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AXIOMATIZING KRIPKE’S THEORY OF TRUTH

VOLKER HALBACH AND LEON HORSTEN

Abstract. We investigate axiomatizations of Kripke’s theory of truth based on the Strong Kleene

evaluation scheme for treating sentences lacking a truth value. Feferman’s axiomatization KF formulated

in classical logic is an indirect approach, because it is not sound with respect to Kripke’s semantics in

the straightforward sense; only the sentences that can be proved to be true in KF are valid in Kripke’s

partial models. Reinhardt proposed to focus just on the sentences that can be proved to be true in KF and

conjectured that the detour through classical logic in KF is dispensable. We refute Reinhardt’s Conjecture,

and provide a direct axiomatization PKF of Kripke’s theory in partial logic. We argue that any natural

axiomatization of Kripke’s theory in Strong Kleene logic has the same proof-theoretic strength as PKF,

namely the strength of the system RA<ùù ramified analysis or a system of Tarskian ramified truth up

toùù . Thus any such axiomatization is much weaker than Feferman’s axiomatization KF in classical logic,

which is equivalent to the system RA<å0
of ramified analysis up to å0.

Wovon man nicht sprechen kann, darüber muß man
schweigen.

Adapted from Wittgenstein,
Tractatus logico-philosophicus 7

§1. Introduction: Reinhardt’s interpretation of Kripke’s theory of truth. There
have been various attempts to block the inconsistency arising from the liar paradox
by allowing sentences not to have a single classical truth value. In particular, on
these accounts the liar sentence will not receive a single classical truth value true
or false. The presence of sentences that lack a truth value, that have more than
one truth value or that have a non-classical truth value requires an alternative to
classical logic to deal with these sentences. Presumably the best known approach
in this vein is Kripke’s [24] theory developed in Outline of a theory of truth. Kripke
studies partial models for a language containing a truth predicate T . The models
are partial in the sense that sentences containing the truth predicate may fail to
receive a truth value.
More precisely, by an inductive construction Kripke defined models of partial
logic extending classical standard models where ϕ and Tpϕq have the same truth
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value for all sentences ϕ, even if ϕ contains the truth predicate. ϕ and Tpϕq will be
either both true or both false or they will both lack a truth value.1 In these models
the liar sentence ë as well as ¬ë and Tpëq lack a truth value. Kripke considered
various options for assigning truth values to complex sentences containing sentences
that lack a truth value. Among these, the StrongKleene valuation scheme appeared
to be very natural; in this article we shall focus onKripke’s account based on Strong
Kleene logic.
For various reasons it has been thought to be desirable to have an axiomatization
of Kripke’s theory. We do not go over those reasons here; we just mention that they
range from attempts to explicate our intuitive notion of truth to assigning the truth
predicate a rôle in the foundations of mathematics (Cantini [7], Feferman [12] and
McGee [28]; Halbach [19] gives an overview).
However, Kripke’s theory does not lend itself very easily to a straightforward
axiomatization. As the models obtained by Kripke are partial, a formal system
describing Kripke’s models would have to be formulated not in classical logic but in
a formal system of partial logic. Although this is feasible (see, e.g., Kremer [23]),
such systems have not become very popular; they were often rejected as unpracti-
cal and unsuitable for the rôle that had been assigned to them in larger research
programs.
Kripke had already hinted at a uniform method for obtaining a classical (non-
partial) model from any partial model.2 These classical models lend themselves
to an axiomatization in classical logic. The method for obtaining classical models
from partial models is known as ‘closing off’. In the simplest case, in order to ‘close
off’ a partial model, one adds all sentences lacking a truth value in the partial model
to the set of sentences that are false in the model. Whereas the interpretation of the
truth predicate in the partial model partitions the set of sentences into three sets
(true, false and undefined), the new ‘closed off’ model is purely classical because it
joins the sentences false or undefined in the partial model into one set and therefore
partitions the set of all sentences merely in two sets.
Relying on thismethodof turning partialmodels ofKripke’s account into classical
models, Feferman [12] devised an elegant and very natural looking formalization
of Kripke’s fixed point models in classical logic.3 The resulting system is commonly
known as KF. Natural models for KF are the ‘closed off’ versions of Kripke’s fixed
point models. Thus the axioms of KF—at least without axiom CONS below—
describe a positive inductive definition.

KF and its variants were closely scrutinized by various logicians (e.g., Fefer-
man [12], Cantini [5, 7]) and defended as philosophically significant accounts of

1Kripke started from acceptable structures in the sense of Moschovakis [32]. See Kripke [24] and
McGee [28] for more on Kripke’s theory of truth. We assume that the reader is somewhat familiar with
Kripke’s theory.
2See Kripke [24, p. 80-81] (The page numbers refer to the reprinted version of Kripke’s pa-

per.) Kripke denied explicitly that he is departing from classical logic even with his partial models.
See footnote 18 of Kripke [24]. Especially this last point has puzzled scores of commentators. See, e.g.,
Visser [43, p. 640–642].
3Feferman gives Kripke’s minimal fixed point model as the main example of a model for his theory.

His theory, however, does not feature an axiom excluding any other fixed point. Cantini pointed out that
Feferman’s system can be interpreted as formalizing validity in all fixed points of the Kleene valuation
scheme. See Cantini [5, p. 111, Proposition 5.8(i)].
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truth (e.g., McGee [28, 29], and Soames [40]). But adopting classical logic for
axiomatizations of Kripke’s theory yields certain awkward and unintended conse-
quences. We shall look at the drawbacks of the use of classical logic in axiomatizing
Kripke’s theory below in some detail.
Reinhardt has askedwhether there is an instrumentalist justification of KF. In par-
ticular, he has posed the problem whether KF can be viewed as a tool for producing
theorems that would also be derivable in a direct formalization of Kripke’s original
theory in partial logic, if one focuses on the sentences that are provably true in KF.
We shall answer Reinhardt’s Problem negatively.
This result is still compatible with a much weaker claim concerning the innocence
of themove to classical logic: it does not rule out thatKF and a direct axiomatization
of truth in partial logic share many properties. In particular, one might conjecture
that both serve a similar rôle in foundational issues. Even if KF and an axiomati-
zation in partial logic differ in their truth-theoretic content, both may still yield the
same non-semantic consequences; more precisely, they might yield the same conse-
quences or at least consequences of the sameproof-theoretic strength, if all sentences
containing the truth predicate are neglected. We shall demonstrate that also this
hope has to be given up. To this end we shall present an axiomatization PKF of
Kripke’s theory of truth in partial logic. We claim that any natural axiomatizations
of Kripke’s theory in Strong Kleene logic will be equivalent to our system PKF.
We determine the proof-theoretic strength of PKF as that of the system RA<ùù of
ramified analysis up to any ordinal level smaller than ùù . In contrast, KF is much
stronger; Feferman [12] has established thatKF is equivalent to the system RA<å0 of
ramified analysis up to å0. This result shows that axiomatizingKripke’s theory in the
most naturalway leads to a system that is much weaker than the classical systemKF.
In particular, the arithmetical content of both theories is far from identical.
From this we conclude that there is no justification of KF that relies on a reduction
of KF to a natural axiomatization of Kripke’s theory in partial logic. This does not
preclude the existence of a justification of KF by other means, but seen as a natural
theory of truth PKF seems to be preferable over KF.
Our proof-theoretic analysis also sheds some light on the classification of axiom-
atizations of Kripke’s theory with respect to other theories of truth. For instance,
autonomously iterated theories of classical truth are much stronger than axiomati-
zations of Kripke’s theory.

Note on notation. We assume that ¬, ∧, ∨, ∀ and ∃ are our only primitive
logical symbols, while all other logical symbols are defined. = is the only predicate
symbol of the language LPA of arithmetic. Adding the unary symbol T for the
truth predicate toLPA yields the languageLT. In contrast to several other authors,
we do not employ an additional primitive predicate for falsity of a sentence, which
can be defined in our framework as the truth of the negation of the respective
sentence.
If ϕ is a formula, pϕq will be used for the numeral of the Gödel number of ϕ. If
ϕ(x) contains the free variable x, pϕ(ẋ)q stands for the result of formally replacing
the variable x in ϕ(x) by the numeral with value x.
The notation here differs only slightly from Feferman [12]. Var(x), ClTerm(x),
Sent(x) andFor(x, v) are natural representations of the sets of codes of all variables,
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closed terms, all sentences of LT, and formulas with only the variable v free.
The function val(x) takes (codes of) terms to what they denote; the value of
a number that is not the code of a closed term is never the code of an expression
of LT. ¬. represents the function that sends the code of a formula to the code of
its negation. Thus PA will prove ¬. pϕq = p¬ϕq for all formulas ofLT. Moreover,
we assume that PA ⊢ ∀x(Sent(¬. x)→ Sent(x)). Analogous remarks apply to other
underdotted symbols like ∧. , ∨. or T. . In particular, ∀. represents the function that
takes the code of a variable and of a formula and yields (the code of) the universal
quantification of the formula by the variable. x(ẏ/v) is a function expression for
a function that takes the codes of a formula, a number and a variable and gives the
code of the formula where the numeral of y is substituted for the variable in the
formula. Thus, for instance, we can express using this function expression as inKF8
below that a universally quantified sentence ∀xϕ(x) ofLT is true if and only if all
of its instances ϕ(n) are true. Here n is the numeral of n.
To simplify the presentation, we may assume that the language of Peano arith-
metic contains function symbols for all these primitive recursive operations and the
operations used for defining them. Of course, all required defining equations must
be added as axioms to Peano arithmetic.

In order to fix the notation, we state some features of Kripke’s construction.
N is the standard model arithmetic. (N, S1, S2) is the partial expansion of N to
the language LT, where T is assigned the extension S1 and the antiextension S2.
We always assume S1 ∪ S2 ⊆ ù. The model (N, S1, S2) is partial in the sense that
there might be sentences not in S1 ∪ S2.
As mentioned above, we use the Strong Kleene scheme for the evaluation of
complex sentences in a partial model (see also, for instance, McGee [28]). This is
inductively described as follows:

(i) (N, S1, S2) |=SK ϕ ifϕ is a true atomic or negated atomic arithmetical sentence,
(ii) (N, S1, S2) |=SK T t iff t is a closed term with value n ∈ S1,
(iii) (N, S1, S2) |=SK ¬T t iff t is a closed term with value n ∈ S2,
(iv) (N, S1, S2) |=SK ¬¬ϕ iff (N, S1, S2) |=SK ϕ,
(v) (N, S1, S2) |=SK ϕ ∧ø iff (N, S1, S2) |=SK ϕ and (N, S1, S2) |=SK ø,
(vi) (N, S1, S2) |=SK ¬(ϕ ∧ ø) iff (N, S1, S2) |=SK ¬ϕ or (N, S1, S2) |=SK ¬ø,
(vii) (N, S1, S2) |=SK ϕ ∨ø iff (N, S1, S2) |=SK ϕ or (N, S1, S2) |=SK ø,
(viii) (N, S1, S2) |=SK ¬(ϕ ∨ ø) iff (N, S1, S2) |=SK ¬ϕ and (N, S1, S2) |=SK ¬ø,
(ix) (N, S1, S2) |=SK ∀xϕ(x) iff for all n ∈ ù (N, S1, S2) |=SK ϕ(n),
(x) (N, S1, S2) |=SK ¬∀xϕ(x) iff for at least one n ∈ ù (N, S1, S2) |=SK ¬ϕ(n),
(xi) (N, S1, S2) |=SK ∃xϕ(x) iff for at least one n ∈ ù (N, S1, S2) |=SK ϕ(n),
(xii) (N, S1, S2) |=SK ¬∃xϕ(x) iff for all n ∈ ù (N, S1, S2) |=SK ¬ϕ(n).

In particular, we have the following equivalences for all numerals n of the respective
numbers n:

(N, S1, S2) |=SK T n iff n ∈ S1,

(N, S1, S2) |=SK ¬T n iff n ∈ S2.

If n 6∈ S1 ∪ S2, then neither T n nor ¬T n holds in the partial model (N, S1, S2).
In this case n is said to lack a truth value.
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The operator Φ (the Kripke jump) is defined on pairs of sets (S1, S2) of numbers
as follows, if Sent is the set of all numbers that are not sentences ofLT: Φ(S1, S2) =

({ϕ ∈ LT : (N, S1, S2) |=SK ϕ}, Sent ∪ {ϕ ∈LT : (N, S1, S2) |=SK ¬ϕ}).

