulas in

2Our logic is close to what is sometimes called FDE. We follow, however, Field’s terminology in [9, Ch. 3].
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2634 Iterated reflection over full disquotational truth

the succedent are false in M, there is a false in M formula in the antecedent. BDM is sound and
complete with respect to the semantics just hinted at (see [3]).

2.2 The theory TS0

The basic theory TS0 and all its extensions will be formulated in the language of arithmetic L=
{0,S,+,×,exp} with exponentiation. With x not occurring in the L-term t, expressions of the form
(∀x≤ t) ϕ(x) and (∃x≤ t) ϕ(x) are said to be obtained from ϕ(v) by bounded quantification: �0-
formulas (or elementary) of L are formulas that contain only bounded quantifiers. The classes of �n
and 	n formulas of L are then defined in the usual way. In practice, we work in the expansion of L
with finitely many function symbols corresponding to suitable elementary operations and the truth
predicate T. We call the resulting language LT. We call a formula of LT arithmetical if it does not
contain occurrences of T.

To formulate TS0, we first consider identity, which is governed by usual principles:

⇒ t = t (Id1)

s= t,A(s)⇒A(t). (Id2)

TS0 will also contain initial sequents ⇒A for all basic axioms A of a suitable system of arithmetic,
in our case Kalmar’s elementary arithmetic EA formulated in LT (cf. [2, 12]).3 In addition, our basic
theory features an induction rule

�,A(x)⇒A(x+1),�
�,A(0)⇒A(t),�

(�0-IND)

where x is not free in A(0),�,�, t is arbitrary, and A is a �0-formula of the language L of arithmetic
without the truth predicate. We call the resulting system Basic.

The core principles of truth capture the fundamental idea that one is justified in asserting a sentence
A precisely when she is justified in asserting that A is true.

Definition 1 (The system TS0)
TS0 is obtained by extending Basic with the initial sequents

T(�A�)⇒A (T1)

A⇒T(�A�) (T2)

for all LT-sentences A.

TS0 stands for ‘truth sequents’. The subscript 0 indicates a restriction of induction to �0-
formulas; its absence indicates full induction. The semantic conservativeness — and therefore the

3The class of elementary functions E is obtained by closing the initial functions zero(·), suc(·), +, ×, 2x , Pn
i (x1,...,xn)=xi

with (1≤ i≤n), truncated subtraction x−̇y under the operations of composition and bounded minimalization:

H(	x)=F(G1(	x),...,Gn(	x)); (μt ≤y)P(	x,t)=
{

the least t ≤y s.t. P(	x,t)
0, if there is no such t

where F,G are elementary functions and P an elementary predicate. EA has sufficient resources to naturally introduce new
relations corresponding to the elementary functions by proving their defining equations. In particular, the functions in E are
exactly the functions that can be �1-defined in EA (see [25, §3.1]).
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Iterated reflection over full disquotational truth 2635

consistency — of TS0 over Basic can be obtained by expanding any model of the latter with
an interpretation of the truth predicate resulting from a positive inductive definition along the
lines of Kripke’s fixed-point construction (cf. [4, §5]). The following observation can be found in
[15, Lem. 16].

Lemma 2

⇒A,¬A is derivable in TS0 for A arithmetical.

The principles of TS0 are just right to capture the desired assertability conditions for truth
ascriptions: its basic truth-theoretic principles (T1)–(T2) are in fact not as strong as the classical
Tarski-biconditionals: otherwise they would lead to inconsistency. But they are also stronger than
mere inference rules, as the latter do not allow for conditionalization for arithmetical sentences.

We can think of TS0 as a minimal internal axiomatization of a fixed-point construction along the
lines of Kripke’s [20]. The fixed-points we are interested in are in fact fixed-points of a monotone
operator J associated with the Basic De Morgan evaluation scheme.4 The crucial property of Kripke
style fixed points S, i.e. sets of sentences S such that J (S)=S, is that every sentence A is in S iff
T(�A�) is in S. By combining this fact with the notion of satisfaction introduced on p. 2633 we can
easily see that for a fixed point S, the model (N,S) satisfies TS0 when S is taken to be the extension
of the truth predicate. Moreover, for (N,S) to satisfy TS0, S has to contain the same sentences as
J (S). This means that S is a fixed-point of J iff (N,S) satisfies TS0, and therefore it is an internal
axiomatization of the fixed-point construction in the sense of §1. Moreover any LT-theory in BDM
satisfying the adequacy condition just considered will contain the principles of TS0.

2.3 Intermezzo on arithmetization

In what follows, we assume a canonical Gödel numbering for LT-expressions. For a fixed expression
e of LT, we will use the usual Gödel corners for the closed term of LT representing Gödel number #e
of e. Therefore, for formulas A of LT, we will have �A�=#A. Similarly, for sequents �⇒�, ��⇒
��=#�⇒�, where the Gödel code of �⇒� is taken to be an ordered pair whose components are
the codes of the finite sets � and �.5 Closed terms standing for specific Gödel codes of LT-expressions
contrast with open terms standing for templates to generate such closed terms: a well-known example
of such a template is the open LT-term sub(�A(v)�,�v�,num(x)), standing for the result of formally
substituting, in the formula A(v), the free variable v with the numeral for x. To distinguish these open
terms from specific codes, we use square brackets instead of Gödel codes, so that, for instance, [A(x)]
stands for sub(�A(v)�,�v�,num(x)).6 This distinction clearly generalizes to sequents and formulas
with more than one free variable: [�	x⇒�	x] refers to the simultaneous substitution in ��⇒��
of the variables in the strings 	x with their corresponding numerals, where of course [�x⇒�x] is
short for sub((���,���),�x�,num(x)). When it is clear from the context which free variable we are
formally substituting, we will omit it and treat sub as a binary function.

