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According to structuralism in philosophy of mathematics, arithmetic is
about a single structure. First-order theories are satisfied by (nonstandard)
models that do not instantiate this structure. Proponents of structuralism
have put forward various accounts of how we succeed in fixing one single
structure as the intended interpretation of our arithmetical language. We
shall look at a proposal that involves Tennenbaum’s theorem, which says
that any model with addition and multiplication as recursive operations
is isomorphic to the standard model of arithmetic. On this account, the
intended models of arithmetic are the notation systems with recursive
operations on them satisfying the Peano axioms.

[A]m Anfang [. . .] ist das Zeichen.
(Hilbert [1935], p. 163)

1. Structuralism and Nonstandard Models

Benacerraf [1965] laid the foundations for structuralism in the philo-
sophy of mathematics; he claimed that arithmetic—and other mathematical
theories—should not be conceived as topics with a specific and fixed sub-
ject matter; rather, arithmetic is about a certainstructure irrespectively of
the objects which form the domain of the structure. This is the structuralist
credo in a nutshell.

On the structuralist account, arithmetic is about a single struc-
ture: the standard model of arithmetic.1 All models instantiat-
ing this unique structure are intended.2 All other models—whether
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1 ‘The standard model of arithmetic’ is a misnomer for the structuralist. For him the

standard model of arithmetic is a structure that is instantiated by various models,e.g., by
the finite von Neumann numbers and the Zermelo numbers.
2 In this paper we take no stand on the ontology of structures. By using terms like ‘instan-

tiate’ that derive from the theory of universals we do not commit ourselves to the view that
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they are countable or not—do not instantiate the structure arithmetic is
about.

Structuralism is threatened by a formal problem. First-order Peano arith-
metic and all other sound first-order arithmetical theories have models that
instantiate different structures. The nonstandard models of arithmetic are
definitely not intended models. They exemplify structures different from
the standard model.

Thus, on the one hand, structuralists deny that there is only one single
model of arithmetic. This seems sensible because it does not matter from
what material the standard model is built. Mathematicians will be con-
tent with any model isomorphic to, say, the von Neumann ordinals or the
Zermelo numbers. On the other hand, not all models of first-order arith-
metic are intended models. Models not isomorphic to the von Neumann
ordinals need to be banned. Unfortunately no first-order axiom is capable
of singling out the standard model.

Structuralists have tried several strategies to rule out nonstandard
models of arithmetic. Benacerraf [1965] required that the structure is an
ω-sequenceand that the ordering on the elements is recursive. Of course,
only the standard model has order-typeω. Thus the additional requirement
that the ordering of the structure is recursive is not needed for ruling out
standard models. Finally Benacerraf [1996] dropped the requirement of
recursiveness and concluded that ‘any oldω-sequence would do after all’.
Thus nonstandard models are simply ruled out by this restriction on the
order-type of the model.

This requirement, however, is very bold and, in a sense, it begs the
question. It is like requiring that the model should be isomorphic to the
standard model of arithmetic. But it is exactly the task to spell out what
the natural numbers are, and the structuralist has just dismissed the con-
ception of the natural numbers as a single ‘given’ model. Using the concept
of the natural numbers in explaining what the natural numbers areis beg-
ging the question. And the concept of anω-sequence comes very close to
doing just this. Benacerraf cannot explain the notion of anω-sequence by
saying that anω-sequence is an ordering with the same order-type as the
natural numbers. Usually the concept of anω-sequence is defined in a set-
theoretic framework: Anω-sequence is something isomorphic to the von
Neumann ordinals. The von Neumann ordinals are defined in set theory.
Now the structuralist has to look at the structure of sets. The problems of
nonstandard models recurs here because there are also nonstandard models
of set theory (if set theory is consistent). That is, there are models of set
theory whose finite ordinals are not well-ordered ‘from outside’, but are

structures are actually universals. What we say might be compatible with anante rem or an
in rebus conception of structures or even with ‘nominalist’ structuralism where talk about
structures is taken as a mere abbreviation for talking about isomorphic models.
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well-ordered from the perspective of the model. Thus in order to make sure
that the predicate ‘ω-sequence’ applies only to well-orderings, one has to
make sure that the model of set theory employed is standard. The view of a
fixed given model for a theory has been already rejected by the structuralist.
So the same problem as for the numbers is re-instantiated. Consequently
most structuralists adopted other strategies for pinning down the standard
models.

