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A Kripkean Approach
to Unknowability and Truth

LEON HORSTEN

Abstract We consider a language containing partial predicates for subjective
knowability and truth. For this language, inductive hierarchy rules are proposed
which build up the extension and anti-extension of these partial predicates in
stages. The logical interaction between the extension of the truth predicate and
the anti-extension of the knowability predicate is investigated.

1 Introduction Kripke [10] develops a context-insensitive approach to the seman-
tic paradoxes, in which the truth predicate is treated as a partial predicate. Toward
the end of his paper he briefly considers extending his approach to notions other than
truth, such as necessity ([10], pp. 78–79). He considers treating necessity as a predi-
cate and giving its semantics in terms of the necessity operator and the truth predicate.
Furthermore, he says:

We can even “kick away the ladder,” and take Nec(x) [i.e., the necessity predi-
cate] as a primitive, treating it in a possible-world scheme as if it were defined
by an operator plus a truth predicate. Like remarks apply to the propositional
attitudes, if we are willing to treat them, using possible worlds, like modal op-
erators. (I myself [sic] think that such a treatment involves considerable philo-
sophical difficulties.) It is possible that the present approach can be applied
to the supposed predicates of sentences in question without using either inten-
sional operators or possible worlds, but at present I have no idea how to do so.
([10], p. 75)

Until today, there have been no published attempts to work out the suggestion that
Kripke makes in the (first part of the) last sentence of this quotation. In the present
paper it will be attempted to do this for knowledge predicates rather than for necessity
predicates.1 Toward the end of the paper some remarks are made on extending the
approach of this paper to languages containing necessity predicates.

In the present paper, formal languages are considered which have a predicate
(B) expressing the intuitive notion of subjective knowability, or knowability in prin-
ciple (by a fixed knowing agent).2 Theories of subjective knowability are generated

Received May 28, 1997; revised March 5, 1999



390 LEON HORSTEN

by building up the extension and the anti-extension of B in stages that are indexed
by ordinals. Theories of knowability in principle will be collections of sentences that
are made true by models in which the partial interpretation of B is a fixed point of
this inductive procedure: this is what makes the approach thoroughly Kripkean. In
the first of our constructions, a truth predicate (T) is used as an auxiliary tool. It pro-
vides a convenient way to show that an inductive rule for building up the extension
of B has a consistent fixed point. Later it is shown that the truth predicate can also
be given a more substantial role, namely, when an investigation is made of the logi-
cal interaction of the concept of knowability and the concept of truth in a Kripkean
context.

The structure of this paper is as follows. In Section 2, two simple Kripkean hier-
archy rules for knowability and truth are described, and some properties of these rules
are established. It is shown that it is hard to see how the extension of the knowabil-
ity predicate can be significantly enriched as the inductive rule goes through succes-
sor and limit stages. Nevertheless, the stronger hierarchy rules that are proposed in
Section 3 describe ways of nontrivially enriching the anti-extension of the knowa-
bility predicate, which in turn leads to a nontrivial enrichment of the truth predicate.
This makes the theory that is proposed here more about un knowability than about
knowability (as one referee aptly put it). The final section compares the theory that is
advanced here with some of the context-sensitive approaches to the epistemic para-
doxes.

2 Simple Kripkean hierarchies of knowability and truth Let us look at some
knowability hierarchies in the context of a three-valued valuation scheme. We will
use, besides a knowability predicate, a Kripkean truth predicate as an auxiliary no-
tion. So let LPATB be the language of first-order arithmetic extended with T (‘truth’)
and B (‘knowability’) as our only partial predicates. In other words, some sentences
are taken to be definitely knowable and some sentences are definitely unknowable.
About other sentences it is indeterminate whether they are knowable or not.

In order to simplify notation, we will in the sequel write TA (BA) instead of

T
(

g (A)
)

(B
(

g (A)
)

), where g (A) is an expression denoting the Gödel number of

A. Strictly speaking our notation is of course not even well formed, but it will do for
our purposes. Let CLPATB (S) be the closure of a set S under Peano Arithmetic (where
T and B are allowed in instances of the induction scheme) and first-order logic. Let
I |=t � abbreviate that the interpretation I Tarski-satisfies the set � of sentences.
And let I |=sv � abbreviate that the interpretation I supervaluation-satisfies the set
� of sentences.

2.1 The näıve hierarchy ruleR 0

Definition 2.1 〈In (B)α , In (T)α〉 denotes the partial structure, with the standard
model IN as the underlying arithmetical structure, defined by stage α of the inductive
rule R n.