In EA we can easily carry out an elementary arithmetization of the standard syntactic notions and
operations such as the notion of being a closed term of LT (formally, ct(x)), the notion of being a
sentence of the language LT (formally, SentLT (x)), the operation of prepending a truth predicate
to x (formally, tr(x)), and so on (see e.g. [2]). Theories will be elementary presented sets of axioms

4For a definition of the operator and the evaluation scheme we refer the reader to Halbach [14, section 15.1].
5We assume that the code of the finite set � is the code of the sequence of codes of formulas in � in ascending order.
6The square brackets notation is often replaced by the so-called Feferman dot notation, in which, for instance,

sub(�A(v)�,�v�,num(x)) is abbreviated with �A(ẋ)�.
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2636 Iterated reflection over full disquotational truth

and rules, and we write AxT (x) for ‘x is an axiom of T ’. Variations of canonical provability will be
particularly relevant in what follows, especially in our discussion of reflection. We list them here
accompanied by their intuitive meaning:

PrfT (x,y) ‘x is a proof in T of the sequent y’

PrvT (x,y) ‘the sequent y is provable in T with a proof of length no greater than x’

PrT (x) ‘x is a provable sequent in T ’

ThmT (x) ‘x is a theorem of T , that is the ‘sequent’ (�∅�,x) is provable in T ’

Pr2
T (x,y) ‘the inference from the sequent x to the sequent y

is provably admissible in T ’

We conclude by commenting on the predicate Pr2
T (x,y). In addition to being admissible, a provably

admissible rule in a theory T requires the existence of a T -provable proof transformation of the proof
of the premise into a proof of the conclusion of the rule.7 Pr2

T enjoys generalized versions of some
of the properties usually ascribed to provability predicates:

If
�(x)⇒�(x)

(x)⇒�(x)

is admissible in T , provably in Basic, then (Pr1)

Basic 
 ⇒Pr2
T ([�(x)⇒�(x)],[
(x)⇒�(x)])

If the sequents (Pr2)

⇒Pr2
T ([�(x)⇒�(x)],[
(x)⇒�(x)]);

and

⇒PrT ([�(x)⇒�(x)])
are derivable in Basic, then also

⇒PrT ([
(x)⇒�(x)])
is derivable in Basic.

2.4 The weakness of TS0 and the advantages of reflection in BDM

To evaluate the theories of truth considered in this work we list a number of desiderata. Many of
them have been already proposed and discussed by truth-theorists — see for instance [21] and [17].
As already emphasized, we consider the intersubstitutivity of ϕ and T�ϕ� as guiding principle and
therefore we do not argue for it but take it as primitive.8 In addition, we require our truth predicate
to be compositional, therefore enabling us to explain how we can understand complex sentences
only on the basis of an understanding of its compounds and its logical structure. In particular, we

7For instance, although the rule of cut applied to ‘geometric’ formulations of Robinson’s arithmetic Q is admissible in
it, cut is not provably admissible in Q as this procedure is of hyperexponential growth rate. (For a geometric presentation of
Robinson’s arithmetic and for the cut elimination for it, see [22].)

8This immediately yields the identity of inner and outer logic as defined in [14, 21].
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Iterated reflection over full disquotational truth 2637

prefer theories that, given a set of logical constants, allow the truth predicate to commute with these
constants for all sentences of the language, that is we require compositionality in quantified form and
not only compositionality in schematic form. Finally, we aim at proof-theoretically strong theories of
truth. The desideratum of strength can be motivated in several ways: following the broadly abductive
picture sketched in [27], one might simply argue that a theory that proves more, all other things being
equal, has a higher scientific status than a weaker one. Moreover, truth has served a foundational
role in several philosophical programmes, such as Feferman’s predicativism or Aczel’s attempt to
recover Frege’s foundations [1, 8], and therefore a stronger theory might provide alternative, and
perhaps more appealing, formulations of theories of sets or of other mathematical objects.9

In the light of these criteria TS0, although natural, simple, and fully disquotational, is clearly not
completely adequate. For one thing, it is not compositional in the required sense. For a universally
quantified sentence such as ∀x A(x), for instance, TS0 cannot how its truth value depends on the
truth values of its compounds A(t) because the sequent ∀x T([Ax])⇒T(�∀x A(x)�) is not derivable
for all A.

Closely related to the criterion of strength is the capability of a theory of proving the soundness
of its base theory. This claim, in our setting, takes the form of the global reflection principle for
Basic, i.e.

ThmBasic(x)⇒T(x), (GRFBasic)

which is not derivable in TS0. The underivability of the global reflection principle directly follows
from the fact that TS0 is a conservative extension of Basic. Therefore, in terms of strength measured
with respect to Basic, TS0 is as bad as it can get. Conservativeness, however, is only a boundary that
one can use to partition truth theories into conservative and non-conservative ones. To distinguish
between non-conservative extensions of Basic, finer-grained measures are required: one option is
to consider how many arithmetical sentences a theory of truth proves (or equivalently, how much
arithmetical transfinite induction the theory proves). This, however, does not directly take into account
general claims involving the truth predicate that we would like to consider. Therefore, to measure the
strength of our theories of truth we will consider the amount of transfinite induction for the language
LT that is provable in them. This criterion has the advantage of giving us direct information about
how many truth iterations are provable in a theory (see §4).

Following a strategy already proposed and defended in [18] for theories formulated in classical
logic, one may think of TS0 as implicitly containing stronger principles, including compositional
ones and principles of transfinite induction. This relation of implicit containment can be unfolded
via postulating a hierarchy of reflection principles over TS0. Traditionally, reflection principles for a
theory T are explicit soundness assertions (‘whatever is provable in T, is true’). The soundness of T
is naturally expressed via GRFT .10 However, by Tarski’s undefinability theorem, GRFT can only be
formulated if the expressive resources of T are increased with a fresh truth predicate. Therefore, if one
wants to express soundness in an arithmetical language, one must resort to schemata. A well-known
candidate is what is widely known as the uniform reflection principle for T :

∀x(ThmT ([A(x)])→A(x)). (RFNT )

RFNT states that, for every number x, if A is satisfied by the numeral for x, provably in T , then A is
satisfied by x. However, we are mainly concerned with languages that do contain a truth predicate.