There is another obviously unacceptable method for ruling out non-
standard models: One can require that every element in the model is named
by some numeral of the language of arithmetic. Since nonstandard num-
bers are not named by a (standard) numeral, only the standard model meets
this requirement. This method is not much better than Benacerraf’s dir-
ect ban on nonstandard models. It is not implicit in the first-order axioms
of number theory that the numerals name all objects. For the first-order
axioms do not say anything about naming of objects directly. Of course
one can define (via Gödel coding) the relation that obtains between (codes
of) closed terms of arithmetic and the named objects, but one can prove
from the axioms of Peano arithmetic (and much weaker theories) that any
object is named by its numeral. This means only that Peano arithmetic
proves that for any object (whether it is standard or not) there is a numeral
for it. In the case of a nonstandard element its code will be nonstandard as
well. Only when we have understood what a standard numeral is can we
rule out nonstandard models by requiring that every element of the model
is named by somestandard numeral. Thus this method begs the question:
in order to apply it, we must be able to distinguish between standard and
nonstandard numerals. And a model will be standard if it does not contain
nonstandard numerals.

By far the most popular approach to ruling out nonstandard models
relies on second-order logic. This approach has been advocated forcefully
by Shapiro [1991], [1997]. But this approach is also problematic. Under-
standing second-order consequence presupposes a prior understanding of
the notion of power set (at least over an infinite set). McGee [1997] pro-
posed a refined version that relies on the extendability of the induction
principle to new languages; this version has the advantage of requiring
second-order logic only in a very concealed and seemingly less disquieting
way. However, any kind of second-order approach will make use of the
power set of the set of natural numbers. This power set, we submit, is far
more problematic that the notion of the natural number itself. For the inde-
pendence phenomena revealed by Gödel and Cohen suggest that the notion
of the power set of the natural numbers may be inherently indeterminate
or essentially relative.

In this paper, however, we will not go into the details of structuralism
based on second-order logic. Instead we will return to Benacerraf’s original
attempt to fix the standard model up to isomorphism. He stated in his
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[1965] that any recursiveω-sequence could serve as an intended model for
arithmetic. As mentioned above, he later discarded the ‘recursive’ part of
this requirement. The remaining postulate that the model be anω-sequence
is surely sufficient, but, as we have seen, it begs the question. In this paper,
we would like to investigate the prospects of a structuralist approach that
drops the ‘ω-sequence’ part of Benacerraf’s original requirement but retains
the ‘recursive’ part.

2. Tennenbaum’s Theorem

Benacerraf ([1965], p. 275–277) has argued that it should be possible to
determine effectively which one of two given elements of a model is greater.
Here we do not go into the details of Benacerraf’s account, but this require-
ment has at least some initial plausibility: it should be possible to compute
which one of two given numbers is greater. A model where there is no
general procedure for finding out which of two objects of its domain is the
greater should not be admitted as a model of arithmetic.

We shall extend this requirement. We agree with Benacerraf that the
relation of being greater should be computable in the model. If the ordering
of the objects ought to be recursive, then also the operations of addition and
multiplication ought be be recursive: As there ought to be an algorithm for
deciding the ordering of the elements of the model, there ought to be also
algorithms for addition and multiplication. If the restriction to models with
decidable<-relation is sensible, then plus and times must be decidable as
well. For it seems also of fundamental importance that we can compute
the sum and the product of any two given numbers. If we cannot even
in principle determine the sum and product of any two given numbers,
then the objects in question are not numbers. Numbers are something we
can calculate with; if we cannot calculate with objects, then they are not
numbers.

So we impose the condition that the sum and the product of two given
numbers can be computed. Actually it would have been sufficient to insist
on the computability of the sum. We are also committed to the computability
of many further operations like exponentiation on the natural numbers.
But since their computability is not needed for ruling out nonstandard
models, there is no point in specifying exactly which operations ought to
be computable. Therefore we impose the following restriction on models:3

REC1: In an intended model the relation< and the operations of addition
and multiplication are recursive.

REC1 suffices for ruling out nonstandard models. Tennenbaum [1959]
proved that only the standard model of Peano arithmetic satisfies REC1,
that is, the operations of addition and multiplication are only recursive in
the standard model.