That is, applied to a pair (S1, S2), Φ yields a pair of sets of sentences with the set of
all sentences valid in (S1, S2) under the Strong Kleene scheme as first component;
the second component is the union of the set of all non-sentences and the set of all
sentences false in (S1, S2).
Amodel (N, S1, S2) is a fixed pointmodel iff Φ(S1, S2) = (S1, S2). Kripke showed
that there are many different fixed point models.
Fixed points of the operator Φ are characterized by the following attractive
property of the interpretation of the truth predicate:

Proposition 1 (Kripke). (N, S1, S2) is a fixed point model if and only if the fol-
lowing holds:

(N, S1, S2) |=SK Tpϕq iff (N, S1, S2) |=SK ϕ.

As has been mentioned above, by ‘closing off’ one can convert a partial model
(N, S1, S2) into the classical model (N, S1). The latter is simply the expansion of
the standardmodelN to the languageLT where T is assigned the interpretation S1.
In this model (N, S1), ¬T n holds for all n 6∈ S1 whether they are in S2 or not.
Thus ‘closing off’ is the generation of a classical model by merging the set of false
sentences with the set of all ‘gappy’ sentences.
These ‘closed off’ models are the intended models for the Kripke-Feferman the-
ory KF. KF is formulated in classical logic. KF comprises all axioms of Peano
arithmetic PA including all induction axioms in the language with the truth predi-
cate. The truth-theoretic axioms of KF are given in the following list:

(KF1) ∀x, y
(

ClTerm(x) ∧ ClTerm(y)→ (T x=. y ↔ val(x) = val(y))
)

,

(KF2) ∀x, y
(

ClTerm(x) ∧ ClTerm(y)→ (T ¬. x=. y ↔ val(x) 6= val(y))
)

,

(KF3) ∀x
(

Sent(x)→ (T ¬.¬. x ↔ T x)
)

,

(KF4) ∀x∀y
(

Sent(x) ∧ Sent(y)→ (T(x∧. y)↔ T x ∧ T y)
)

,

(KF5) ∀x∀y
(

Sent(x) ∧ Sent(y)→ (T ¬. (x∧. y)↔ T ¬. x ∨ T ¬. y)
)

,

(KF6) ∀x∀y
(

Sent(x) ∧ Sent(y)→ (T(x∨. y)↔ T x ∨ T y)
)

,

(KF7) ∀x∀y
(

Sent(x) ∧ Sent(y)→ (T ¬. (x ∨ y)↔ T ¬. x ∧ T ¬. y)
)

,

(KF8) ∀v∀x
(

Var(v) ∧ For(x, v)→ (T ∀.vx ↔ ∀y T x(ẏ/v))
)

,

(KF9) ∀v∀x
(

Var(v) ∧ For(x, v)→ (T ¬. ∀.vx ↔ ∃y T ¬. x(ẏ/v))
)

,

(KF10) ∀v∀x
(

Var(v) ∧ For(x, v)→ (T ∃.vx ↔ ∃y T x(ẏ/v))
)

,

(KF11) ∀v∀x
(

Var(v) ∧ For(x, v)→ (T ¬. ∃.vx ↔ ∀y T ¬. x(ẏ/v))
)

,

(KF12) ∀x
(

ClTerm(x)→ (T T. x ↔ T val(x))
)

,

(KF13) ∀x
(

ClTerm(x)→ (T ¬.T. x ↔ (T ¬. val(x) ∨ ¬Sent(val(x))))
)

,4

4Our version varies from other formulations of KF in axiom KF13, which says that ¬T t (t a closed
term) is true if and only if one of the two following conditions is satisfied:
(i) The negation of the value of t is true. (If this condition is satisfied, the value of t is a sentence of
LT according to our assumption PA ⊢ ∀x(Sent(¬. x)→ Sent(x)) and KF14).

(ii) The value of t is not a sentence ofLT.
In other versions the second condition is suppressed. Although our axiom KF13 makes the axioms
slightly less elegant, it avoids problems in other places. However, not much depends on the exact
formulation of this axiom and we could still prove our mains results if condition (ii) were dropped.
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(KF14) ∀x
(

T x → Sent(x)
)

,

(Cons) ∀x
(

Sent(x)→ ¬(T x ∧ T ¬. x)
)

.

There are several alternative versions of KF. Feferman’s [12] own formulation ap-
peared in print after other variants of KF had been published. His version lacks
CONS; Feferman uses the label Ref(PA) for his system. As far as we know, Rein-
hardt [36] was the first to call the system KF. Cantini [5] uses the designation for
a system similar to our KF but with restricted induction.
The quantifier axioms KF8–KF11 state that the truth of a quantified sentence
depends on the truth or falsity of its numerical instances; as has been already
explained, the antecedent Var(v) ∧ For(x, v) expresses that v is a variable and x is
a formula of LT with at most v free. Thus according to axiom KF8 a universally
quantified sentence ∀zϕ is true if and only if for all numeralsϕ(n) is true. One might
want to strengthen this condition by requiring that for all closed terms t (not only
numerals) ϕ(t) is true. However, this would not strengthen the axiom, because one
can show in KF that the truth or falsity of a sentence ϕ does not depend on the
particular shape of the terms in ϕ but only on their value:

Lemma 2.

KF ⊢ ∀x∀y∀z∀v (ClTerm(x) ∧ ClTerm(y) ∧ For(z, v) ∧ val(x) = val(y)

→ (T z(x/v)↔ T z(y/v))).

Proof. The lemma is proved by an induction on the complexity of the formula
codedby z inKF. The required instance of the induction scheme contains an instance
of T. ⊣

Next we state two observations concerning the soundness of KF with respect to
its intended semantics. In the first place we note that KF is sound with respect to
‘closed off’ models:

Proposition 3 (Feferman, Reinhardt). If KF ⊢ ϕ, then ϕ holds in all (classical )
closed off fixed point models.

Therefore KF is sound with respect to Kripke’s original theory in the following
sense:

Proposition 4. If KF ⊢ Tpϕq, then ϕ holds in all fixed point models.

The axiomatization of a partial notion of truth in classical logic (or the ‘closing-
off’ of Kripke’s partial models) yields several oddities, which make KF in itself
hardly acceptable as a natural and intuitively plausible theory of truth. In particular,
KF proves that some of its own theorems are not true. KF, so to speak, disproves
its own soundness. An example of such a theorem is the liar sentence ë:

Remark 5. KF proves ë and ¬Tpëq.

Proof. The liar sentence is of the form ¬T l where l is a closed term with
PA ⊢ l = p¬T lq.

KF ⊢ T l → Tp¬T lq

→ T ¬. l KF13 and KF14

From CONS we also have T l → ¬T ¬. l . Therefore KF proves ¬T l , that is, KF
proves the liar sentence ë. Since PA ⊢ l = p¬T lq and ë is ¬T l , KF proves also
¬Tpëq. ⊣
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CONS is essential in the proof that KF proves the liar sentence ë. In §2 we shall
argue that dropping CONS is not an attractive option either.
Obviously, the provability of the liar sentence renders KF implausible as a natural
formalization of Kripke’s theory. The attractiveness of Kripke’s theory is due to the
fact that it does not make the liar sentence true or false.5

Apart from thesewell knowndrawbacks of KF, the proof of the liar sentence inKF
reveals that the notion of truth axiomatized by KF is not compositional. The truth
of the liar sentence in KF does not supervene on the truth of a subsentence or
somehow subordinated sentence; rather it is an artifact of the axiomatization of
Kripke’s theory of partial truth in classical logic.
Reinhardt [36, p. 242–243] pointed out that the status of the liar sentence in KF
and several other odd consequences of the use of classical logic make the system KF
thoroughly unsatisfactory as it stands, for it proves sentences (such as ë) which by
its own lights are untrue. Reinhardt argued that one ought to unwaveringly adhere
to the partial party line.6 On the partial account, ë can be neither asserted nor
denied, because it is neither true nor false. So an axiomatization of this account
should prove neither ë (or, equivalently, ¬Tpëq) nor ¬ë. In view of this, Reinhardt
considered the theory

IKF = {ϕ : KF ⊢ Tpϕq}.

This theory IKF is called the inner logic of KF. The unattractive aspect of KF
that was discussed above can be generalized by saying that the outer logic of KF
(i.e., KF itself) differs from its inner logic.7 Reinhardt thought that IKF captures
the thoroughly partial core of Kripke’s theory of truth, which is underlined by the
soundness result, that is, Proposition 4. At any rate, it is free of the problem that
was seen to haunt KF, for we see from KF12 that for all sentences ϕ the following
holds:

ϕ ∈ IKF iff Tpϕq ∈ IKF.

Moreover, if a sentenceϕ is an element of IKF, thenϕ is true in all fixed pointmodels.
Reinhardt saw KF as no more than an instrument, as a machine for generating the
honest-to-God theorems of IKF. He put this as follows:

“The case of Hilbert’s program is instructive. Hilbert viewed (or sought
to view) infinitary mathematics (at some level) as a purely formal ex-
ercise; the only contentful mathematics was finitary. Hilbert’s program
attempted to justify the use of non-contentual mathematics. [ . . . ]
Hilbert’s formalism about infinitary mathematics is analogous to the
proposal that is made in this paper about meaningful but nonsignifi-
cant sentences [i.e., sentences ϕ ∈ KF which do not belong to IKF].

5The fact that a theory leaves the liar sentence ë or its truth undecided does not imply that the theory
suggests that the liar sentence is not true. Most sensible theories of truth over PA do not prove that,
e.g., the consistency statement of ZF is true. This should not be taken as an evidence that the theory
somehow suggests that the consistency statement of ZF is not true. Therefore we reject Glanzberg’s
criticism [15, p. 115] of the partial approach.
6In recent years, this interpretation was defended by Soames [40, chapter 6] who at the time of writing

of his book must have been unaware of Reinhardt’s work.
7Several authors have emphasized that the identity of the inner and outer logic of a system of truth

is a desirable feature. One of them is Michael Sheard [39, p. 175-176].
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There is also an analogue of Hilbert’s program here: to justify the use
of nonsignificant sentences entirely within the framework of significant
sentences. I would like to suggest that the chances of success in this con-
text, where the interpreted or significant part of the language includes
such powerful notions as truth, are somewhat better than in Hilbert’s
context, where the contentual part was very restricted.” [36, p.225].

With this program in the background, Reinhardt [35, p. 239] posed:

Reinhardt’s Problem. Is there for every KF-theorem of the form Tpϕq,
a KF-proof

ϕ1, . . . , ϕn , ϕ

such that for each 1 ≤ i ≤ n, KF ⊢ Tpϕiq?

Reinhardt’s program and Hilbert’s program differ in some respects essentially:
The ideal and the real statements are syntactically distinguished in the latter case,
while the inner and theouter logic of KF are formulated in exactly the same language.
Also we do not want to go into the discussion whether a purely instrumentalist
understanding of Hilbert’s program is adequate. At any rate it is not hard to see,
however, that Reinhardt’s analogue of Hilbert’s program suffers the same fate as
that of Hilbert’s program.8 Theorem 8 shows that in many cases, the detour via
‘ideal’ statements to prove ‘real’ theorems of KF is essential. In order to prove
Theorem 8, we need two lemmata.

Lemma 6. KF ⊢ Tpϕq ↔ ϕ holds for all ϕ ∈LPA.

Proof. This standard lemma is proved by a meta-induction on the buildup of ϕ.
Actually we prove a ‘uniform’ version of the lemma, i.e., a version with free variables
in ϕ:

∀x1 . . . ∀xn(Tpø(ẋ1, . . . , ẋn)q ↔ ø(x1, . . . , xn)).(1)

The uniform version is useful for proving the induction step. Assume as induc-
tion hypothesis that (1) has been established. We aim to show the claim for
∀xnø(x1, . . . , xn) and proceed as follows:

KF ⊢ Tp∀xnø(ẋ1, . . . , ẋn−1, xn)q ↔ ∀xn Tpø(ẋ1, . . . , ẋn)q KF8

↔ ∀xnø(x1, . . . , xn) (1)

The cases of atomic arithmetical formulas and other complex formulas are trivial.
⊣

Lemma 7. Assume that ϕ1, . . . ϕn, ϕ is a KF-proof of ϕ ∈ LPA such that for each
1 ≤ i ≤ n, KF ⊢ Tpϕiq. Then PA ⊢ ϕ.