9Our criteria more or less correspond to the ones listed in [21], except of course the one requiring classical logic.
10This reading of reflection is ubiquitous in the literature. See for instance the classical handbook entry [26] and [14].

Kreisel and Lévy in [19] clearly states that global reflection is the intended soundness claim for a theory T .
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2638 Iterated reflection over full disquotational truth

In this context, therefore, the most natural way to express the soundness of a theory is by means
of global reflection. In fact, if the truth predicate satisfies minimal conditions, the global reflection
principles implies all instances of uniform reflection for a theory T .

There is therefore an intuitive connection between uniform and global reflection: both are intended
to express the soundness of the base theory. It turns out, however, that this connection is lost in the
classical axiomatizations of Kripke’s fixed point construction considered by Leigh and Horsten in
[18]. For T an axiomatization of Kripke’s fixed point construction in classical logic, in fact, the
result of adding GRFT to it determines a severe restriction of the class of acceptable models: all
consistent fixed points are excluded, i.e., if (N,S) models T +GRFT with S a fixed point, then S is
inconsistent.11 In contrast, T +RFNT can have models of the form (N,S) for S a consistent fixed
point (in fact all consistent fixed points).

There is a natural explanation for the internal inconsistency of T +GRFT : classical theories T of
the sort just mentioned are in fact unsound with respect to the notion of truth captured by T , and GRFT
makes this explicit. In fact, many theorems involving the truth predicate in a classical axiomatization
T of the fixed-point construction based on Basic De Morgan Logic are outside the extension of
the truth predicate given by consistent fixed points. The classical tautology λ∨¬λ involving a liar
sentence is one such example. Uniform reflection alone, in theories such as T , does not suffice to
uncover their unsoundness:12 this is the sense in which the intimate connection between global and
uniform reflection is lost in the classical setting considered here.13

The close connections between the two forms of reflection just considered, however, can be
restored by moving to internal axiomatizations of (Basic De Morgan) Kripke fixed points such as
extensions of TS0. To see this, we first reformulate both principles in rule form and adapt them to
the sequent-style formulation of TS0 that we have chosen.

⇒ThmT ([Ax])
(RFNR

T )⇒A(x)

⇒SentLT (x)∧ThmT (x)
(GRFR

T )⇒Tx
.

Finally, we introduce an extension of TS0 obtained by replacing the axioms (T1) and (T2) with

(i) A(x)⇒T[Ax];
(ii) T[Ax]⇒A(x).

We call the resulting system UTS0 (‘uniform TS0). We can now establish that not only uniform and
global reflection are connected in Basic De Morgan logic, but that they actually coincide.

Proposition 1

Let T contain UTS0. Then T +RFNR
T and T +GRFR

T are identical theories.

Proof. We start by showing that global reflection entails uniform reflection. Reasoning in T +GRFR
T ,

we assume that the sequent ⇒ThmT ([Ax]) is derivable in it. Then, by GRFR
T , we have T[Ax] and

therefore Ax by (ii) above.

11By the diagonal lemma, the arithmetical part of T already proves (λ∧¬T�λ�)∨(¬λ∧T�λ�) for λ a liar sentence.
Therefore T +GRFT proves T

(
�(λ∧¬T�λ�)∨(¬λ∧T�λ�)�). Since T is an axiomatization of the class of Kripke fixed

points, we can use compositional and truth-iteration principles to obtain, still in T +GRFT , T(�λ∧¬λ�). A well-known
example of such a theory T is a the theory KF from [8] — see also [14].

12This is also the reason why Horsten and Leigh could consider iterations of uniform reflection without restrictions on the
fixed-points models.

13This phenomenon is not confined to axiomatizations of Kripke fixed points based on De Morgan Logic. Also in
supervaluational fixed points uniform and global reflection come apart.
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Iterated reflection over full disquotational truth 2639

For the other direction, we reason in T +RFNR
T and assume that the sequent ⇒SentLT (x)∧

ThmT (x) is derivable in it. Also, we know that (i) and (ii) are derivable sequents of UTS0 — and
then also of T —, and therefore ⇒PrT (x,[Tx]) is a derivable sequent of T . By combining this latter
fact with our assumption, we obtain ⇒ThmT ([Tx]). By RFNR

T , therefore, we can conclude ⇒Tx,
as desired. �

Proposition 1 suggests that Leigh and Horsten’s project can be more coherently carried out in the
context of non-classical theories of truth. In the next section, we will in fact employ strengthenings
of the reflection principles considered in Proposition 1 to unfold the truth-theoretic and mathematical
content implicit in the acceptance of TS0.

3 Reflecting on TS0

This section introduces the main results of the article: in Section 3.1 we discuss several alternative
reflection rules and motivate the choice of a particular form of reflection on admissible rules that turns
out to be stronger than simple reflection on derivable sequents. In Section 3.2 we show that the closure
under two applications of our rule of reflection suffices to recover the strong internal axiomatization
of Kripke’s fixed point PKF. Finally, in Section 3.3 we show that the result of reflecting twice on
TS0 proves more transfinite induction for the language with the truth predicate than PKF itself. We
conclude the section by investigating further iterations of reflection.

3.1 Reflection on sequents and rules

As we have seen, in the classical setting the uniform reflection schema and rule take the form:

ThmT ([A(x)])⇒A(x) (RFNR
T )

⇒ThmT ([A(x)])
⇒A(x)

. (URFNR
T )

Over EA, URFNR
T and RFNR

T are equivalent, as shown by Feferman in [5]. In the non-trivial direction,
i.e. going from the rule to the initial sequent, one shows that Basic suffices to formalize the fact that
the sentence PrfT (n̄,�⇒A(m̄)�)→A(m̄) is provable in T for any m,n∈ω. Therefore one application
of (URFNR

T ) yields (RFNR
T ).