Definition 2.2 In(B)+α denotes the extension of B at stage α of the rule R n; In(B)−α
denotes the anti-extension of B at stage α of the rule R n; In(T)+α denotes the exten-
sion of T at stage α of the rule R n; In(T)−α denotes the anti-extension of T at stage α

of the rule R n.
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Then the following is a naı̈ve way of defining a hierarchy rule R 0 for truth and knowa-
bility:

1. I0 (B)+0 = I0 (B)−0 = I0 (T)+0 = I0 (T)−0 = ∅;

2. I0 (B)+
α+1 =

CLPATB

[
I0 (B)+α ∪ {

TC | C ∈ I0 (B)+α
} ∪ {¬TC | ¬C ∈ I0 (B)+α

}]
;

3. I0 (T)+
α+1 = {A | 〈I0 (B)α , I0 (T)α〉 |=sv A};

4. I0 (T)−α+1 = {A | 〈I0 (B)α , I0 (T)α〉 |=sv ¬A};
5. I0 (B)−α+1 = I0 (T)−α+1;

6. I0 (T)+γ = ⋃
I0 (T)+<γ for γ a limit ordinal;

7. I0 (T)−γ = ⋃
I0 (T)−<γ for γ a limit ordinal;

8. I0(B)+γ = (⋃
I0 (B)+<γ

)∪{
∀xA(x) | for all n, A(n) ∈ I0(B)+

β
for someβ<γ

}
for γ a limit ordinal;

9. I0 (B)−γ = ⋃
I0 (T)−<γ for γ a limit ordinal.

The clauses of R 0 deserve some comment. We come to know facts about the natural
numbers (and about the knowability and truth-value of such facts) by proving them.
In the present approach, we take these proofs to be carried out in a classical, two-
valued language. Then it is natural to work with a supervaluation scheme, as is done
in R 0 (clauses 3 and 4). It is also possible to work with a Kleene scheme. But then
the clauses for defining the extension of B would have to be different: we would have
to take the knower to prove things in partial Peano Arithmetic.3

The successor clause for I1 (B)+ says that what the idealized knower knows at
the successor stage is the closure of:

1. all sentences which she already knew at the previous stage;
2. that what she knew at the previous stage is true;
3. that the negations of these sentences are not true.

This seems to embody reasonable reflection properties for knowability. At limit
stages, the knower reflects on the fact that she has proved A

(
n
)

for all natural numbers
n and correctly concludes from this that ∀xA (x). In the hierarchy determined by R 0,

the knower “learns” about arithmetic and the notion of truth. We could strengthen R 0

a bit so that the knower also learns about knowledge. For this purpose, we would add
to the extension of B at successor stages α + 1 also the sets

{
BA | A ∈ I1 (B)+α

}
and{¬BA | ¬A ∈ I1 (B)+α

}
. Analogues of the propositions that we will prove for R 0

also hold for the resulting rule.

2.2 The inductive ruleR 1 The inductive rule R 0 is in certain respects too strong.
The limit-clause for the extension of B implies that the extension of B at the least
fixed point is closed under the infinitary ω-rule. But systems that are closed under
the ω-rule prove all first-order arithmetical truths (see e.g., Hinman [7], pp. 121–22).
So the least fixed point model of R 0 takes all arithmetical truths to be subjectively
knowable. Even though great minds like Gödel and Hilbert have expressed sympathy
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for this consequence, many philosophers and mathematicians have taken issue with
it. So philosophical caution seems to demand that at limit stages we let the extension
of B be simply the union of the extensions of B at earlier stages.4 But if we weaken
R 0 in this way, then the extension of B at the least fixed point becomes uninteresting.
It is easy to see that it becomes the theory that is obtained by closing Peano Arithmetic
under the inference rules:

From A, infer TA.

From ¬A, infer ¬TA.

Considerations such as these point to the fact that it is very difficult to see how induc-
tive hierarchy rules can give an interesting account of how the extension of B “grows”
in stages. Because of this, we will let the extension of B be constant throughout the
stages of the hierarchy rules that will be formulated in the sequel.