3 See Horsten [2001], pp. 126–127.
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Now Benacerraf’s original restriction toω-sequences is not needed
anymore. We submit that it would have been more sensible to discard
the requirement that the model is anω-sequence than the requirement of
recursiveness. The recursiveness requirement is as effective in ruling out
nonstandard models as the bold restriction toω-sequences. Benacerraf’s
original requirement to the effect that the ordering relation on the model
is recursive is not sufficient for banning nonstandard models. For there are
models of arithmetic where the<-ordering is decidable, while addition and
multiplication are not (Kaye [1991], p. 157, Exercise 11.10).4

3. Codings

The account presented so far—and Benacerraf’s account [1965]—suffer
from one blunt mistake: Recursiveness is defined only for predicates and
functions on natural numbers. Restriction REC1, as presented above,
applies only to models with domains that are subsets of the set of nat-
ural numbers. For there is no general notion of recursiveness that applies to
arbitrary relations and functions on arbitrary objects whether they are math-
ematical, concrete, or whatever. What does it then mean that the ordering<
or the operation of addition on these elements is computable? For instance,
is the natural ordering of the von Neumann ordinals recursive? We would
like to answer this question in the affirmative, but recursion theory does
not tell us whether this relation is recursive.

The obvious move for the mathematician iscoding. Given a model of
arithmetic one can try to code the elements of the domain of the model
by natural numbers and then check whether the ordering, addition, and
multiplication as induced by the coding relation are recursive on these
codes. This is how Tennebaum’s theorem is generally formulated: If a
model can be coded in the natural numbers so that the induced operation of
addition is recursive, then the original model is isomorphic to the standard
model (see Kaye [1991], p. 153).

The coding relation need not be ‘effective’ in any sense. Effectiveness is
subject to similar conceptual difficulties as recursiveness itself. The coding
of set of expressions can be effective or not, but in general there is no fixed
notion of effectiveness.5

For the purpose of this paper a coding is simply a one-one-mapping of
the class of the objects in question to the set of the natural numbers. Thus
REC1 may be rephrased as follows:

REC2: For every intended model there is a coding of the set of its ele-
ments such that the relation< and the operations of addition and

4 However, the recursiveness of addition alone is sufficient to guarantee the standardness
of the model. So REC1 and its variants with the requirement on multiplication deleted
would serve the purpose.
5 In a later section we will qualify this judgement.
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multiplication on the codes, as they are induced by the relations on
the intended model, arerecursive.

Obviously there is no such coding of an uncountable model of arithmetic,
and consequently such models are trivially ruled out by REC2 as intended
models.

REC2 also rules out all models where the field of<, together with
the ordering relation<, does not constitute anω-sequence. If< is not of
order-typeω, there will be nonstandard elements, and the codes of the
elements of the model together with the respective interpretation of the
relation and function symbols constitute a nonstandard model of arithmetic.
By Tennenbaum’s theorem, addition cannot be recursive. Therefore the
model is ruled out as an intended model. In other words, REC2 determines
the intended model up to isomorphism, as is required by structuralism
concerning the natural numbers.

4. Recursiveness

One can mount a sceptical challenge: howdo we know that the operations
of addition and multiplication are recursive?6 This worry can be seen as a
variation on the sceptical scenario that was investigated by Kripke in his
Wittgenstein on rules and private language.7 An immediate reply would be
that if these relations were not recursive, then we could never have learned
the rule for using them. But, of course, Wittgenstein and Kripke have taught
us that the debate does not end here: it is by no means a simple matter to
say with confidencewhat we have learned when we have learned to add
natural numbers. In this paper, we will leave the matter here, for we have
nothing to add to the extensive debate which has followed the publication
of Kripke’s book on Wittgenstein.

There is an obvious objection to REC2 that we do have to answer.
We have rejected Benacerraf’s postulate that the model be anω-sequence
because the notion of anω-sequence should not be presupposed in an
account of what the numbers are. REC2 does not to seem to fare better in
this respect. On the usual account, recursiveness is defined for functions
and sets of natural numbers. Thus the notion of a natural number precedes
all notions of recursion theory. Thus, it seems, the structuralist who relies
on REC2 in order to fix the standard model is subjected to the criticism that
he presupposes the natural numbers in order to explain what the natural
numbers are.