In the non-classical setting the situation is different. Whereas with classical logic on the background
we can formulate (URFNR

T ) and (RFNR
T ) in a one-sided sequent calculus, there are good reasons to

stick with a two-sided calculus for Basic De Morgan logic. In a one-sided classical system, in fact,
sequents A,¬A play the role that initial sequents A⇒A play in a two-sided setting. In our system this
correspondence breaks down: first of all, A,¬A is not generally valid in our intended semantics — if
A is a liar sentence, for instance —, whereas A⇒A are initial sequents of our system. Moreover, there
is no conditional naturally corresponding to the sequent arrow since ⇒A→A is just a notational
variant of ⇒A∨¬A.

We therefore opt for a formulation of our first reflection principle as applying to provable (two-
sided) sequents. As a consequence, basic syntactic considerations force us to formulate reflection in
rule-form. The uniform reflection principle for sequents of T takes the following form:

⇒PrT ([�	x⇒�	y])
�⇒�

. (rT )
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2640 Iterated reflection over full disquotational truth

But the simple rule of reflection (rT ) is not the only form of reflection that will be relevant for what
follows. A suitable conditional — such as the classical or the intuitionistic conditional — enables
one to compress in one sequent chains of reasoning featuring embedded implications. In our setting,
the highly meta-theoretic nature of the sequent arrow forces us to capture these chains of reasoning
explicitly via suitable extensions of the simple reflection rule (rT ). One way to achieve this is to focus
not only on provable sequents, but also to take into account rules admissible in T via the provability
predicate Pr2

T (x,y) introduced above.
We define the uniform reflection principle for provably admissible rules in T :

⇒Pr2
T ([�(x)⇒�(x)],[
(x)⇒�(x)]) �(x)⇒�(x)


(x)⇒�(x)
. (RT )

Obviously, in the context of any reasonable theory T , the theory T +rT is a subtheory of T +RT . The
rule RT states that if there is a uniform T -provable proof transformation of a proof of �(n)⇒�(n) into
a proof of 
(n)⇒�(n) for each n∈ω, and moreover �(x)⇒�(x) is provable, then also 
(x)⇒�(x)
is provable. The rule RT is in a sense supplementing BDM with the possibility of dealing with chains
of reasoning involving sequents. It is based on a formalization of admissible rules, which in the
context of classical logic are easily compressed into sentence form and combined, informally, via
conditionalization and transitivity.Although it increases the expressive power of the theories in BDM;
however, it is clear that RT does not amount to restoring classical logic, as these chains of reasoning
can only be managed in the safe and controlled environment guaranteed by the formalization in
the support theory: the rule RT relies essentially on the syntactic capabilities of the background
non-logical principles and is clearly not a logical principle. More importantly, the acceptability
of our reflection principles, just like the acceptability of any other reflection principle, is based on
preservation of soundness: as we shall see later on, the addition of RT to our theories of truth preserves
not only soundness but all semantic properties of the theories of truth in BDM, intersubstitutivity
in primis, and therefore it can be safely assumed regardless of how it interacts with the underlying
logic.

If T is an axiomatizable theory, then the reflection on T is the closure of Basic under the reflection
rules r(T ) and R(T ):

r(T ) :=Basic+(rT )

R(T ) :=Basic+(RT ).

Theories obtained by iterating our reflection rules are then defined in a standard manner: for instance,
R(R(T )) is the result of closing R(T ) under RR(T ). We abbreviate R(R(T )) as R2(T ), and similarly
for more iterations.

We have introduced (RT ) as a generalization of (rT ). A natural question is whether (RT ) is actually
stronger than the simpler rule. We will not answer to this question in this article but we will prove
some facts that may be relevant for a future answer. For instance, we now provide an upper bound
for the strength of r(UTS0); later — cf. Proposition 3 — we will show that the resulting theory is a
proper subtheory of R2(TS0).

The upper bound for r(UTS0) that we now provide is given in terms of the theory PKF that was
mentioned in the introduction. PKF is also formulated in the language LT, and its axioms and rules
are displayed in Table 2.

In T=1-2, the function symbol =. represents the elementary syntactic operation of forming an
identity statement out of two terms. A similar notation will be applied for other syntactic operations.
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Iterated reflection over full disquotational truth 2641

Table 2. The theory PKF

logic logical initial sequents and rules of BDM

identity Id1, Id2

arithmetic ⇒A for A a basic axiom of EA

plus the full induction rule for LT:

�,A(x)⇒A(x+ 1̄),�
(IND)

�,A(0)⇒A(t),�

atomic truth (T=1) ct(x),ct(y),val(x)=val(y)⇒T(x=. y)

(T=2) ct(x),ct(y),T(x=. y)⇒val(x)=val(y)

(TT1) T[Tx]⇒Tx

(TT2) Tx⇒T[Tx]
truth principles (T∧1) SentLT (x∧. y),T(x)∧T(y)⇒T(x∧. y)

for connectives (T∧2) SentLT (x∧. y),T(x∧. y)⇒T(x)∧T(y)

(T∨1) SentLT (x∨. y),T(x)∨T(y)⇒T(x∧. y)

(T∨2) SentLT (x∨. y),T(x∨. y)⇒T(x)∨T(y)

(T¬1) SentLT (x),T(¬. x)⇒¬T(x)

(T¬2) SentLT (x),¬T(x)⇒T(¬. x)

truth principles (T∀1) SentLT (∀. yx),∀yTx(y/v)⇒T(∀. yx)

for quantifiers (T∀2) SentLT (∀. yx),T(∀. yx)⇒∀yTx(y/v)

(T∃1) SentLT (∃. yx),∃yTx(y/v)⇒T(∃. yx)

(T∃2) SentLT (∃. yx),T(∃. yx)⇒∃yTx(y/v)

As mentioned earlier, PKF is an internal axiomatization of Kripke’s theory of truth. Crucially, PKF
is fully compositional as also negation commutes with the truth predicate. Halbach and Horsten in
[15] have measured the proof-theoretic strength of PKF by showing that PKF proves arithmetical
transfinite induction up to the ordinal ϕω0. Therefore we can use PKF as means of comparison for
our theories of iterated reflection.