Proof. It is not hard to see that none of the axioms KF3–KF13 and CONS holds
in a partial fixed point model. For instance, the liar sentence ë lacks a truth value
in all fixed point models, as does Tpëq and Tp¬¬ëq. Therefore

Tp¬¬ëq ↔ Tpëq

does not receive a truth value in any fixed point model. Consequently KF3 does
not hold in any such model by the soundness of KF, that is, Proposition 4. Thus
ϕi (1 ≤ i ≤ n) is not KF3. Similarly all other axioms KF3–KF13 and CONS

8Although it took awhile for us to see this.
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cannot occur in the proof ϕ1, . . . , ϕn , ϕ. The only axioms in the proof that involve
the truth predicate may be KF1, KF2, certain induction axioms and KF14. Given
such a proof, replace any occurrence of T by Tr0 in this proof, where Tr0 is the
usual truth definition in LPA of atomic sentences of LPA. It is not hard to check
that KF1, KF2, all induction axioms and KF14 become theorems of PA. Thus the
resulting structure of sentences can easily be turned into a proof in PA by adding
some further subproofs. For instance, the translations of KF1 and KF2 are not
themselves axioms of PA but merely theorems of PA; thus their proofs must be
added in order to convert the translation of a KF-proof into a proof in PA. ⊣

This lemma solves Reinhardt’s Problem:

Theorem 8. For some ϕ ∈ IKF, there exists no proofϕ1, . . . , ϕn , ϕ of KF such that
for all i ≤ n, ϕi ∈ IKF.

Proof. KF is not conservative over PA. Feferman [12] has determined the proof-
theoretic strength of KF: it is arithmetically equivalent to the system RA<å0 of ram-
ified analysis up to å0. For our purposes a mundane example will do: KF ⊢ ConPA.
From Lemma 6 we obtain KF ⊢ TpConPAq. Thus ConPA ∈ IKF holds, but since
PA 6⊢ ConPA by Gödel’s theorem, there is no proof ϕ1, . . . , ϕn ,ConPA of KF such
that for all i ≤ n, ϕi ∈ IKF because of the preceding lemma. ⊣

In fact, this theoremcanbe strengthened somewhat.9 Let us define strictKF (SKF)
to be just like KF, except that the truth predicate is not allowed to appear in the
induction axioms. The inner logic of SKF (strict IKF) is denoted bySIKF. It is argued
in McGee [29] that SKF is an interesting theory, particularly for disquotationalists.

SKF is a conservative extension of PA (see Cantini [5]). Thus ConPA is not
a theorem of SKF. So if we want to prove Theorem 8 for SKF instead of for KF,
we cannot use ConPA. Nevertheless, another example is not hard to find:

Theorem 9. For some ϕ ∈ SIKF, there exists no proof ϕ1, . . . , ϕn , ϕ of SKF such
that for all i ≤ n, ϕi ∈ SIKF.

Proof. We can use the same interpretation as in Lemma 7. That is, we replace
in any such proof the truth predicate by Tr0. This shows also that Tp∀x(x = x)q is
not provable in KF by a proof consisting entirely of members of IKF, even though
∀x(x = x) is in SIKF. ⊣

Yet another theory that one might consider is the version of KF where the truth
axioms are formulated as axiom schemes. If for this theory one considers the
corresponding inner logic and poses Reinhardt’s question, the answer is not so
straightforward. In comparison to full KF, schematic KF is again quite weak: it is
not hard to see that schematic KF is arithmetically conservative over PA. The proof
of Theorem 9, however, carries over to schematic KF as well.

§2. The consistency axiom. The consistency axiom CONS enabled us to prove
the liar sentence in KF and, consequently, to prove in KF that the liar sentence
is not true. This asymmetry between inner and outer logic provided a strong
reason for rejecting KF itself as a plausible theory of truth and for concentrating
on the internal logic of KF. Now one might surmise that we too hastily rejected

9This strengthening was suggested to us by Vann McGee. McGee has proved Theorem 8 indepen-
dently (but he has not published it).
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classical logic and that dropping CONS from the list of axioms might already
dissolve our worries about KF. Moreover, CONS differs in several respects from
the axioms KF1–KF13 and has a peculiar status among the other truth-theoretic
axioms of KF. Consequently, some authors have formulated KF without CONS. In
particular McGee [29] advocatesKFwithout CONS as a theory of truth that should
be useful to the disquotationalist.
We shall first elaborate on the special status of CONS before arguing that it should
be retained and that dropping CONS does not make KFmore attractive as a theory
of truth.
One of the special features of CONS is that does not form part of a positive induc-
tive ‘definition’ of truth (or rather the axiomatic counterpart of such a definition)
like the other axioms KF1–KF13. For the following discussion and future reference
we provide alternative formulations of CONS. In particular, we show that CONS is
equivalent to ‘uniform T-reflection’, that is, to the scheme ∀x

(

Tpϕ(ẋ)q → ϕ(x)
)

:

Lemma 10. Over KF–CONS, that is, over KF without axiom CONS, the following
are equivalent:

(i) CONS, that is, ∀x
(

Sent(x)→ ¬(T x ∧ T ¬. x)
)

,

(ii) ∀x
(

Sent(x)→ (T ¬. x → ¬T x)
)

,

(iii) the schema ∀~x(Tpϕ(~̇x)q → ϕ(~x)) for all formulas ϕ(~x) ofLT; ~x stands here
for a string x1, . . . , xn of variables,

(iv) the schema ∀x
(

Tpϕ(ẋ)q → ϕ(x)
)

for all formulas ϕ(x) of LT; this schema
allows only one free variable in the respective instantiating formula,

(v) ∀x(Tp¬T ẋq → ¬T x).

Of course, finite subsets of the set of all instances of (iii) and (iv), respectively,
will suffice for deriving (i), (ii) and (v) in KF–CONS.

Proof. (i) logically implies (ii).
It is known that KF yields the schema (iii). Cantini [7, p. 54, Theorem 8.8(i)]
proved this implication for a closely related system. The following argument for
(iii) from (ii) follows this proof.
The implication from (ii) to (iii) is proved simultaneously for ϕ(~x) and ¬ϕ(~x) by
meta-induction on the complexity of ϕ(~x).
If ϕ(~x) is an atomic arithmetical formula, KF1 and KF2 yield the claim. In the
case where ϕ is ø ∧ ÷ (we suppress free variables), the claim is established in the
following way:

KF-CONS+ (ii) ⊢ Tpø ∧ ÷q → Tpøq ∧ Tp÷q KF4

→ ø ∧ ÷ induction hypothesis

The case ¬ϕ is treated in the following way:

KF-CONS+ (ii) ⊢ Tp¬(ø ∧ ÷)q → Tp¬øq ∨ Tp¬÷q KF5

→ ¬ø ∧ ¬÷ induction hypothesis

If ϕ is of the form T t where t is a term (again we suppress free variables in t), the
claim follows directly by instantiating axiom KF14:

KF-CONS+ (ii) ⊢ TpT tq → T t
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Only in order to prove the claim for ¬T t, we need (ii) (or axiom CONS):

KF-CONS+ (ii) ⊢ Tp¬T tq → T ¬. t ∨ ¬Sent(t) KF13

→ ¬T t (ii) and KF14

All instances of the schema in (iv) are also instances of the schema in (iii).
Therefore (iv) follows trivially from (iii).
Similarly, (v) is an instance of the schema (iv).
In order to show that (i) can be derived from (v), one can reason as follows in KF
with CONS replaced by the schema (v).

∃x(Sent(x) ∧ T x ∧ T ¬. x)→ ∃x(T x ∧ T ¬.T. ẋ) KF13

→ ∃x(T x ∧ ¬T x) (v)

Since the succedent in the last line is a logical contradiction, the negation of
∃x(Sent(x) ∧ T x ∧ T ¬. x) follows, that is, CONS. ⊣

The axioms KF4, KF6, KF8 and KF10 claim that T commutes with conjunction,
disjunction, the universal and the existential quantifier. (ii) of the lemma, that is,

KF ⊢ ∀x
(

Sent(x)→ (T ¬. x → ¬T x)
)

shows that CONS yields one half of the equivalence that expresses thatT commutes
also with negation. Adding the full equivalence, that is, the claim that T commutes
with negation, would render KF inconsistent. Thus, while all axiomsKF1–KF13 are
in a sense compositional, CONS is not a compositional axiom (cf. Halbach [18] and
below).
Part (iii) and (iv) of the Lemma 10 show that CONS forces one direction of
the T-sentences: KF proves Tpϕq → ϕ for all sentences ϕ of LT. Therefore we
cannot consistently also have ϕ → Tpϕq in any consistent extension of KF. As
a side effect of this asymmetry KF proves the liar sentence, as has been noted in
Remark 5. Thus CONS forces the inner and the outer logic of KF to be different.
Even adding to KF a rule that implies that the inner logic contains the outer logic
renders KF inconsistent; such a rule of ‘necessitation’ would allow us to conclude
Tpϕq fromϕ. If this rule were added, CONSwould allow us to proveTpϕq → ϕ for
all sentences by Lemma 10(iii); and this reflection scheme is inconsistent with the
above mentioned rule of necessitation byMontague’s theorem (seeMontague [30]).
All this seems to support the view that CONS should be excluded from the list
of the KF-axioms. When CONS is abandoned, truth value gluts, that is, sentences
that are both true and false are admitted. CONS excludes truth value gluts by
saying that no sentence is true together with its negation. Dropping this postulate
no longer rules out such gluts. Several authors—most prominently Visser [43]—
have expanded Kripke’s theory to a four-valued logic, more precisely, they allow
the extension and antiextension of the truth predicate to overlap. Cantini [5] has
investigated KF without CONS and its relation with fixed point models with gluts
and gaps.
Although several annoying pathologies are removed fromKF by droppingCONS,
some desirable features of KF are also lost. Therefore we prefer to formulate KF
with axiom CONS.
One reason for keeping CONS is that the truth predicate no longer distributes
over the material conditional in the absence of CONS. That is, the use of CONS is
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essential in establishing

KF ⊢ Tpϕ → øq → (Tpϕq → Tpøq)

for any two sentences ϕ and ø of LT. Material implication is defined here in the
usual way: ϕ → ø stands for ¬ϕ ∨ø. Without CONS we could not even prove the
corresponding rule.
There is another, more important reason for keeping CONS: We do not think
that CONS is the real source of the above mentioned asymmetries; the real source
is rather the axiomatization of a partial notion of truth in classical logic. Dropping
CONS from the list of the KF-axioms does not render the inner and outer logic
identical; the inner and the outer logic will be still different. In particular, the
inner logic still will not comprise all classical tautologies. But KF does not only
fall short of proving the same theorems in its inner and outer logic: one cannot
even consistently postulate in the context of KF that the inner and outer logic are
identical. For in order to force the identity of inner and outer logic one might try
to add the following two rules for all sentences ϕ ∈ LT:

ϕ

Tpϕq
NEC

Tpϕq

ϕ
CONEC

Adding these two rules to KF yields an inconsistency even if CONS is dropped from
the list of axioms.

Lemma 11. KF without axiom CONS but with the two rules NEC and CONEC is
inconsistent.

Proof. If ë is the liar sentencewithPA ⊢ ë↔ ¬Tpëq, the following two sentences
are theorems of PA:

ë ∨ Tpëq,

¬ë ∨ ¬Tpëq.

By applying NEC to these two sentences and distributing the truth predicate over ∨
with KF6, respectively, we obtain the following sentences:

Tpëq ∨ TpTpëqq,(2)

Tp¬ëq ∨ Tp¬Tpëqq.(3)

KF12 can be used for simplifying (2) to Tpëq, while (3) yields Tp¬ëq with KF13.
From

Tpëq ∧ Tp¬ëq

we obtain using KF4 the sentence

Tpë ∧ ¬ëq.