Dean [2002] defends the outlined application of Tennenbaum’s theorem
by conceiving recursiveness (or decidability) as a basic notion that is not
preceded by the notion of number, functionetc.: recursiveness is claimed

6 This question was raised independently, in conversation, by John Burgess and Paul
Benacerraf.
7 See Wittgenstein [1958], Kripke [1982].
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to be more basic and understandable independently from more advanced
mathematical concepts. In fact, the notion of aneffective procedure and thus
of computability in the informal sense does not presuppose number theory
or even set theory. Effective procedures do not only apply to numbers,
but also to other objects. For instance, there is a procedure for checking
whether a given expression is a well formed formula or not. The notion of
an effective procedure applies also to methods for determining the species
of a mushroom or the determining whether a ball bearing is still in order.
Of course a lot can be said about following the rules of a procedure and
about the ontology of procedures in general.

Thispractical notion of computability is distinguished from thetheoret-
ical notion of computability (and recursiveness). The theoretical notion of
recursiveness is a purely mathematical notion; it applies primarily to num-
bers (viz. functions and relations of numbersetc.) and one may think of this
notion as defined in set theory. For instance, the set ofµ-recursive func-
tions is easily defined in set theory (or another mathematical framework).
The practical notion, in contrast, is not defined in set theory and does not
completely belong to theoretical mathematics. For mathematicians there is
usually no need to distinguish between the notions as long as the notions
of decidability, recursiveness, effective procedure,etc. are only applied to
functions and relations on natural numbers.

Of course there is an intimate connection between the practical and the
theoretical notion of recursiveness. In the proof of Tennebaum’s theorem
one relies on the theoretical notion of recursiveness. In order to apply
Tennenbaum’s theorem for ruling out nonstandard models, we have to
assume that a practically recursive operation is also recursive in the formal
sense. That is, we are appealing to Church’s thesis.

Although for mathematical purposes there is no need to distinguish
between the practical and the theoretical notions if Church’s thesis is
assumed, there is a crucial difference between the notions that is exploited
by the structuralist, when he tries to apply Tennenbaum’s theorem for
banning nonstandard models of arithmetic. The theoretical notion is obvi-
ously useless to the structuralist because it singles out a certain class of
functions and relations in a way that presupposes the natural numbers
or set theory. If recursiveness is understood as a more basic notion—as
Dean suggests—then it must be the practical notion. Thus we shall look
at this notion in some detail. In particular, we shall look at the ontological
foundations of this sort of recursiveness.

5. Practical Decidability

Usually textbooks in recursion theory start with a presentation of the
informal and practical concept of computability, and to this end the informal
concept of an effective procedure or algorithm is employed.
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Algorithms tell you how to manipulate symbols; they do not tell you
what to do with numbers if the structuralist account of natural numbers is
presupposed. For one cannot ‘do’ anything with a number on the structural-
ist account where numbers are not particular fixed objects with an internal
structure.

For instance, given two natural numbersk andn, we say that there
is an effective procedure for determining whetherk2 = n. But for the
structuralist,n can be anything.n might be a particular set, such as the
corresponding von Neumann ordinal or the Zermelo number, or some other
object. Only its status among other objects makes it the number 2. No
internal structure identifies it as this number. Consequently it does not
make sense for the structuralist to say that a number is given independently
from the other numbers. Once we have fixed the von Neumann ordinals as
the coordinate system, we can perhaps speak of algorithms again. We are
concerned here, however, with the problem of finding criteria for acceptable
coordinate systems.

In order to substantiate these claims, we shall look more closely at
the basic motivations for the recursion-theoretic notions. Turing machines,
which are usually used for explaining the concept of an algorithm, are
somewhat ambiguous objects. Of course, Turing machines can be presented
as purely mathematical objects acting on natural numbers. But insofar as
Turing machines are really taken to compute, they are presented as objects
acting on notations, for instance, on marks on imaginary paper strips. That
is, these Turing machines act also on notations rather than on numbers.
Since these notations are notations for natural numbers, the difference
does not matter for most purposes. We have, however, also an informal
concept of computability on other notations. So, in general, algorithms
are instructions for manipulating symbols whether they are notations for
natural numbers or not.

We have not said what symbols or notations are. At bottom, the concept
of symbol is an intentional notion. Whether or not something is a symbol
depends on whether we intend to use it to convey meaning. Even concrete
objects like apples and chairs could be symbols in this sense. For the present
purposes, however, these concepts need not be explained in any detail. Their
deeper semantical role is irrelevant for the explication of computability. For
our purposes only one fundamental feature matters: Symbols do have an
internal structure. They are different because of their inherent properties,
graphical properties for instance. They are not just distinguished by their
place in a structure.