Proposition 2

r(UTS0) is a subtheory of PKF.

Proof. To prove Proposition 2 we only need to check that PKF can handle reflection. We first
establish that PKF is strong enough to prove the soundness of UTS0. To this end, for ordinal codes
α, we define a hierarchy of predicates Trα(·) as T(·)∧SentL<α

T
(·), where L<α is defined as L plus all
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2642 Iterated reflection over full disquotational truth

predicates Tβ for β <α (cf. [14, Ch. 9]).14 Halbach and Horsten establish in [15] that PKF proves the
predicates Trβ to behave like Tarskian truth predicates for β <ωω: that is, for formulas of LT that are
in L<ω

T , the classical commutation conditions for typed truth predicates hold, while for LT-formulas
A not in Lω

T , we can prove ¬Trω�A�.
We can extend this definition to sequents via the predicate TRα(·) in the following way:

TRα(��⇒��) :↔(
(Trα(�∧��)→Trα(�∨��))∧

(Trα(�¬∨��)→Trα(�¬∧��)
)
.

From the proof-theoretic analysis of PKF in [15] we know that the truth predicates up to ωω behave
classically in it, and that we can employ the material conditional to carry out the inductive proof of
the following:

PKF 
 ⇒PrUTS0([�x⇒�x])→TRω([�x⇒�x]). (1)

The proof employs the induction rule of PKF. It suffices, therefore, to establish

⇒PrvUTS0 (0,[�x⇒�x])→TRω([�x⇒�x]) (2)

PrvUTS0 (u,[�x⇒�x])→TRω([�x⇒�x])⇒ (3)

PrvUTS0 (u+1,[�x⇒�x])→TRω[�x⇒�x]),
where PrvT (x,y) expresses that y is provable in T with a proof of length less or equal to x (see
page 2636).

We consider the crucial case of the characterizing principles of UTS0, (i)–(ii) on page 2638.
Reasoning classically in PKF, we assume

⇒PrvUTS0 (0,[T[Ax]⇒Ax]). (4)

We need to show

⇒Trω[T[Ax]]→Trω[Ax] (5)

⇒Trω[¬Ax]→Trω[¬T[Ax]]. (6)

We start with (5) and reason informally: if Trω[T[Ax]], then for some n∈ω and m<n, Trn[Tm[Ax]].
Therefore, since Trn and Trm are Tarskian truth predicates, also Trn[Ax].

Similarly for (6), if Trω[¬Ax], then Trn[¬Ax] for some n∈ω, and, since Trn[Ax] is in Ln+1
T , also

Trn+1¬[Tn[Ax]] and therefore Trω[¬T[Ax]]. �

3.2 Recovering compositionality by reflection

One of the goals of this section is to show that by reflecting on our core laws of truth we can recover
desirable compositional principles. More specifically, reflecting on TS0 is sufficient to recover the
initial sequents and the full induction rule of PKF.

In a first step we show that adding the reflection principle for TS0 to Basic allows us to derive
the initial sequents of UTS0.

14The truth predicates Trα can be defined for as many ordinals as we can code in our theory. In Section 3.3, in particular,
we will employ a coding for ordinals smaller than �0.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/27/8/2631/4079759 by U
niversity Konstanz user on 14 M

arch 2021



Iterated reflection over full disquotational truth 2643

Lemma 3

UTS0 ⊆ r(TS0).

Proof. For all n∈ω we have TS0 
T(�A(n)�)⇒A(n). Therefore, Basic proves:

⇒∀y(SentLT (y)→AxTS0 (sub(�Tx�,num(y)),y)) (7)

and
⇒∀x(SentL([Bx]), (8)

where, we recall, [Bx] :=sub(�Bv�,num(x)) for all LT-formulas B with one free variable. Therefore,
by combining (7) and (8), we also have in Basic

⇒AxTS0 (sub(�Tx�,num([Ax]),[Ax])). (9)

Therefore, by definition of the canonical provability predicate PrTS0 ,

⇒PrTS0 (sub(�Tx�,num([Ax])),[Ax]). (10)

Recall that tr(x) is the elementary function that formally prefixes �T� to the numeral for x. Then
Basic also proves the equation:

⇒sub(�Tx�,num([Ax]))=sub(tr([Av]),num(x)). (11)

By performing the appropriate substitution in (10), we have

⇒PrTS0 (sub(tr([Av]),num(x)),[Ax]). (12)

The other direction is analogous.
In r(TS0) — and a fortiori in R(TS0) — therefore, we obtain

T[Ax]⇒A(x)

A(x)⇒T[Ax]

as desired. �
As a consequence of the previous lemma, in r(TS0) we can already prove the full truth sequents

for atomic arithmetical formulas and for truth ascriptions containing free variables (T=1), (T=2),
(TT1), and (TT2). That (TT1) and (TT2) are direct instances of the initial truth sequents of UTS0 is
immediate. For the identity initial sequents, a slightly more general version of the Tarski sequents
would be required, namely one in which at least two free variables appear. However, since we are
working over Basic, we can always assume that the free variable in the truth sequents of UTS0
stands for (the code of) a string of free variables of finite length.

Also the initial, compositional sequents of PKF for the propositional connectives ∧,∨,¬ can be
proved in r(TS0):

Lemma 4

In r(TS0) we can derive (T∧1-2), (T∨1-2), (T¬1-2).
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2644 Iterated reflection over full disquotational truth

Proof. In TS0 we can directly prove the schematic form of the compositional clauses, for example
TS0 
T(�A�)∧T(�B�)⇒ (T�A∧B�) for all LT-sentences A,B. By formalizing this fact in Basic,
we obtain

⇒PrTS0 ([SentLT (x∧. y),Tx∧Ty⇒T(x∧. y)]). (13)

In r(TS0), therefore, we can then move from the formalization to the full quantifiable statement

SentLT (x∧. y),Tx∧Ty⇒T(x∧. y) (14)

as desired. The cases of the other connectives are analogous. �
However, by looking at Table 2 one realizes that compositional initial sequents for the propositional

connectives by themselves are not enough to capture all truth principles of PKF: we also need initial
sequents for quantifiers and full induction for LT (IND). We will first show how to recover full
induction.