An application of CONEC yields an inconsistency. ⊣

In sum, not only isKFwithoutCONS not closed underNEC andCONEC: it cannot
be consistently closed under these rules. So CONS is not the only source of the
mentioned asymmetries. CONS might highlight them, but the KF is essentially
asymmetric because it is formulated in classical logic, while its internal logic is
partial. So removing CONS from KF does not really solve the problems for KF that
Reinhardt and others have pointed out.
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§3. Reinhardt’s Challenge. Following Reinhardt, we shall focus on deductive
theories that are valid in partial fixed point models. KF is not sound with respect
to partial fixed point models; only Reinhardt’s instrumentalist interpretation could
render it useful for our purposes. Concentrating on IKF, the inner logic of KF,
initially sounds like a promising idea for obtaining a suitable deductive theory.
From the definition of IKF it follows that IKF is a recursively enumerable set of
sentences, so it is recursively axiomatizable by Craig’s method [9].
The acceptability of this theory, however, relies on the acceptability of the clas-
sical system KF. One could draw a dramatic parallel to reductive programs in the
foundations of mathematics again: One could take the set of arithmetical sentences
provable in Zermelo-Fraenkel set theory as one’s theory of arithmetic (using the
usual embedding of arithmetic in set theory); this could hardly be considered as
a satisfactory axiomatization of arithmetic, because such an axiomatization ought
to be direct and not dependent on a theory of sets.
In a similar way IKF is not a satisfactory axiomatization of Kripke’s theory
of truth, because it relies on a system that is not directly sound with respect to
Kripke’s theory. IKF in combination with Craig’s trick does not produce a list of
sentences that are even candidates for being basic principles of truth.10 Therefore
Reinhardt [35, p. 239] put it as a challenge to find a natural axiomatization of IKF
which is not obviously parasitic on the untrustworthy system KF.
In this paper, we provide a direct axiomatization of Kripke’s theory. This implies
that our system is formulated in partial logic, and not in classical logic as KF.11 The
central but necessarily tentative claim of the present paper is that this is the natural
way to axiomatize Kripke’s theory of truth with the Strong Kleene scheme over
Peano arithmetic. We take this as evidence that Reinhardt’s Challenge cannot be
met.
The uniqueness claim that our system is actually the only natural formalization
of Kripke’s theory is to be understood up to reaxiomatization. That is, any natural
axiomatization of Kripke’s theory in partial logic will yield the same theorems.
Actually for our purposes a weaker claim would suffice. We are interested in
a comparison of our system with the classical alternative KF and with commonly
considered subsystems of Second-Order arithmetic. Since we are interested in the
proof-theoretic strength of the natural axiomatization of Kripke’s theory, we only
need to claim uniqueness up to proof-theoretic equivalence. Which notion of proof-
theoretic equivalence is applicable will become evident below.
Of course we cannot mathematically prove our uniqueness claim, because the
notion of a natural axiomatization has not been mathematically captured. We hope
that our system will make our claim plausible, but we shall not tire the reader by
providing alternative approaches and subsequently proving that the systems yield
actually the same theorems.
By axiomatizing Kripke’s theory of truth in partial logic, we will ensure that, in
accordance with Reinhardt’s strictures, the inner logic and the outer logic of the
resulting system coincide.

10The artificiality of Craigian theories is pointed out in Hempel [21, section 9].
11Maudlin [27] too argues on philosophical grounds, similar to the ones that are advanced here, that

Kripke’s theory of truth ought to be expressed in partial (Strong Kleene) logic. But he does not carry
out this project in all formal details. In particular, he does not express the theory in an arithmetical
setting.
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In the following sections we describe our formal system for generating sentences
that hold in all fixed point models in Strong Kleene logic.

§4. Strong Kleene logic and arithmetic in the sequent calculus. We employ a se-
quent calculus for Strong Kleene logic. Our system is Scott’s [38] with slight mod-
ifications; Blamey [4] presents a very similar system. For an alternative approach
see Aoyama’s [1]. Later we shall add specific rules for arithmetic and truth.
The system can be rewritten as a natural deduction system. The formulas preced-
ing the sequent arrow⇒ are then treated as assumptions, and the sentences in the
succedent are disjunctively joined into one conclusion. The natural deduction ver-
sion may be more natural, because it can dispense with the sequent arrow⇒, which
is much different from the conditional→ of the object language, but for technical
purposes the sequent calculus is preferable. We will return to the comparison with
natural deduction below.

4.1. Logic. Sequents are conceived as given by a pair Γ and ∆ of finite sets of
formulas. The sequent is written as Γ ⇒ ∆. If Γ and ∆ are sets of sentences and
Γ ⇒ ∆ is derivable, our system PKF is sound in the sense that if all sentences in Γ
are true in a partial model, then at least one sentence in ∆ is true in that model, and
if all sentences in ∆ are false in a partial model, then at least one sentence in Γ is
false in the model. Truth and falsity in a partial model are determined by Strong
Kleene logic. The initial sequents and rules are also complete with respect to Strong
Kleene logic. We shall return to this issue at the end of this section.

4.1.1. Structural rules and initial sequents. All sequents of one of the following
forms are initial sequents:

Γ⇒ ∆, where Γ ∩ ∆ 6= Ø(IN)

Γ⇒ ∆

Γ, ϕ ⇒ ∆
(weakening 1)

Γ⇒ ∆

Γ⇒ ϕ,∆
(weakening 2)

Γ⇒ ϕ,∆ Γ, ϕ ⇒ ∆

Γ⇒ ∆
(cut)

4.1.2. Laws of truth values. Scott uses constants for the truth values. For our
purposes it is more convenient not to expand the language. ⊤ is the sentence
0=0, ⊥ the sentence 0 = 1 and ë is the liar sentence (that is a sentence that is
“gappy” under the intended interpretation). The following sequents are then initial
sequents:

⇒ ⊤(⊤-sequent)

⊥ ⇒(⊥-sequent)

ë⇔ ¬ë(ë-sequents)

In the last line and in the following the double arrow indicates that both, ë ⇒ ¬ë
and ¬ë⇒ ë are initial sequents. This convention will also be applied below.
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4.1.3. Laws of negation. If Γ is a set of sentences, ¬Γ designates the set of all
negations of sentences in Γ.

Γ⇒ ∆

¬∆⇒ ¬Γ
(¬-rule)

ϕ ⇔ ¬¬ϕ(¬¬-sequents)

ϕ,¬ϕ ⇒ ë(¬ë-sequents)

Not all ex falso quodlibet-sequents ϕ,¬ϕ ⇒ are sound, because if ϕ lacks a truth
value then all formulas in the consequent are false (there are none), but at the
same time none of the (two) formulas in the antecedent is false. The ¬ë-sequents
ϕ,¬ϕ ⇒ ë, in contrast, are sound: since ë lacks a truth value, not all formulas in
the consequent are false.
The usual rules for¬-introduction are not sound, that is, for instance, one cannot
bring a single formula from the antecedent to the succedent by affixing a negation
symbol to the formula. If ϕ is a sentence lacking a truth value, ϕ ⇒ ϕ is sound in
the sense explained above, but⇒ ϕ,¬ϕ is not sound.

4.1.4. Laws of ∨ and ∧. Scott employs here an additional connective ∨∧, which is
dispensable here.

ϕ,ø ⇒ ϕ ∧ ø(∧1)

ϕ ∧ø ⇒ ϕ(∧2)

ϕ ∧ø ⇒ ø(∧3)

ϕ ∨ø ⇒ ϕ,ø(∨1)

ϕ ⇒ ϕ ∨ ø(∨2)

ø ⇒ ϕ ∨ ø(∨3)

4.1.5. Laws of quantifiers. For the quantifiers we have the following initial se-
quents and rules:

∀xϕ ⇒ ϕ(t/x)(∀1)

ϕ(t/x)⇒ ∃xϕ(∃1)

Γ⇒ ϕ,∆

Γ⇒ ∀xϕ,∆
x not free in lower sequent(∀2)

∆, ϕ ⇒ Γ

∆,∃xϕ ⇒ Γ
x not free in lower sequent(∃2)

4.1.6. Laws of Identity. We also add initial sequents for identity for arbitrary
terms s and t:

⇒ t = t(=1)

s = t, ϕ(s/x)⇒ ϕ(t/x)(=2)

The transitivity and symmetry follow from these initial sequents in the usual way.
The following theorem states that these initial sequents and rules are sound with
respect to the intended notion of logical consequence in Strong Kleene logic. It is
proved by a routine inductive argument.
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Theorem 12. If Γ⇒ ∆ is derivable, then the following holds for all partial models
M and variable assignments b:

(i) If M |=SK ø[b] for all formulas ø ∈ Γ, then there is a formula ϕ ∈ ∆ with
M |= ϕ[b]

(ii) If M |=SK ¬ø[b] for all formulas ø ∈ ∆, then there is a formula ϕ ∈ Γ with
M |= ¬ϕ[b]

A partial model is a model of LT where all predicate symbols (= and T in the
present case) are allowed to be partially interpreted. It should be clear how to
define validity in such models according to the Strong Kleene scheme (see also
the references below). Completeness proofs exist for several systems designed for
various concepts of logical consequence in Strong Kleene logic; see Aoyama [1],
Blamey [4], Cleave [8], Kearns [22] and Wang [44]. We do not give a completeness
proof for our system here, but Blamey’s [4] proof can easily be adapted. Thus the
set of rules and initial sequents listed so far suffices for proving all correct sequents
of Strong Kleene logic. Of course, this has motivated the above system.

4.2. Arithmetic. Since PKF will contain PA we add the additional sequents⇒ ϕ
where ϕ is an axiom of PA except for the induction axioms.
We could also allow all induction axioms ofLPA as initial sequents. But we also
want to extend induction to the language with the truth predicate. Therefore we
postulate the stronger:

Γ, ϕ(x)⇒ ϕ(x + 1),∆

Γ, ϕ(0),⇒ ϕ(t),∆
(IND)

t is here an arbitrary term, ϕ any formula ofLT. x must not occur freely in ϕ(0),
Γ or ∆, but the term t is allowed to contain x.

4.3. Truth. There have been various attempts to set up a formal system for
Kripke’s fixed point semantics. Michael Kremer [23] has presented a system in the
sequent calculus with aims that differ from ours. He adopts a derivability relation
of the kind mentioned above. But his theory does not comprise arithmetic or
a comparable system for expressing syntactical facts.
We now add additional initial sequents corresponding to the axioms of KF. For
an explanation of the notation the reader is invited to consult the note preceding
the list of KF axioms in Section 1.

PKF1 (i) ClTerm(x),ClTerm(y), val(x) = val(y)⇒ T x=. y,
(ii) ClTerm(x),ClTerm(y),T x=. y ⇒ val(x) = val(y),

PKF2 (i) Sent(x),Sent(y),T x ∧ T y ⇒ T(x∧. y),
(ii) Sent(x),Sent(y),T(x∧. y)⇒ T x ∧ T y,

PKF3 (i) Sent(x),Sent(y),T x ∨ T y ⇒ T(x∨. y),
(ii) Sent(x),Sent(y),T(x∨. y)⇒ T x ∨ T y,

PKF4 (i) Var(v),For(x, v),∀y T x(ẏ/v))⇒ T ∀. vx,
(ii) Var(v),For(x, v),T ∀.vx ⇒ ∀y T x(ẏ/v)),

PKF5 (i) Var(v),For(x, v),∃y T x(ẏ/v))⇒ T ∃. vx,
(ii) Var(v),For(x, v),T ∃.vx ⇒ ∃y T x(ẏ/v)),

PKF6 (i) ClTerm(x),T val(x)⇒ T T. x,
(ii) ClTerm(x),T T. x ⇒ T val(x),
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PKF7 (i) Sent(x),¬T x ⇒ T ¬. x,
(ii) Sent(x),T ¬. x ⇒ ¬T x,

PKF8 T x ⇒ Sent(x).

This concludes the description of PKF.

§5. Some basic facts on PKF. At first we shall prove that two rules of inference
concerning ∨ are admissible in PKF, because we will need them in later proofs.

Lemma 13. The following rule is admissible in PKF:

ϕ ⇒ ÷ ø ⇒ ÷
ϕ ∨ ø ⇒ ÷

Proof.

(∨1) ϕ ∨ ø ⇒ ϕ,ø ϕ ⇒ ÷
cut

ϕ ∨ø ⇒ ÷,ø ø ⇒ ÷
cut

ϕ ∨ø ⇒ ÷

⊣

Lemma 14. The following rule is admissible in PKF:

⇒ ϕ,ø
⇒ ϕ ∨ ø

Proof.

⇒ ϕ,ø ϕ ⇒ ϕ ∨ ø (∨2)

⇒ ϕ ∨ ø,ø ø ⇒ ϕ ∨ ø (∨3)

⇒ ϕ ∨ ø

⊣

PKF should behave classically on the arithmetical formulas. In PKF we have all
rules and initial sequents of classical logic except for the rules that allow us to shift
a formula from one side of the sequent arrow to the other side by affixing a negation
symbol, while all other formulas are left in their place. These rules of the classical
sequent calculus are also admissible for a formulaϕ inPKF, if PKF proves⇒ ϕ,¬ϕ.

Lemma 15. If⇒ ϕ,¬ϕ is derivable in PKF, then the following two rules are derived
rules of PKF:

Γ, ϕ ⇒ ∆

Γ⇒ ¬ϕ,∆

Γ⇒ ϕ,∆

Γ,¬ϕ ⇒ ∆

Proof. The first rule can be established by an application of the cut rule:

⇒ ϕ,¬ϕ Γ, ϕ ⇒ ∆

Γ⇒ ¬ϕ,∆

For the second rule we employ the ¬¬-sequent and the ¬-rule:

Γ⇒ ϕ,∆
ϕ ⇒ ¬¬ϕ

⇒ ϕ,¬ϕ
¬-rule¬ϕ,¬¬ϕ ⇒
cut¬ϕ,ϕ ⇒

cut
Γ,¬ϕ ⇒ ∆

⊣



694 VOLKER HALBACH AND LEON HORSTEN

Thus we need only prove ⇒ ϕ,¬ϕ in order to show that arithmetical formulas
behave classically in PKF

Lemma 16. ⇒ ϕ,¬ϕ is derivable in PKF for arithmetical ϕ.