In the case of practical recursiveness with which we are concerned, what
is manipulatedis symbols.8 In the algorithm for division, for instance, we

8 Again, this is not to deny that there may be senses of ‘practical recursiveness’ which do
not even presuppose the manipulation of symbols but of still other objects.
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must be able to distinguish the symbol ‘5’ from the symbol ‘6.’ If the
symbols could not be distinguished, we could not follow the instructions
of the algorithm. In other words, the standard numerals are symbols that
belong to a notation system. This notation system is indeed a structure. But
the place of a numeral in the structure is reflected in theinternal structure
of the symbol. In this sense, the numerals differ from the numbers when
platonically conceived. Platonic numbers do not feature an internal struc-
ture. Their place in the number structure is imposed from the outside, so to
speak. And exactly this is a feature of the platonic natural-number structure
which makes it so mysterious.

6. Platonic Computational Structuralism

If the structuralist rules out nonstandard models of arithmetic by invoking
REC2, then he cannot understand ‘recursive’ in the sense of ‘theoretic-
ally recursive’, because the theoretical notion of recursiveness presupposes
mathematical notions that must not be presupposed. Therefore ‘recursive’
must be understood in the practical sense.

Practical algorithms do not act on natural numbers, but on objects (sym-
bols) with an internal structure. Since natural numbers do not feature an
internal structure, these symbols are distinct from the numbers.

Consequently, the coding in REC2 cannot be a codingin the natural
numbers but a coding by symbols. The only important feature of symbols is
that they can be distinguished by their internal structure. If REC2 is under-
stood this way, it does not presuppose the numbers anymore. Therefore the
objection that REC2 presupposes notions that are to be defined does not
apply anymore. We do have another presupposition. The notion of com-
putability employed is not a mathematical notion, but rather an informal
notion. Therefore the claim that any model that can be coded in such a way
that addition comes out computable is standard relies on Church’s thesis.

Now it might be argued that if we have symbols, we are already presup-
posing something that is as problematic as the natural numbers themselves,
because finitely many symbols will not suffice. But this shows only that
the present account is not a nominalistic reduction. However, we did not
set out in order to give a nominalistic reconstruction of number theory.
Rather, our problem was the opposite: We had many models of first-order
arithmetic and asked which one is an intended model. Now the following
is suggested as a non-circular answer to this question.Any model will do
provided that we have notations for the elements of the model such that the
operations of addition and multiplication are computable on the notations.
Then Tennenbaum’s theorem will ensure that the model is standard, that
is, that it has order-typeω.

This seems to leave REC2 as an attractive option for banning unintended
models, that is, nonstandard models. REC2 was saved as a sensible move
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of the structuralist by using a practical notion of recursiveness. Practical
recursiveness applies to symbols with internal distinguishing features, not
to numbers without such features.

Nevertheless, all is not well with this proposal. A coding in this sense
assigns to every object of the model a symbol, and conversely it assigns to
every symbol exactly one object. In order words, to put REC2 to work and
to judge whether a model is an intended model, we must be able to judge
whether some assignment of objects to symbols is a coding. In particular,
we have to judge whether every object receives a symbol. But our inability
to decide whether all objects are named by some (standard) numeral was
our original problem. If we were able to ‘see’ whether all objects are named
by some symbol in some notation system, then we also would be able to see
whether all elements in the model are named by some standard numeral.
And we are back again to the naive and unacceptable ‘A model is intended
if all its elements are named by a standard numeral’.

7. Formalist Computational Structuralism

What is wrong with the previous proposal is that the fact that we are
computingon the natural numbers is not taken seriously enough. For the
proposal still allows the elements of intended models to be unstructured
objects.

If we take seriously the idea that we compute on the natural numbers,
then the numbers must have internal structure. Thus we are driven to a
formalist identification of natural numbers with structured linguistic entit-
ies. In the spirit of Benacerraf [1965], we do not want to identify the
natural-number structure with any single notation system. For we want to
say that the Romans, for instance, were calculating with the same num-
bers as we now do. But as structuralists, we want all intended models to
exemplify a unique structure. This leads us to our final proposal:

REC3: Intended models are notation systems with recursive operations
on them satisfying the Peano axioms.

This proposal fixes an isomorphism type without admittingall systems
exemplifying the type to count as intended models. For Tennenbaum’s
theorem now still guarantees that all intended models are isomorphic.