It is a well-known result that (uniformly) reflecting on EA suffices to obtain the full induction
schema for L. Kreisel and Lévy, in [19], proved the equivalence of uniform reflection and full
induction over EA — that is the equivalence of EA plus uniform reflection for EA and Peano
Arithmetic (PA).15 We will apply Kreisel and Levy’s strategy to our setting. To do so, however, their
original argument has to be modified in several respects. First of all, we allow formulas of LT and not
just of L to appear in instances of the induction schema. In addition, we have to consider an induction
rule because the induction axiom involving the material conditional fails to be sound in the setting
of Basic De Morgan Logic. Finally, already in this step, we shall employ our generalized reflection
rule RT instead of the basic reflection rule rT . In what follows we denote as PAT the version of PA
formulated in LT whose logic is BDM and in which the truth predicate can appear in instances of
induction.

Lemma 5

PAT ⊆R(Basic).

Proof. Let A(x) be a formula in LT with one free variable. We want to show that in R(Basic) the
full induction rule

�,A(x)⇒A(x+ 1̄),�
�,A(0)⇒A(t),�

(15)

for formulas of LT is admissible. The following inference is admissible in Basic – and in fact in
predicate logic in LT only — for any n∈ω:

�,A(x)⇒A(x+ 1̄),�
�,A(0)⇒A(n̄),�

. (16)

By (Pr1), since the proof transformation in (16) is elementary, Basic proves

⇒Pr2
Basic(��,A(x)⇒A(x+ 1̄),��,��,A(0)⇒A(ẏ),��). (17)

Now by assumption, (17), and RBasic we conclude

�,A(0)⇒A(y),�.

�

15See Beklemishev [2, Cor. 4.3] for a proof of this fact.
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Iterated reflection over full disquotational truth 2645

The full set of compositional sequents of PKF is obtained by complementing the clauses for the
connectives by the ones for quantifiers. This can be achieved by closing the theory R(TS0) under
RR(TS0), that is, by performing one iteration of the general reflection rule.

Lemma 6

R2(TS0) proves (T∀1-2) and (T∃1-2).

Proof. We prove T∀1; the other cases are treated similarly. For all LT-formulas A(v) with only v
free, R(TS0) proves

T[Ay]⇒A(y) by Lemma 3

∀yT[Ay]⇒∀yA(y) by logic

∀yT[Ay]⇒T�∀yA(y)� by (T2).

The argument just carried out in R(TS0) can uniformly be formalized in Basic, i.e., Basic proves:

⇒PrR(TS0)(�SentLT (∀. yẋ),∀yTẋ(y/v)⇒T(∀yẋ(y/v))�).

Therefore R2(TS0) suffices to conclude

SentLT (∀. yx),∀yTx(y/v)⇒T(∀yx(y/v)),

as desired. �
Corollary 1

PKF⊆R2(TS0).

Corollary 1 shows that two iterations of the generalized rule RTS0 over our basic theory TS0 suffice
to recover all compositional truth laws that were not immediately provable in the original theory as
well as the full induction rule for the language LT. If reflection is considered to be a procedure already
implicit in the acceptance of TS0, then the laws of PKF follow naturally from a few applications of
this process. However, it is natural to ask whether the inclusion established in Cor. 1 is proper.

These questions translate, on the conceptual side, into the task of approximating the set of sentences
that are valid in the intended models of our theories, which are the Kripke fixed-point models. In
doing so, we gather information on how many truth iterations and general claims involving truth we
are permitted to assert upon accepting TS0 (after reflection) and how many mathematical patterns
of reasoning we regain in the form of transfinite induction.

3.3 Recovering transfinite induction by reflection

In this section, we investigate the question of how much transfinite induction for LT can be recovered
in iterations of the generalized reflection rule over TS0. One of the upshots of our analysis will be
that R2(TS0) properly extends PKF.

To carry out our proofs, we need to assume a notation system (OT,≺) for ordinals up to the
Feferman–Schütte ordinal �0 as it can be found, for instance, in [24]. OT is a primitive recursive set
of ordinal codes and ≺ a primitive recursive relation on OT that is isomorphic to the usual ordering
of ordinals up to �0. We distinguish between fixed ordinal codes, which we denote with α,β,γ ...,
and ζ,η,θ ... as abbreviations for variables ranging over elements of OT. From the results in [15] it
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2646 Iterated reflection over full disquotational truth

follows that PKF proves transfinite induction for LT only up to any ordinal smaller than ωω. If we
focus only on L-formulas, however, PKF proves transfinite induction for much higher ordinals. In
particular, PKF proves the same arithmetical sentences as PA plus transfinite induction for L up to
any ordinal smaller than ϕω0.

Before analysing how much transfinite induction can be proved in R2(TS0), we introduce some
notation. The schema of transfinite induction up to α for the formula A(v) of a language L1 containing
L is the rule

∀ξ ≺ηA(ξ )⇒A(η)
TIL1 (A,α)⇒∀ξ ≺α A(ξ )

.

We then denote transfinite induction up to some ordinal α with TIL1 (<α), standing for the closure
under all rules TIL1 (A,β) for A∈L1 and β ≺α. Analogously, we write TIL1 (α) for the closure under
all rules TIL1 (A,α) for A∈L1. In what follows, we will only deal with the cases in which L1 is either
L itself or LT.