Proof. The claim is established by an induction on the complexity of ϕ. First
we prove the claim for atomic formulas (cf. Scott [38, p. 19]), that is, for formulas
s = t, where s and t are terms. The leftmost line in the following proof is an initial
sequent by =2; the rightmost is a law of negation.

s = t,¬s = t ⇒ ¬t = t
⇒ t = t
¬t = t ⇒

s = t,¬s = t ⇒
¬-rule

⇒ ¬s = t,¬¬s = t ¬¬s = t ⇒ s = t
cut

⇒ s = t,¬s = t

Thus the claim is proved for all atomic ϕ ∈ LPA. As an example we show the claim
for conjunctions. Thus⇒ ϕ,¬ϕ and⇒ ø,¬ø hold by induction hypothesis. The
first line is (∧2).

⇒ ϕ,¬ϕ

ϕ ∧ø ⇒ ϕ

¬ϕ ⇒ ¬(ϕ ∧ ø)

⇒ ϕ,¬(ϕ ∧ ø)

Similarly, we derive⇒ ¬(ϕ ∧ø), ø and proceed as follows:

⇒ ¬(ϕ ∧ ø), ø

⇒ ϕ,¬(ϕ ∧ ø) ϕ,ø ⇒ ϕ ∧ø (∧1)

ø ⇒ ϕ ∧ ø,¬(ϕ ∧ ø)

⇒ ϕ ∧ ø,¬(ϕ ∧ø)

We skip the other cases. ⊣

For future reference, we state following obvious consequence of Lemmata 16
and 15:

Corollary 17. If ϕ is arithmetical, then the following two rules are derived rules
of PKF:

Γ, ϕ ⇒ ∆

Γ⇒ ¬ϕ,∆

Γ⇒ ϕ,∆

Γ,¬ϕ ⇒ ∆

Since these two rules are the only rules that are missing from classical logic, we
obtain the following corollary:

Corollary 18. Classical Peano arithmetic PA restricted to the language LPA is
a subsystem of PKF.

Proof. This follows from Corollary 17. In the presence of classical logic the
unrestricted induction rule IND yields all induction axioms. ⊣

Each axiom of KF has been split up into two initial sequents of PKF, because
the sequent arrow⇒ has only one direction. Apart from this, however, the axioms
for PKF are easier to formulate than the axioms for KF because separate rules for
negated conjunctions, disjunctions etc. are not required. The sequents correspond-
ing to the axioms of KF for negated connectives and quantifiers can be proved
in PKF.
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Lemma 19. The following sequents are derivable in PKF.

1. (i) ClTerm(x),ClTerm(y), val(x) 6= val(y)⇒ T ¬. x=. y,
(ii) ClTerm(x),ClTerm(y),T ¬. x=. y ⇒ val(x) 6= val(y),

2. (i) Sent(x),T x ⇒ T ¬.¬. x,
(ii) Sent(x),T ¬.¬. x ⇒ T x,

3. (i) Sent(x),Sent(y),T ¬. x ∨ T ¬. y ⇒ T ¬. (x∧. y),
(ii) Sent(x),Sent(y),T ¬. (x∧. y)⇒ T ¬. x ∨ T ¬. y,

4. (i) Sent(x),Sent(y),T ¬. x ∧ T ¬. y ⇒ T ¬. (x∨. y),
(ii) Sent(x),Sent(y),T ¬. (x∨. y)⇒ T ¬. x ∧ T ¬. y,

5. (i) Var(v),For(x, v),∃y T ¬. x(ẏ/v))⇒ T ¬. ∀.vx,
(ii) Var(v),For(x, v),T ¬. ∀.vx ⇒ ∃y T ¬. x(ẏ/v)),

6. (i) Var(v),For(x, v),∀y T ¬. x(ẏ/v))⇒ T ¬. ∃.vx,
(ii) Var(v),For(x, v),T ¬. ∃.vx ⇒ ∀y T ¬. x(ẏ/v)),

7. (i) ClTerm(x),T ¬. val(x)⇒ T ¬.T. x,
(ii) ClTerm(x),T ¬.T. x ⇒ T ¬. val(x).

PKF7(ii) corresponds to CONS if CONS is formulated as ∀x(Tp¬T ẋq → ¬T x)
(see Lemma 10(v)). In PKF we have, in addition, the converse ‘completeness’
direction. This makes PKF a more symmetrical system than KF. PKF7 plays the
crucial rôle in the proof of Lemma 19, which we skip.
In the following we write PKF ⊢ ϕ if and only if the sequent ⇒ ϕ is derivable
in PKF.

Lemma 20 (soundness). If PKF ⊢ ϕ, then ϕ holds in all fixed point models.

Outline of Proof. In order to prove the lemma one shows by induction on the
length of derivations the following stronger claim:

If Γ ⇒ ∆ is derivable, then the two following conditions obtain for all
fixed point modelsM and assignments b:
• If all formulas in Γ are true in M at b, then at least one formula in
∆ is true inM at b.

• If all formulas in ∆ are false inM at b, then at least one formula in
∆ is false inM at b.

We do not go through the numerous initial sequents and the rules. The proof will
later be formalized in a subtheory of KF in Theorem 27. ⊣

By the previous lemma, in PKF the T-sentences are not derivable for arbitrary
formulas ofLT. For arithmetical sentences, however, they are provable.

Lemma 21. PKF ⊢ ∀~x(Tpϕ(~̇x)q ↔ ϕ(~x)) for all arithmetical formulas ϕ(~x) with
the indicated free variables.

This can be proved by a meta-induction on the buildup of ϕ(~x) using the initial
sequents of PKF.
For arbitrary sentences we do not get the T-sentences, but only a corresponding
rule:

Theorem 22. For all sentences ϕ ∈ LT: ϕ is provable in PKF if and only if Tpϕq

is provable in PKF.

Proof. The result that is actually shown is somewhat stronger. One shows that
Γ⇒ ϕ(~x),∆ is provable if and only if Γ⇒ Tpϕ(~̇x)q,∆ is provable in PKF. ~x is the
string of variables free in ϕ.
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The proof proceeds then on the buildup of ϕ and its negation. We suppress the
inactive formulas. Let s(~x) and t(~y) be terms with the indicated free variables.
Then the claim is established for the atomic case in the following way:

⇒ s(~x) = t(~x)
arithmetic

⇒ valps(~̇x)q = valpt(~̇x)q
PKF1

⇒ Tps(~̇x) = t(~̇x)q

We have been somewhat sloppy: The first step involves a more lengthy reasoning
in PA. The second step is also abbreviated and needs some additional steps involv-
ing identity axioms. We allow ourselves such abbreviations also in the following.
The derivation also can be inverted, and it obviously works for negated identity
statements as well.
If ϕ is an atomic formula of the form T t or a negation of such a formula, PKF6
can be used. For the negated formulas of the formT t Lemma 19.7 can be employed.
If ϕ is a doubly negated formula Lemma 19.2 is employed. Next we consider as
an example the case that ϕ is a negated conjunction ¬(ø(~x) ∧ ÷(~y)):

ø(~x) ∧ ÷(~y)⇒ ¬¬(ø(~x) ∧ ÷(~y))

⇒ ¬(ø(~x) ∧ ÷(~y))
¬-rule

¬¬(ø(~x) ∧ ÷(~y))⇒

ø(~x) ∧ ÷(~y)⇒
∧1

ø(~x), ÷(~y)⇒
¬-rule

⇒ ¬ø(~x),¬÷(~y)
induction hypothesis

⇒ Tp¬ø(~̇x)q,Tp¬÷(~̇y)q
Lemma 14

⇒ Tp¬ø(~̇x)q ∨ Tp¬÷(~̇y)q

Then Lemma 19.3(i) plus some additional arithmetical steps yield the desired con-
clusion

⇒ Tp¬(ø(~̇x) ∧ ÷(~̇y))q.

Again, it is not hard to reverse the proof and to derive the sequent⇒ ¬(ø(~x)∧÷(~y))
from this last sequent.
The remaining cases with connectives and quantifiers are treated in a similar way.
For the quantifier cases we need in the induction hypothesis thatϕ may contain free
variables. ⊣

The closure under NEC and CONEC, that is, the identity of inner an outer logic
was of course the main point for considering the system PKF in the first place. For
Theorem 22 shows that the inner and outer logic of PKF—in contrast to KF—
coincide. In fact, the argument proves a stronger statement. It shows that all
extensions of PKF by additional axioms have the property of being closed under the
Necessitation and the Conecessitation rule.
In §2 we have considered the special rôle of the consistency axiom CONS in KF.
There we argued that CONS allows us to distribute the truth predicate over the con-
ditional. PKF also allows the truth predicate to be distributed over the conditional,
although this holds —like every law in partial logic— only as a rule of inference.

Lemma 23. PKF proves the sequents

Tpϕ → øq ⇔ Tpϕq → Tpøq
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for all sentences ϕ and ø of LT. Therefore if PKF ⊢ Tpϕ → øq obtains, we have
also PKF ⊢ Tpϕq → Tpøq.

Proof. ϕ → ø is defined as ¬ϕ ∨ ø. PKF3 yields

Tp¬ϕ ∨ øq ⇒ Tp¬ϕq ∨ Tpøq.

Applying PKF7 we obtain the following:

Tp¬ϕ ∨ øq ⇒ ¬Tpϕq ∨ Tpøq,

which yields one half the lemma. The other direction is proved by reading the above
proof from bottom to top. ⊣

Friedman and Sheard [14] have investigated the following analogue of the dis-
junction property and numerical existence property for intuitionistic systems:

Definition 24.

(DP) A theory S formulated in LT has the Disjunction Property (DP) if and
only if for all sentences ϕ,ø ∈ LT: if S ⊢ Tpϕq ∨ Tpøq, then S ⊢ Tpϕq

or S ⊢ Tpøq.
(NEP) A theory S formulated inLT has the Numerical Existence Property (NEP)

if and only if for all ϕ(x) ∈ LT: if S ⊢ ∃x Tpϕ(ẋ)q, then S ⊢ ϕ(n) for
some (standard) numeral n.

Like KF, PKF does not have either of these properties:

Proposition 25. PKF does not haveDP and NEP.

Proof. We only consider DP; the argument for NEP is similar. By Lemma 20,
PKF is consistent. ConPKF does not contain the truth predicate.

PKF ⊢ ConPKF ∨ ¬ConPKF,

PKF ⊢ TpConPKF ∨ ¬ConPKFq,

PKF ⊢ TpConPKFq ∨ Tp¬ConPKFq.

On the one hand, if PKF ⊢ TpConPKFqwe have by Theorem 22 also PKF ⊢ ConPKF,
which is impossible by Gödel’s second theorem. On the other hand,

PKF ⊢ Tp¬ConPKFq

implies PKF ⊢ ¬ConPKF contradicting the soundness of PKF. ⊣

§6. The proof-theoretic strength of PKF.

6.1. The upper bound. In this section we shall determine an upper bound for
the proof-theoretic strength of PKF. We employ a result by Cantini [5]. In his
paper Cantini studies KFwith restricted induction schemes. Cantini calls one of his
systems KF, but it differs from what we call KF. Therefore we introduce a new label
for this system and call it KFint. KFint is given by the axioms of “our” KF with the
induction scheme replaced by the following single axiom of “internal” induction
(whence the subscript int).

∀v∀x
(

Var(v) ∧ For(x, v) ∧ T x(0/v) ∧ ∀y(T x(ẏ/v)→

T x(ẏ + 1/v))→ ∀y T x(ẏ/v)
)

.
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We shall show thatPKF can be embedded inKFint in a sense to be specified below.
In combination with Cantini’s proof-theoretic analysis of KFint, this will yield an
upper bound for the proof-theoretic strength of PKF.
For the embedding we need the following lemma:12

Lemma 26. KFint ⊢ ∀v∀x
(

Var(v) ∧ For(x, v) ∧ ¬T x(0/v) ∧ ∀y(¬T x(ẏ/v) →

¬T x(ẏ + 1/v))→ ∀y¬T x(ẏ/v)
)

.

Proof. We apply Parsons’s [33] well known trick that is also used for showing
that Πn- and Σn-induction are equivalent. Subtraction (−) is defined in PA in the
usual way; if n < k the difference n − k is stipulated to be 0.
We reason in KFint as follows. For a reductio as absurdum assume

¬T x(0/v),(4)

∀y(¬T x(ẏ/v)→ ¬T x(ẏ + 1/v)),(5)

T x(ż/v).(6)

From the induction axiom of KFint we obtain:

∀v∀x
(

Var(v) ∧ For(x, v) ∧ T x(z − 0/v) ∧

∀y(T x(z − ẏ/v)→ T x(z − ẏ − 1/v))→ ∀y T x(z − ẏ/v)
)

.
(7)

(5) implies ∀y(T x(z − ẏ/v) → T x(z − ẏ − 1/v)). This, (6) and (7) then imply
∀y T x(z − ẏ/v) and thus T x(0/v) contradicting (4). ⊣

For finite non-empty sets Γ of sentences
VV

Γ is the conjunction of all elements
of Γ,

WW

Γ is their disjunction. If Γ is empty,
VV

Γ is 0 = 0 and
WW

Γ is ¬0 = 0.
We now formalize the soundness theorem 12 in KFint.