And we claim that we avoid, in our proposal, all appeal to the natural
numbers in fixing the intended models. There no longer is any need to see
that all objects are named, for the objects in intended models allare names.
Our proposal entails that in a fundamental sense, arithmetic is exclusively
about notations.

According to our proposal, the elements of the structure of natural
numbers do not feature any particular internal structure. The structure is
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obtained by abstracting from the peculiarities of the respective notation
systems. So our position still deserves to be labeled ‘structuralist’.

8. Comparison with Other Structuralist Accounts

In this paper we have put forward a proposal of how someone doing arith-
metic can succeed in determining the domain of discourse. We are looking
at the situation from a standpoint that includes set theory and everything
else that is available to the mathematician. So we can freely talk about
nonstandard models,etc.

We claim that somebody doing arithmeticcalculates with the numbers.
In particular, the person has effective methods for calculating the sum of
any two numbers. His knowledge of the method may be only implicit, and
he may lack the notion of finiteness,etc. Only we, the observers, make use
of these notions. Moreover, we can show that the person’s ability to carry
out calculations eliminates the possibility that the person is talking about
nonstandard models.

Second-Order Structuralists would rely on the categoricity of second-
order arithmetic in order to rule out nonstandard models. However, the
person doing arithmetic may simply not make use of second-order quanti-
fiers. We think the calculation of sums is far more basic to arithmetic than
claims about sets of numbers. In this sense our approach relies on a fea-
ture that is much more intrinsic to arithmetic than the use of second-order
quantifiers.

In another sense, Second-Order Structuralism may be thought to be
more basic than Computational Structuralism. The Second-Order Struc-
turalist relies on the categoricity of second-order arithmetic, which is in
a sense more straightforward than Tennenbaum’s theorem. The additional
expenditures of Computational Structuralism, however, are only technical
and not philosophical. We are focusing on a person’s abilities to do arith-
metic and try to argue that they are sufficient to rule out nonstandard models.
On the account of Computational Structuralism, it may require more effort
on our side to see why the person does not talk about nonstandard mod-
els. The assumptions on the abilities can be kept to a bare minimum in
return; he must be able to carry out additions. The Second-Order Struc-
turalist, in contrast, has to assume that the person must somehow grasp
second-order quantification or a sufficiently large fragment thereof.

The observation that our proposal makes only very weak assumptions
on the abilities of the person who is doing arithmetic requires a formal
qualification. The second-order strategy for ruling out nonstandard models
relies very much on a strengthening of the induction principle. Basically
one obtains a theory that can determine its models up to isomorphism by
allowing many more conditions in induction than just those that can be
described by arithmetical conditions. So far our approach does not seem to
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make much use of induction at all. It seems to rely on the computability of
the sum of any two given numbers. However, it does not rely exclusively on
this. We also needsome amount of induction in order to banish nonstand-
ard models because Tennenbaum’s theorem cannot be proved for systems
without induction: McAloon [1982] showed that the operations of addi-
tion and multiplication are not recursive in any nonstandard model ofI�0.
But we definitely do not need any kind ofsecond-order induction or the
extendability of the induction scheme to formulas with new vocabulary,
because Tennenbaum’s theorem holds for Peano arithmetic. Indeed, very
little induction is required indeed for Computational Structuralism.9 For
our purposes it is sufficient that the first-order induction axioms of Peano
arithmetic are more than enough.

In another respect Second-Order Structuralism scores higher than
Computational Structuralism. The former applies not only to arithmetic;
second-order quantification can be used in order to rule out nonstandard
models of set theory as well. Computational Structuralism, in contrast,
seems to be restricted to arithmetic. We cannot think of any sensible restric-
tions on the computability of set-theoretic operations, and it is unclear what
an analogue of Tennenbaum’s theorem for set theory could be. So we do not
have much to say to the question how other mathematical structures, such
as the real numbers, for example, are fixed. Perhaps arithmetic’s extremely
close connection to our practices of computing makes it a very special
domain.

The limited scope of the Computational Structuralist approach supports
our intuition that we know much better what we are talking about when we
are doing arithmetic than when we are doing set theory. At least we are more
disposed to admit that we cannot so easily single out the intended models of
set theory than to admit that arithmetic is also about nonstandard models.
Therefore the limited scope of application of Computational Structuralism
may not be a fault at all.

9 For more information on how much induction is needed see D’Aquino [1997] and Kaye
[1993].
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