As a measure of strength of the theories obtained via iteration of reflection, we will mainly focus
on how much transfinite induction for LT is derivable in such theories. However, there is often a
direct connection between the amount of transfinite induction for LT and L derivable in a truth theory.
Both in the case of KF and PKF, for instance, the amount of transfinite induction for LT available in
the systems — that is TILT (<ϕ10) and TILT (<ϕ0ω) respectively — can be used to define classical,
Tarskian truth predicates indexed by these ordinals with the crucial contribution of the compositional
truth principles of the two theories (see Fefeman’s [8] for KF and Halbach and Horsten’s [15] for
PKF). This gives a lower bound for the systems in terms of ramified truth hierarchies up to ϕ10 (or
ε0) and ϕ0ω (or ωω) respectively, which — by a classical result by Feferman (cf. [7]) — yields that
KF and PKF are proof-theoretically as strong as at least PA+TILT (<ϕε00) and PA+TILT (<ϕω0)
respectively.

The following proposition shows that iterating the generalized reflection rule twice over TS0
enables us to go beyond PKF. This also gives us more information about the question that was posed
on page 2640 about the comparison between the rules (rT ) and (RT ). By Proposition 2, the theory
r(UTS0) is a subtheory of PKF. The next will entail that R2(TS0) is indeed stronger than PKF.

Proposition 3

R2(Basic)
TILT (ωω).

Proof. We first prove in R(Basic) that, for all n∈ω,

�,∀ζ ≺ηA(ζ )⇒A(η),�
�⇒∀ζ ≺ωn A(ζ ),�

. (18)

To prove (18), we first prove in R(Basic), for all n∈ω:

∀ζ ≺ηA(ζ )⇒A(η)
∀ζ ≺ηA(ζ )⇒∀ζ ≺η+ωn A(ζ )

. (19)
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Iterated reflection over full disquotational truth 2647

We reason as follows in R(Basic):

∀ζ ≺ηA(ζ )⇒A(η) (20)

∀ζ ≺ηA(ζ )⇒∀ζ ≺η+ω0 A(ζ ) by (20) (21)

∀ζ ≺ηA(ζ )⇒∀ζ ≺η+ωn A(ζ ) external ind. hyp. (22)

∀ζ ≺η+(ωn ×x)A(ζ )⇒∀ζ ≺η+(ωn ×x)+ωnA(ζ ) from (22) (23)

∀ζ ≺η+(ωn ×0)A(ζ )⇒∀x∀ζ ≺η+(ωn ×x)A(ζ ) by (IND) (24)

∀ζ ≺ηA(ζ )⇒∀ζ ≺η+ωn+1 A(ζ ) (25)

The last two lines give us the induction step and therefore (19) by, possibly, a series of cuts.
Now in Basic,

⇒Pr2
R(Basic)([∀ζ ≺ηA(ζ )⇒A(η)],[∀ζ ≺ηA(ζ )⇒∀ζ ≺η+ωx A(ζ )]). (26)

Therefore, in R2(Basic),
∀ζ ≺ηA(ζ )⇒A(η)

∀ζ ≺ηA(ζ )⇒∀x∀ζ ≺η+ωx A(ζ )
. (27)

That is ∀ζ ≺ηA(ζ )⇒A(η)
∀ζ ≺ηA(ζ )⇒∀ζ ≺η+ωω A(ζ )

. (28)

From (28), by letting η to be 0, we get

�,∀ζ ≺ηA(ζ )⇒A(η),�
�⇒∀ζ ≺ωω A(ζ ),�

. (29)

�
By the proof theoretic analysis of PKF we know that it can only prove transfinite induction for LT for
ordinals smaller than ωω. But this fact is not dependent in any way on the truth theoretic principles
of PKF: already PAT, in fact, proves TILT (<ωω). This is also reflected by the fact that Proposition 3
does not rely on the truth principles of TS0. However, by Corollary 1, we have:

Corollary 2

PKF is a proper subtheory of R2(TS0).

Transfinite induction up to ωω, however, is clearly not the limit of what we can achieve in R2(Basic).
By using similar methods to the ones employed in Proposition 3, and starting from (28), we can verify
that the following rule is admissible in R2(Basic):

∀ζ ≺ηA(ζ )⇒A(η)

∀ζ ≺θ A(ζ )⇒∀ζ ≺θ +ωω+k A(ζ )
.

Generalizing this strategy it is possible to show the following:

Lemma 7

In R(n+1)(Basic) the following rule is admissible:

∀ζ ≺ηA(ζ )⇒A(η)

∀ζ ≺θ A(ζ )⇒∀ζ ≺θ +ωω×nA(ζ )
.
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2648 Iterated reflection over full disquotational truth

Proof. By external induction on n. We have established the claim for n=1. Assume that it holds for
n. Then we can argue in R(n+1)(Basic): Assume

∀ζ ≺ηA(ζ )⇒A(η).

Then by the induction hypothesis we have

∀ζ ≺θ A(ζ )⇒∀ζ ≺θ +ωω×nA(ζ )

and
∀ζ ≺θ +ωω×n ×x A(ζ )⇒∀ζ ≺θ +ωω×n ×x+ωω×nA(ζ ).

By the induction principle (IND) we obtain

∀ζ ≺θ +ωω×n ×0 A(ζ )⇒∀x∀ζ ≺θ +ωω×n ×x A(ζ )

giving us
∀ζ ≺θ A(ζ )⇒∀ζ ≺θ +ωω×n ×ω A(ζ )

which is
∀ζ ≺θ A(ζ )⇒∀ζ ≺θ +ωω×n+1A(ζ ).

Therefore, by iterating this argument m-times, we can obtain, for each m:

∀ζ ≺θ A(ζ )⇒∀ζ ≺θ +ωω×n+m A(ζ ).

In R(n+2)(Basic), therefore, we can conclude

∀ζ ≺θ A(ζ )⇒∀ζ ≺θ +ωω×(n+1)A(ζ ).