Theorem 27. If the sequent Γ⇒ ∆ is derivable in PKF, then

(i) KFint ⊢ ∀~x(Tp
VV

Γ(~̇x)q → Tp
WW

∆(~̇x)q),
(ii) KFint ⊢ ∀~x(Tp¬

WW

∆(~̇x)q → Tp¬
VV

Γ(~̇x)q).

The variables ~x are the free variables in Γ and ∆.

Proof. The proof proceeds by induction on the length of the proof in PKF.
We give only some examples.
In order to handle the ¬ë-sequents ϕ,¬ϕ ⇒ ë, we use CONS.13 In order to prove
part (i) of the claim, we proceed as follows suppressing free variables again:

KFint ⊢ ∀x
(

Sent(x)→ ¬(T x ∧ T ¬. x)
)

CONS

KFint ⊢ ¬Tpϕ ∧ ¬ϕq for all ϕ ∈LT

KFint ⊢ Tpϕ ∧ ¬ϕq → Tpëq for all ϕ ∈LT

For part (ii) of the theorem we need to show

Tp¬ëq → Tp¬(ϕ ∧ ¬ϕ)q.(8)

12This observation is due to Cantini (personal communication). We thank a referee for bringing to
our attention that the technique used for the proof is due to Charles Parsons.
13We thank a referee who spotted a gap in our original proof and made us aware of the need to use

CONS.
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It is easy to see from the proof of Lemma 10 that it also holds for KFint. So from
Lemma 10(iii) we have:

KFint ⊢ Tp¬ëq → ¬ë.(9)

Then we reason as follows:

KFint ⊢ Tp¬ëq → ¬Tpëq Lemma 10(ii)(10)

→ ë definition of ë

(9) and (10) imply KFint ⊢ ¬Tp¬ëq and therefore also (8).
As an example for a truth-theoretic initial sequent we choose PKF7(ii), that is,
Sent(x),¬T x ⇒ T ¬. x. We have to show two claims corresponding to parts (i)
and (ii) of the theorem respectively:

KFint ⊢ ∀x(TpSent(ẋ) ∧ ¬T ẋq → TpT ¬. ẋq),(11)

KFint ⊢ ∀x(Tp¬T ¬ẋq → Tp¬(Sent(ẋ) ∧ ¬T ẋ)q).(12)

To prove (11) we proceed as follows:

KFint ⊢ ∀x
(

ClTerm(x) ∧ Sent(val(x)) ∧ T ¬. val(x)→ T ¬. val(x)
)

logic

KFint ⊢ ∀x
(

ClTerm(x) ∧ Sent(val(x)) ∧ T ¬.T. x → T T. ¬. x
)

KF12, KF13

KFint ⊢ ∀x
(

ClTerm(x) ∧ Sent(val(x)) ∧ Tp¬. T ẋq → TpT ¬. ẋq
)

arithmetic

KFint ⊢ ∀x
(

Sent(val(x))→ ClTerm(x)
)

assumption
on val

KFint ⊢ ∀x
(

Sent(val(x)) ∧ Tp¬T ẋq → TpT ¬. ẋq
)

two preced-
ing lines

KFint ⊢ ∀x
(

TpSent(ẋ)q ∧ Tp¬T ẋq → TpT ¬. ẋq
)

Lemma 6

KFint ⊢ ∀x
(

TpSent(ẋ) ∧ ¬T ẋq → TpT ¬. ẋq
)

KF4

We skip the proof of (12), which is similar.
For PKF14 we need to establish the following two claims:

KFint ⊢ ∀x
(

TpT ẋq → TpSent(ẋ)q
)

,(13)

KFint ⊢ ∀x
(

Tp¬Sent(ẋ)q → Tp¬T ẋq
)

.(14)

We prove only (13). We observe first the following:

KFint ⊢ ∀x(T T. ẋ → ClTerm(x)).(15)

This follows from KFint ⊢ ∀x(T T. x → Sent(T. x)), which is an instance of KF14.
Then we prove (13) using mainly KF12:

KFint ⊢ ∀x
(

ClTerm(x)→ (T T. x ↔ T val(x))
)

KFint ⊢ ∀x
(

T T. x → T val(x)
)

(15)

KFint ⊢ ∀x
(

T T. x → Sent(val(x))
)

KF14

KFint ⊢ ∀x
(

T T. x → TpSent(ẋ)q
)

Lemma 6
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Lemma 6 was used in its form with free variables. As an example of a rule we
consider the cut-rule of PKF (suppressing free variables):

Γ⇒ ϕ,∆ Γ, ϕ ⇒ ∆

Γ⇒ ∆

By induction hypothesis we have

KFint ⊢ Tp
VV

Γq → Tpϕ ∨
WW

∆q,

KFint ⊢ Tpϕ ∧
VV

Γq → Tp
WW

∆q.

Applying KF4 and KF6 we obtain from these two lines respectively:

KFint ⊢ Tp
VV

Γq → Tpϕq ∨ Tp
WW

∆q,

KFint ⊢ Tpϕq ∧ Tp
VV

Γq → Tp
WW

∆q.

This implies by propositional logic

KFint ⊢ Tp
VV

Γq → Tp
WW

∆q.

The claim corresponding to (ii) in the theorem is proved in a similar way.
The most interesting rule is induction:

Γ, ϕ(x)⇒ ϕ(x + 1),∆

Γ, ϕ(0),⇒ ϕ(t),∆
(IND)

In the following we do not mention the additional free variables of Γ, ∆ and ϕ(x)
in order to keep the presentation more transparent. The induction hypothesis is:

KFint ⊢ ∀x(Tpϕ(ẋ) ∧
VV

Γq → Tpϕ(ẋ + 1) ∨
WW

∆q),(16)

KFint ⊢ ∀x(Tp¬(ϕ(ẋ + 1) ∨
WW

∆)q → Tp¬(ϕ(ẋ) ∧
VV

Γ)q).(17)

We do not show that the translation corresponding to (i) of the theorem is derivable,
but proceed directly to (ii).
We start with (17):

Tp¬(ϕ(ẋ + 1) ∨
WW

∆)q → Tp¬(ϕ(ẋ) ∧
VV

Γ)q

(Tp¬ϕ(ẋ + 1)q ∧ Tp¬
WW

∆q)→ (Tp¬ϕ(ẋ)q ∨ Tp¬
VV

Γq) KF7, KF5

(Tp¬
WW

∆q → Tp¬
VV

Γq) ∨ (Tp¬ϕ(ẋ + 1)q → Tp¬ϕ(ẋ)q) prop. logic

(Tp¬
WW

∆q → Tp¬
VV

Γq) ∨ (¬Tp¬ϕ(ẋ)q → ¬Tp¬ϕ(ẋ + 1)q) prop. logic

(Tp¬
WW

∆q → Tp¬
VV

Γq) ∨ (¬Tp¬ϕ(0)q → ¬Tp¬ϕ(ẋ)q) Lemma 26

(Tp¬
WW

∆q → Tp¬
VV

Γq) ∨ (Tp¬ϕ(ẋ)q → Tp¬ϕ(0)q) prop. logic

(Tp¬
WW

∆q ∧ Tp¬ϕ(ẋ)q)→ (Tp¬
VV

Γq ∨ Tp¬ϕ(0)q) prop. logic

Tp¬(
WW

∆ ∨ ¬ϕ(ẋ))q → Tp¬(
VV

Γ ∧ ϕ(0))q KF7, KF5

The last line shows that the translation of Γ, ϕ(0) ⇒ ϕ(t),∆ corresponding to
claim (ii) of the Theorem is derivable. ⊣

Corollary 28. Every sentence provable in PKF is also provable in KFint.

Proof. If a sentence ⇒ ϕ is provable PKF, then KFint proves Tpϕq by Theo-
rem 27(i). But by Lemma 10(iv) KFint proves Tpϕq → ϕ for every sentence ϕ.
Therefore KFint proves ϕ. ⊣
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This concludes the reduction of PKF to KFint. In particular, PKF proves all
arithmetical sentences that are in KFint provable.
This raises the question whether PKF is identical with the inner logic of KFint.
We leave this question open.
Theorem 27 allows us to relate PKF to standard systems, because Cantini deter-
mined the strength of the system KFint, which is called KF in his article:

Theorem 29 (Cantini [5], §9). KFint is proof-theoretically equivalent to the system
RA<ùù of ramified analysis up to ùù .

From this we obtain an upper bound for PKF:

Theorem 30. Every arithmetical sentence provable in PKF is also provable
in RA<ùù .

6.2. Lower bound. Interpreting classical systems in PKF is not straightforward
because PKF is formulated in partial logic. However, PKF behaves classically on
a sublanguage ofLT. In this section we shall show that the classical part of PKF is
sufficient for interpreting RA<ùù . Together with Theorem 30 this shows that PKF
is equivalent to RA<ùù : both theories prove the same arithmetical sentences.
We shall interpret RA<ùù in PKF by showing that ramified truth predicates up to
level ùù can be defined in PKF and that all sentences involving these ramified truth
predicates satisfy classical logic inPKF.We need to show that the truth predicatesTα
are ‘Tarskian’ truth predicates for the language that contains only truth predicates
Tâ with â < α.
To this end we need a notation system for the ordinals α < ùù . We do not
give the details of such a notation system and use the ordinals freely in PKF (see,
for instance, Troelstra and Schwichtenberg [42], Schwichtenberg [37], Pohlers [34]
or Takeuti [41]). We define sublanguages of LT with ramified truth predicates
recursively. The language L0 is the language LPA of arithmetic. Lα+1 is the
languageLα expanded by the predicate Tα x := (T x∧x ∈ Lα), and at limit levels
Lë is the union of all languagesLα with α < ë.
In Tα the level ordinal α appears as an index. However, it follows from the
definition ofTα that the level index canbequantified over as in∀α < ù

ù Tαp0 = 0q,
for instance.
The formula Sentα(x) expresses inLPA that x is a sentence of the languageLα .
The main challenge for recovering a classical hierarchy of truth theories up to
any level ùù consists in proving that PKF behaves classically on the languagesLα
for α < ùù , that is, on the languageLùù =

⋃

α<ùù
Lα .

As pointed out in §5, the logic of PKF is separated from classical logic only by
the absence of a rule that allows one to shift formulas back and forth from the
antecedent to the succedent and vice versa by affixing a negation symbol to the
formula. We shall show that shifting formulas in this way is permissible for all
formulas in Lùù . Actually we shall establish a slightly stronger claim in PKF,
namely that PKF proves for every sentence ofLα (α < ùù) that either the sentence
itself or its negation is true, that is, we shall prove:

∀x(Sentα(x)→ T x ∨ ¬T x)(18)

formally in PKF for all α < ùù by transfinite induction on α and side induction on
the complexity of x. Once this is proved, it is easy to show that⇒ ϕ,¬ϕ is derivable
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for all ϕ ∈ Lùù , which in turn implies by Lemma 15 that ϕ can be shifted from the
antecedent to the succedent by affixing a negation symbol and vice versa.
The side induction for the proof of (18) is covered by the following lemma:

Lemma 31. The following sequents are provable in PKF:

(i) Sent(x),T x ∨ ¬T x ⇒ T ¬. x ∨ ¬T ¬. x
(ii) Sent(x),Sent(y),T x ∨ ¬T x,T y ∨ ¬T y ⇒ T(x∧. y) ∨ ¬T(x∧. y)
(iii) Sent(x),Sent(y),T x ∨ ¬T x,T y ∨ ¬T y ⇒ T(x∨. y) ∨ ¬T(x∨. y)
(iv) Var(v),For(x, v),∀y T x(ẏ/v) ∨ ¬∀y T x(ẏ/v)⇒ T ∀.vx ∨ ¬T ∀. vx
(v) Var(v),For(x, v),∃y T x(ẏ/v) ∨ ¬∃y T x(ẏ/v)⇒ T ∃.vx ∨ ¬T ∃. vx

Proof. As an example we prove (iv).
We abbreviate Var(v),For(x, v) as Γ(x, v) and start with PKF4(i).

Γ(x, v),∀y T x(ẏ/v)⇒ T ∀.vx
weakening 2

Γ(x, v),∀y T x(ẏ/v)⇒ T ∀.vx,¬T ∀.vx
Lemma 14

Γ(x, v),∀y T x(ẏ/v)⇒ T ∀.vx ∨ ¬T ∀.vx

Γ(x, v) is purely arithmetical and therefore Corollary 17 applies to it, and we can
leave it in its place in the antecedent in the second line of the following proof. The
first line is PKF4(ii).

Γ(x, v),T ∀.vx ⇒ ∀y T x(ẏ/v))
¬-rule

Γ(x, v),¬∀y T x(ẏ/v))⇒ ¬T ∀. vx
weakening 2

Γ(x, v),¬∀y T x(ẏ/v))⇒ T ∀.vx,¬T ∀. vx
Lemma 14

Γ(x, v),¬∀y T x(ẏ/v))⇒ T ∀. vx ∨ ¬T ∀.vx

Now we apply Lemma 13 to the last lines of the two preceding proofs, respectively,
to obtain (iv):

Γ(x, v),∀y T x(ẏ/v) ∨ ¬∀y T x(ẏ/v)⇒ T ∀. vx ∨ ¬T ∀.vx.

The other cases can be dealt with in a similar manner. ⊣

According to the conventions introduced above, Sent0(x) expresses that x is
a sentence of the languageL0 = LPA. We now prove claim (18) for α = 0.

Lemma 32. PKF ⊢ ∀x(Sent0(x)→ T x ∨ ¬T x)

Proof. The lemma is proved by a formal induction on the buildup of x. The
induction step is covered by Lemma 31; so we only need to prove the claim for the
atomic sentences of LPA. They are all of the form s = t for closed terms s and t.
So we can employ PKF1(i):

ClTerm(x),ClTerm(y), val(x) = val(y)⇒ T x=. y
weakening 2

ClTerm(x),ClTerm(y), val(x) = val(y)⇒ T x=. y,¬T x=. y
Lemma 14

ClTerm(x),ClTerm(y), val(x) = val(y)⇒ T x=. y ∨ ¬T x=. y

Similarly we can use PKF1(ii):
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ClTerm(x),ClTerm(y),T x=. y ⇒ val(x) = val(y)
¬-rule

¬ val(x) = val(y)⇒ ¬T x=. y,¬ClTerm(x),¬ClTerm(y)
Corollary 17

¬¬ClTerm(x),¬¬ClTerm(y),¬ val(x) = val(y)⇒ ¬T x=. y
¬¬-sequents and cuts

ClTerm(x),ClTerm(y),¬ val(x) = val(y)⇒ ¬T x=. y
weakening 2

ClTerm(x),ClTerm(y),¬ val(x) = val(y)⇒ T x=. y,¬T x=. y
Lemma 14

ClTerm(x),ClTerm(y),¬ val(x) = val(y)⇒ T x=. y ∨ ¬T x=. y

Combining the last lines of both derivations by Lemma 13 yields the following:

ClTerm(x),ClTerm(y), val(x) = val(y) ∨ ¬ val(x) = val(y)⇒

T x=. y ∨ ¬T x=. y.
(19)

According to Lemma 16, the sequent

⇒ val(x) = val(y) ∨ ¬ val(x) = val(y)

is derivable. An application of the cut rule to (19) yields the following sequent:

ClTerm(x),ClTerm(y)⇒ T x=. y ∨ ¬T x=. y.

Then Lemma 31 and IND yield the claim. ⊣

We turn to the induction step.

Lemma 33. The following sequent is provable in PKF:

∀x(Sentα(x)→ T x ∨ ¬T x)⇒ ∀x(Sentα+1(x)→ T x ∨ ¬T x).

Proof. We start with PKF6(i):

ClTerm(x),T val(x)⇒ T T. x
Lemma 14

ClTerm(x),T val(x)⇒ T T. x ∨ ¬T T. x

Similarly we employ PKF6(ii):

ClTerm(x),T T x ⇒ T val(x)
¬-rule

ClTerm(x),¬T val(x)⇒ ¬T T. x
Lemma 14

ClTerm(x),¬T val(x)⇒ T T. x ∨ ¬T T. x

Combining both yields by Lemma 13 the sequent

ClTerm(x),T val(x) ∨ ¬T val(x)⇒ T T. x ∨ ¬T T. x.

From this one easily obtains the following:

Sentα(val(x)),T x ∨ ¬T x ⇒ T(T. x ∧ Sentα(x)) ∨ ¬T(T. x ∧ Sentα(x)).

Finally we employ Lemma 31 to establish the claim by formal induction on the
buildup of x. ⊣

This implies also the following lemma:

Lemma 34. ∀α < â(Sentα(x) → T x ∨ ¬T x) ⇒ (Sentâ (x) → T x ∨ ¬T x) is
provable in PKF.

Proof. If â is a successor ordinal this follows from the previous lemma. If â is
a limit ordinal, the claim can be proved in a straightforward way becauseLâ is the
union of allLα with α < â . ⊣

In order to prove (18) from the previous lemma, we need to show transfinite induc-
tion up to any ordinal α < ùù . The general scheme of transfinite induction is not
provable in PKF. The corresponding rule, however, is provable.



704 VOLKER HALBACH AND LEON HORSTEN

Lemma 35. The following rule is a derived rule in PKF for any given natural num-
ber k:

Γ,∀α < â ϕ(α)⇒ ϕ(â),∆

Γ⇒ ∀α < ùk ϕ(α),∆

Proof. The following proof is hardly innovative. However, we present the proof
of transfinite induction in some detail, because it has to be carried out in the non-
classical system PKF: care is needed when carrying out arguments familiar from
classical logic in partial logic.
In the following we suppress Γ and ∆. In order to distinguish addition and
multiplication on ordinals in the language LT from addition and multiplication
on natural numbers we circle the former; thus ⊕ and ⊙ are (formalizations of)
functions pertaining to (codes of) ordinal numbers.
There is a function that sends any given natural number to the code of the
corresponding ordinal. This function is expressed inLT by [. . . ]
We assume that the following sequent is provable in PKF

∀α < â ϕ(α)⇒ ϕ(â)(20)

and show from this by meta-induction on k that for every natural number k the
following is provable in PKF:

∀α < â ϕ(α)⇒ ∀α < â ⊕ ùk ϕ(α).(21)

ùk is fixed here, it is a numeral for a code of the respective ordinal. Therefore we
do not have to apply the operation [. . . ] and we do not have to overline k.
The case k = 0 is trivial: from (20) and

∀α < â ϕ(α)⇒ ∀α < â ϕ(α)

using some properties of ordinals in PKF we obtain

∀α < â ϕ(α)⇒ ∀α < â ⊕ [1] ϕ(α).

This covers the case k = 0 because ù0 = 1.
The induction step is established in the following way:

∀α < â ϕ(α)⇒ ∀α < â ⊕ ùk ϕ(α) ind. hyp.

∀α < â ⊕ (ùk ⊙ [n]) ϕ(α)⇒ ∀α < â ⊕ (ùk ⊙ [n])⊕ ùk ϕ(α) univ. inst.

∀α < â ⊕ (ùk ⊙ [n]) ϕ(α)⇒ ∀α < â ⊕ (ùk ⊙ [n + 1]) ϕ(α)

∀α < â ⊕ ùk ⊙ [0] ϕ(α)⇒ ∀n∀α < â ⊕ (ùk ⊙ [n]) ϕ(α) IND

∀α < â ϕ(α)⇒ ∀α < â ⊕ ùk+1 ϕ(α)

This concludes the proof of the induction step and (21) is established. Substituting
0 for â in (21) yields the claim. ⊣

Now we can prove (18) by applying Lemma 35 to Lemma 34:

Theorem 36. PKF proves ∀x(Sentα(x)→ T x ∨ ¬T x) for all α < ùù .

Corollary 37. The set of sentences in Lùù provable in PKF is closed under clas-
sical logic.

Proof. This follows from Theorem 36 and Lemma 15. ⊣
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Corollary 37 shows that we can relatively interpret classical systems in PKF as long
as the range of the interpretation does not not exceed the languageLùù .
In the next theoremwe shall show that the truth predicatesTα behave like ramified
truth predicates. Above Tα x has been defined as T x ∧ x ∈ Lα .

Theorem 38. PKF proves the following theorems for all α < ùù :

(i) ∀x, y
(

ClTerm(x) ∧ ClTerm(y)→ (Tα x=. y ↔ val(x) = val(y))
)

,

(ii) ∀x
(

Sentα(x)→ (Tα ¬. x ↔ ¬Tα x)
)

,

(iii) ∀x∀y
(

Sentα(x) ∧ Sentα(y)→ (Tα(x∧. y)↔ Tα x ∧ Tα y)
)

,

(iv) ∀x∀y
(

Sentα(x) ∧ Sentα(y)→ (Tα(x∨. y)↔ Tα a ∨ Tα y)
)

,

(v) ∀v∀x
(

Var(v) ∧ Forα(x, v)→ (Tα ∀.vx ↔ ∀y Tα x(ẏ/v))
)

,
Var(v) expresses that v is a variable; Forα(x, v) expresses that x is a formula
ofLα with only v free,

(vi) ∀v∀x
(

Var(v) ∧ Forα(x, v)→ (Tα ∃.vx ↔ ∃y Tα x(ẏ/v))
)

,

(vii) ∀x∀â < α
(

ClTerm(x)→ (Tα T. âx ↔ Tâ val(x))
)

,

(viii) ∀x∀â < α
(

Sentâ(val(x)) ∧ ClTerm(x)→ (Tα T. âx ↔ Tα val(x))
)

.

Proof. By Corollary 37 and Lemma 15 we can freely shift formulas in Lùù
between the antecedent and the succedent. Thus the above clauses can be obtained
from the rules PKF1–PKF8. ⊣

Theorem38 shows thatPKF interprets a systemof ramified truth up to any ordinal
below ùù . Systems of ramified truth were mentioned by Feferman [12] and studied
by Halbach [17]. It is known that the system RA<α of ramified analysis (α ≤ å0)) is
equivalent to a systemof ramified truthRT<α as described inHalbach [17]. This just
generalizes thewell known result that the theory of arithmetical comprehensionACA
is equivalent to ‘Tarskian’ truth (see Feferman [12] or Halbach [17]) to transfinite
iterations of these theories. Finally Theorem 38 proves that RT<ùù is a subtheory
of PKF. We skip the details.

Theorem 39. Ramified truth RT<ùù and ramified analysis RA<ùù up to any level
below ùù and PKF prove the same arithmetical sentences.

§7. PKF and classical logic. The philosophical significance of the proof-theoretic
analysis of PKFdepends onwhetherPKF is actually equivalent to all natural systems
for Kripke’s theory. The claim could fail in two ways: First, there could be natural
axiomatizations of Kripke’s theory that are stronger than PKF; second, PKF itself
might not be natural and exceed the strength of all really natural axiomatizations.
Concerning the first possibility, we are fairly confident that PKF cannot be nat-
urally enriched by further initial sequents and rules such that a stronger system is
obtained. This is not a mathematically provable claim because the notion of a nat-
ural extension is not mathematically defined. It seems at least that PKF naturally
captures the compositional nature of truth inKripke’s theory and allows us to iterate
truth in a straightforward way. Thus it seems that the essential truth-theoretic intu-
itions behind Kripke’s theory are captured in PKF. It therefore seems implausible to
assume the existence of formalizations of Kripke’s theory that properly extend PKF.
In favor of the second possibility—that PKF is actually too strong and not
natural— one might argue that PKF achieves its proof-theoretic strength only
through a connective that cannot be iterated and that does not obey the rules
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of Strong Kleene logic. For instance, ϕ ⇒ ϕ is derivable for all formulas ϕ ofLT,
even for the liar sentence. Thus⇒ is a connective exceeding pure partial logic.
However, this objection is rooted in a misunderstanding of the interpretation
of the sequent arrow, which is not a logical connective in the object language but
a derivation sign of the metalanguage. This is shown by the fact, mentioned above,
that we could have presented PKF in a natural deduction system. Such a system
would differ from classical logic in not allowing an unrestricted rule for introducing
material implication.
Another much more general objection against PKF might be raised: Feferman
rejected the use of partial logic for seemingly good reasons. Strong Kleene logic
is simply impractical. Replacing classical logic by partial logic seems to be a price
that is much too high for a solution of the liar paradox.
Our reply essentially follows Kripke’s defense of partial logic. For the language
LPA we retain classical logic, as was shown in Corollary 18. We do not propose to
carry out mathematics in partial logic. Only when the problematic truth predicate
is added, we have to give up classical reasoning. Our proof-theoretic analysis in the
previous section has added another aspect that supports this line of defense: The
fragment of PKF that contributes to its proof-theoretic strength is purely classical.
As has been shown in the previous section, one could completely dispense with
partial logic by employing truth predicates with type indices. Feferman’s KF is
a further alternative: he regains classical logic without typing the truth predicate;
but his KF describes a partial truth predicate that is very different from the actual
classical semantics of KF.