�
Lemma 7 immediately entails that Rn+1(Basic) proves TILT (<ωω×n). Therefore, if we reflect

on TS0 instead of Basic, we are able to define in Rn(TS0) ramified truth predicates for any ordinal
smaller than ωω×n by following the strategy employed by Halbach and Horsten in [15] and hinted
at on page 2646.

The strategy employed in Lemma 7 can be iterated even further. Ideally, we would like to reach, by
as little reflection iterations as possible, the amount of transfinite induction for LT — and therefore
of ramified truth predicates — that are available in KF, the classical counterpart of PKF. However,
we conclude this section by providing only a first, and presumably rather inefficient, approximation
to this task.

By letting Rω(Basic) :=⋃
n∈ωRn(Basic), a direct consequence of Lemma 7 is that

Corollary 3

In Rω(Basic) we have TILT (<ω(ω2))

Therefore the theory Rω(TS0) can define ramified truth predicates indexed by all ordinals ωω×n for
all natural numbers n.

Although ω may seem to be a natural stopping point, the procedure can be iterated even further into
the transfinite. Following a well-known tradition initiated by Feferman in [6], the theories Rn(Basic)
can all be shown to be recursively enumerable. Moreover, the notion of being a proof in Rn(Basic)
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Iterated reflection over full disquotational truth 2649

is recursive. We can then find a primitive recursive function enumerating all those proof predicates.
By employing the recursion theorem, therefore, we can find an index for this enumeration that can
be used to formalize, via a recursive predicate, the notion of being a proof employing rules proper
of one of the theories Rn(Basic). This, however, suffices to formulate the notion of being a proof in
Rω(Basic): clearly, similar procedure can be extended at least to ordinals smaller than ε0.

But once a recursive formalization of transfinite iterations of our reflection rules is available, it
becomes clear that enough iterations of reflection over Basic will lead us to the amount of transfinite
induction for LT available in KF. By letting ω0 :=1, and ωn+1 :=ωωn , we have, rather unsurprisingly,

Observation 1

Rωn+1(Basic)
TILT (ωn).

4 Conclusion

Starting with principles that are minimally constitutive of the notion of truth, such as the initial
sequents of the theory TS0, we have investigated the result of iterating reflection rules over them. A
similar project, in the context of classical logic and therefore without the basic principles of TS0, has
been recently pursued by Horsten and Leigh [18]. We claim that our non-classical setting provides
a more coherent framework for such a project for two main reasons. First, in a classical setting the
intersubstitutivity of A and T�A� (which is the defining characteristic of TS0) cannot be consistently
maintained. Second, following a theme by Kreisel, the global reflection GRFT for a theory T is the
intended soundness extension of T . Other proof theoretic reflection principles, including the uniform
reflection principle RFNT , are only justified by an appeal to global reflection. However, as shown in
Section 2.3, in classical axiomatizations of Kripke’s fixed point constructions, the use of the global
reflection principle is at odds with the overall strategy of iterating reflection rules.

One way to understand the results of this article is by asking which statements TS0 and the result
of iterating reflection rules over it can prove to be true, i.e., by considering their provable sequents
of the form ⇒T�A� for A in LT or, in short, their truth theorems. The logic BDM in itself — i.e.
without identity — has no theorems at all. When initial sequents for identity are added to it as well
as arithmetical initial sequents, even if the truth predicate is in the signature of the theory, one only
obtains arithmetical theorems but no truth theorems. TS0, in contrast, does prove truth theorems, but
only truth theorems of the form

T...T︸ ︷︷ ︸
n-times

�A�,

where A is an arithmetical theorem of Basic. This shortcoming of TS0 is accompanied by the lack
of other desirable properties of the theory, such as full compositionality (see again Section 2.3).
By adding a uniform or global reflection rule to TS0, we restore our full capability of reasoning
inductively with the truth predicate, and several compositional truth sequents. Full compositionality,
together with the possibility of establishing theorems of the form

T...T︸ ︷︷ ︸
ωω+n-times

�A�

for A again an arithmetical theorem of Basic, is reached when we consider the theory R2(TS0),
i.e., via a further iteration of the generalized reflection rule RT over TS0. At this stage, we already
recapture and surpass all truth theorems of the full compositional theory PKF. A natural goal for the
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process of iteration may be to reach the truth theorems of the classical theory KF (or equivalently,
PKF+TILT (<ε0), as shown in [23]). This can be achieved via suitable transfinite progressions of
theories obtained by reflection over TS0.

From a semantic perspective, there is a tight match between the truth theorems of our theories
and the levels of the construction of the minimal fixed point of Kripke’s construction from [20]. By
extending TS0 with an ω-rule, this connection can be made explicit: the theorems of TS0 plus the
ω-rule are exactly the LT-sentences that are in the extension of the truth predicate in the minimal
fixed point of Kripke’s theory (see [10] for a recent proof). Uniform reflection principles are recursive
approximations of the ω-rule. Therefore iterations of reflection, and the corresponding truth theorems
of the resulting theories, can be seen as approximations to the full ω-rule added to TS0 as they
represent initial stages of the construction of the minimal fixed point. It is also clear that all the
theories that we have considered are internal axiomatizations of Kripke fixed points. Therefore the
hierarchy that we have studied can also be seen as an attempt to capture, via recursively axiomatized
theories, the set of grounded sentences first isolated by Kripke.

Nonetheless our work leaves many open questions and possibilities for improvement. From a
technical point of view, a sharper proof-theoretic analysis of the theories obtained by iterated reflection
would be desirable to see clearly, for instance, how much one can obtain with finite iterations of
reflection. Moreover, it would be interesting to see whether the reflection rules can be strengthened
via ‘higher-order’ reflection rules in such a way that only finitely many iterations of them can suffice
to reach the truth theorems of KF. Finally, there remains the question whether the gap between
TILT (<ωω) and TILT (<ε0) — which is determined by whether PA in the signature of LT is
formulated in BDM or classical logic respectively — can be closed by supplementing BDM with a
suitable conditional in such a way that the conceptual advantages of the treatment of truth in TS0
are preserved.
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