§8. Truth and the reflective closure of PA. In this section we speculate on some
consequences of our results for Feferman’s proposal to employ KF as a system for
capturing the reflective closure of PA. We start with a very brief sketch of the main
motivation for considering the reflective closure of theories.
It has been argued that the acceptance of Peano arithmetic commits us implicitly
also to the acceptance of a stronger system. For instance, the acceptance of PA
commits us also to the acceptance of PA plus the consistency statement of PA or the
uniform reflection principle for PA, which in turn commits us to the consistency (or
uniform reflection principle) of this theory and so on. This addition of consistency
statements and reflection principles can be iterated into the transfinite along those
ordinals for which transfinite induction can be proved. Since the resulting systems
will prove stronger instances of transfinite induction, the process can be extended
further through so called autonomous progressions (see Feferman [10]) until the
process closes off.
A canonical system containing all assumptions implicit in the acceptance of PA
has been called the reflective closure of PA. In order to bypass the intricacies of the
autonomous progressions and to provide a more perspicuous characterization of
the reflective closure, Feferman has proposed several alternative techniques.
A particular method for describing the reflective closure consists in iterating the
usual ‘Tarskian’ theory of truth. This leads to the hierarchy RTα of truth theories.
Like other theories of this kind (e.g., systems of ramified analysis), the Tarskian
theory of truth can be iterated up to å0 (or further to Γ0 in an autonomous reflection
process).
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Iterating reflection or comprehension principles or truth theories and the like
usually relies on some notation system of the ordinals along which these principles
are iterated (see Feferman [10], [11] and many further articles). These ordinals and
the corresponding notations are explicitly used in the presentation of the reflective
closure.
Feferman has tried to describe the reflective closure of PA (and other system) by
systems that do not make explicit use of ordinals and notation systems. KF is such
a system. Feferman [12, p. 1] explains the motivation behind his work on KF in the
following way:

[Gödel’s incompleteness theorems] point to the possibility of systemati-
cally generating larger and larger systems whose acceptability is implicit
in acceptance of the starting theory. The engines for that purpose are
what have come to be called reflection principles. These may be iterated
into the constructive transfinite, leading to what are called recursive pro-
gressions of theories. [ . . . ] [F]or some years I had hoped to give a more
realistic and perspicuous finite generation procedure. [ . . . ] What is
presented here [i.e., Feferman’s work onKF and its variants] is a new and
simple notion of the reflective closure of a schematic theory which can be
applied quite generally.

In contrast to the systems RTα of ramified truth, the presentation of KF does not
require truth predicates indexed by ordinal notations; rather KF has only one single
truth predicate. Thus it is tempting to seeKF as a system that captures the content of
the reflective closure of PA in one fell swoop instead of approaching it by iterations
and ramifications.
The proof-theoretic analysis of KF shows that the ordinal levels are still present
in KF; but they are not explicit, rather they are only revealed by the analysis of
the system. Therefore the system can be presented in a smooth way that does not
require a notation system for ordinals, ramified languages or the like.
On the semantical side, Kripke’s theory of truth might be seen as a type-free
version of Tarski’s hierarchy of truth predicates up to the first non-recursive ordinal.
If KF is an axiomatization of Kripke’s theory it should achieve the same as the
axiomatization of the of ramified theory of truth RT<å0 up to å0. Of course in terms
of proof-theoretic strength, KF is successful because it matches RT<å0 .
However, our results above make it less plausible that KF only sums up what
can also be achieved in many steps by ramified systems of truth. For KF is not
an axiomatization of Kripke’s theory of truth but rather an axiomatization of the
‘closed off’ version of Kripke’s theory. In proving certain arithmetical sentences
KF makes essential detours through truth-valueless territory, because it has the
resources to distinguish between truth, falsity and indeterminateness, whereas on
Kripke’s original partial approach the lack of a truth value cannot be expressed
within the language. KF is, so to speak, not an axiomatization of Kripke’s theory of
truth, but rather of large parts of its metatheory. If the resources for distinguishing
between truth, falsity and indeterminateness are dropped and a thoroughly partial
system is adopted, proof-theoretic strength is lost. PKF no longer captures the
mathematical content of RT<å0 .
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Theorem 39 shows that PKF can only reflect the iteration of Tarskian truth up to
any level below ùù . Only the transition to classical logic, that is, to KF yields a sys-
tem that exhausts the strength of the reflective closure of PA as characterized by the
iteration RT<å0 of Tarskian truth (or even of RT<Γ0 in the case of Feferman’s [12]
Strong Reflective Closure). But KF is, as we have argued, neither a natural axiom-
atization of Kripke’s theory nor can it be reduced to any such axiomatization. So
we do not see how an axiomatic theory of truth should form a useful tool in the
analysis of the reflective closure. PKF is intuitively a sound way to make explicit
some implicit assumptions of PA. But PKF is weaker than, for instance, systems
of autonomously iterated truth theories or other accepted characterizations of the
reflective closure. PKF is therefore too weak to be useful in a characterization of the
reflective closure of PA. KF (or one of its variants) is strong enough, but it imports
commitments that are not implicit in the acceptance of PA.

§9. Comparison with other axiomatic theories of truth. This article was mainly
devoted to a comparison of the classical system KF and the system PKF formulated
in strong Kleene logic. In this final section we compare PKF with other truth
systems. The alternative axiomatic theories of truth that we consider in this section
fall into one of the following three categories: The first category is constituted by
systems for the same semantics: Kripke’s theory of truth with the Strong Kleene
scheme. Second, there are systems for Kripke’s theory with the Strong Kleene
scheme substituted by some other evaluation scheme. Finally we shall consider
axiomatic systems describing altogether different semantical constructions.
First we shall consider strengthenings of KF and PKF whilst retaining the same
underlying semantical construction. As mentioned above, Feferman [12] considers
also a variant of KF, the Strong Reflective Closure of PA, which has the strength
of RA<Γ0 or iterated truth RT<Γ0 up to Γ0. One could try to define a system that
relates to PKF in the way the StrongReflective ClosureRef∗(PA) of PA relates to the
Weak Reflective Closure Ref(PA) in [12]. One could expect that thereby the proof-
theoretic strength of PKF can be increased, but partial logic makes the formulation
of a suitable system already difficult. However, we cannot exclude that a natural
strengthening of PKF might be obtained in this manner.
BothKF andPKF are supposed to axiomatizeKripke’s theory of truth formulated
with the Strong Kleene evaluation scheme. Kripke and others have considered
formulations of the theory with alternative evaluation schemes (see Belnap and
Gupta [3], Kripke [24] and McGee [28]). We think that the Strong Kleene scheme
is superior to other schemes in many aspects, but we do not attempt to justify this
claim: a comparison of the different schemes in the context of Kripke’s theory is
beyond the scope of this paper.
Aminor departure from the StrongKleene scheme is the use of four-valued logic.
This variant of the theory admits truth-value ‘gluts’ along with truth-value gaps.
If truth-value gluts are allowed, the consistency axiom CONS of KF will have to be
dropped, because sentences can be both true and false; this does not affect the proof-
theoretic strength of KF. In the case of PKF slight modifications of the underlying
logic will be required in order to allow gluts besides the gaps. In particular, the
¬ë-sequents will have to be dismissed as unsound. These sequents, however, are not
needed for the interpretation of RA<ùù in PKF. Moreover, CONS is only required in
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the proof of Theorem 27 because of the ¬ë-sequents. Therefore our proof-theoretic
results would equally apply if CONS and the ¬ë-sequents were dropped in order to
obtain systems for Kripke’s theory with gaps and gluts.
It is also possible to retain gluts but to rule out gaps. Cantini [5] has proved
several results on the variant of KF and subsystems of KF that are sound with
respect to such an interpretation. Our main results would still not be affected by
this modification.
The Weak Kleene evaluation scheme is an alternative evaluation scheme for
partial logic, that is, non-classical logic with truth-value gaps only. According to
this scheme a sentence is neither true nor false if and only if some component
lacks a truth value or–for quantified sentences–a least one instance does not have
a truth value. Feferman [12] mentions a variant of his theory that is based on
this evaluation scheme and claims that it is as strong as the system based on the
strong Kleene scheme. We could also modify our system PKF accordingly. Since
the sentences without truth value are irrelevant for the interpretation of RA<ùù we
would expect that this variant of PKF is as strong as the original version. Again,
our main result would apply to this modification.
The Weak Kleene scheme, however, has not found many supporters. The super-
valuation scheme is regarded as more attractive. Cantini [6] proposed a system VF
that stands in the same relation toKripke’s theorywith supervaluations asKF stands
to Kripke’s theory with the Strong Kleene scheme. In particular, VF is sound with
respect to ‘closed off’ supervaluational fixed point models. If we tried to formulate
a system for Kripke’s theory with supervaluations in analogy to PKF, we would
have to provide a system for supervaluational logic in analogy to 4.1.4–4.1.5. But
this is not possible. Woodruff [45] proved that the compactness theorem fails for
the consequence relation in supervaluations; hence the consequence relation cannot
be fully described by a formal system. Thus it is at least unclear what a natural
axiomatization of Kripke’s theory with supervaluations would look like or whether
such an axiomatization exists at all. Consequently, we do not have anything to say
about the proof-theoretic strength of such an axiomatization in comparison with
Cantini’s classical system VF.
Kripke’s theory with the Strong Kleene scheme has a distinctive compositional
flavor in contrast to the supervaluation version, which clearly fails to be composi-
tional. Under supervaluational semantics the truth of a complex sentence does not
merely depend on the semantical value of its constituents, at least if their semantical
value is defined in a standard way. For instance, in supervaluations the liar sentence
ë still lacks a truth value as does its negation; ë∨¬ë, however, will be declared true
by supervaluations, while other disjunctions of sentences without truth value will
fail to have a truth value.
Therefore KF has been advocated as a compositional theory of type-free truth.
It has been conjectured thatKF and its variants including Feferman’s StrongReflec-
tive Closure of PAmight demarcate the limits of compositional truth. A straightfor-
ward axiomatization of Kripke’s theory with supervaluations exceeds these limits;
it is as strong as the theory ID1 of non-iterated inductive definitions, as Cantini’s [6]
work on VF has shown. Halbach [18] has conjectured that the limits of composi-
tionality thus coincide with the limits of predicativity. For no compositional theory
exceeds the strength of RA<Γ0 , while Feferman’s Strong Reflective Closure of PA
exhausts the strength of predicative analysis RA<Γ0 .
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The results of this paper shed some doubt on this picture: we deny thatKF and its
variants are satisfactory theories of truth. Moreover the presence of CONS renders
KF a non-compositional theory, as we have argued in the light of Remark 4, which
shows that KF decides the liar sentence and that KF proves a sentence whose truth
does not rely on the semantic status of its components in KF.
Moreover, we have seen that even if CONS is dropped from KF, one is left
with a theory of truth in which the outer logic necessarily differs from the inner
logic. Therefore PKF assumes the rôle of the strongest type-free theory of truth
currently on the market that is still compositional. Thus the proof-theoretic limits
of compositionality would still be unclear. As we have shown, PKF, which is in
our view the natural axiomatization of Kripke’s theory with the Strong Kleene
scheme, is much weaker than certain predicative theories like RA<Γ0 , because PKF
has only the strength of the systemRA<ùù of ramified analysis up to any level smaller
thanùù . There still might be unexplored axiomatic systems of compositional truth
that exceed the strength of PKF; but we are not aware of such systems.
All the systems of type-free truth we have discussed so far rely on non-classicality
either in the inner or their outer logic. Systems that rely entirely on classical logic
have been proposed as well. The strongest thoroughly classical theory of truth
to date is the Friedman-Sheard system FS.14 The arithmetical strength of FS is
given by the theory RA<ù (that is, finitely iterated elementary comprehension) or
the ramified theory of truth of all finite levels. Thus, FS is mathematically much
weaker than PKF, because the latter proves also transfinite iterations. Halbach and
Horsten [20] argued that there is little hope to obtain a consistent, natural and
thoroughly classical theory of truth that allows us to prove transfinite iterations of
truth.
Although we have been extolling the virtues of PKF, there is a price to pay: PKF
is a decidedly nonclassical system. This seems to be the price for having transfinite
iterations of truth. KF obscures this fact because it is formulated in classical logic
and yields iterations of truth up to å0, but this is only achieved by ‘closing off’;
internally KF relies on partial logic, and this creates the unacceptable asymmetry
between inner and outer logic.
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