The extension of B should then be identified with a sufficiently strong axiomatic
theory of truth and knowability. Reinhardt [12] argues in the context of a Kleene val-
uation scheme that the collection of all sentences A such that T(A) is provable in the
Kripke-Feferman system constitutes a rich theory of truth.5 But we are working in
the context of a supervaluation scheme. Therefore it is more suitable to concentrate
on Cantini’s axiomatic theory VF .6 Let VFT be the theory that consists of all sen-
tences A such that T(A) is provable in VF . Then we will set the extension of B equal
to VFT at all stages of the inductive rules that will henceforth be considered.

We have seen that the knower also ought to be capable of proving nontrivial
propositions about knowability (and its relation to truth). This should lead one to
consider extensions of VF by plausible axioms governing the notion of knowability.7

The resulting proof systems would be interesting in their own right.8 Nevertheless,
such a proof-theoretic investigation would detract from the model-theoretic investi-
gation that we are currently engaged in. Therefore, this line will not be pursued fur-
ther here.

Since we have decided to let the extension of B coincide with VFT already at
stage 0, we have to ensure that VFT is also included in the extension of T at stage 0 of
our inductive rules.9 This can be done in the following way. Consider the classical
supervaluation rule S. Identify the extension (anti-extension) of T at stage 0 with
the extension (anti-extension) of T at the least fixed point F of S (where B is treated
as a partial predicate of which the extension and anti-extension remain empty at all
stages). It is easy to see that the least fixed point F of S makes all axioms of VF true
([5], p. 250).

Here then is a simple but intuitively sound hierarchy rule R 1:

1. I1 (B)+0 = VFT ,
2. I1(B)−0 = ∅,
3. I1 (T)+0 = {A | F |=sv A},
4. I1 (T)−0 = {A | F |=sv ¬A},
5. I1 (T)+

α+1 = {A | 〈I1 (B)α , I1 (T)α〉 |=sv A},
6. I1 (T)−α+1 = {A | 〈I1 (B)α , I1 (T)α〉 |=sv ¬A},
7. I1 (B)+

α+1 = I1 (B)+α ,
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8. I1 (B)−α+1 = I1 (T)−α+1

⋃
I1 (B)−0 ,

9. I1 (T)+γ = ⋃
I1 (T)+<γ for γ a limit ordinal,

10. I1 (B)+γ = ⋃
I1 (B)+<γ for γ a limit ordinal,

11. I1 (T)−γ = ⋃
I1 (T)−<γ for γ a limit ordinal,

12. I1 (B)−γ = ⋃
I1 (B)−<γ for γ a limit ordinal.

Note that at successor stages, R 1 includes I1 (B)−0 in the anti-extension of B. This
inclusion is doing no work in R 1, since I1 (B)−0 = ∅. But in Section 3, inductive
rules will be defined in which R 1 is used as an auxiliary rule. In these situations,
I1 (B)−0 will not usually be set equal to ∅, and I1 (B)−0 will have to be included in
I1 (B)−α+1 in order to ensure monotonicity.

We go on to prove some simple propositions about R 1 which will be shared by
the stronger hierarchy rules that will be proposed in subsequent sections.

2.3 Simple properties ofR 1

Proposition 2.3 R 1 is monotone in B and T.

Proof: It suffices to note that |=sv is monotone. �

Proposition 2.4 For all A and α: if A ∈ I1 (B)+α , then A ∈ I1 (T)+α .

Proof: By transfinite induction. Since I1 (B)+ is constant, the only nontrivial case
is when α = 0. But this follows from the fact that F makes all theorems of VF true.

�

Proposition 2.5 For all α, I1 (T)+α ∩ I1 (T)−α = ∅.

Proof: By a reductio. If there is at least β for which the property fails, then it must
be a successor ordinal. Let β = α + 1 be the least such ordinal. This means that
we have an A ∈ I1 (T)+

α+1 ∩ I1 (T)−α+1, and it is given that I1 (T)+α ∩ I1 (T)−α = ∅.
Since I1 (B)+α ⊆ I1 (T)+α , and I1 (B)−α = I1 (T)−α , we also have I1 (B)+α ∩ I1 (B)−α =
∅. But then for all A, if 〈I1 (B)α , I1 (T)α〉 |=sv A, it cannot be the case that
〈I1 (B)α , I1 (T)α〉 |=sv ¬A. Contradiction. �

Given the previous propositions it follows that R 1 reaches a consistent least fixed
point in both T and B. We now show that the extension of B at the least fixed point
of R 1 is sound, in the following sense.

Proposition 2.6 Consider the least fixed point
〈
I1 (B)R 1

, I1 (T)R 1

〉
of R 1. For all

A ∈ I1 (B)+R 1
,
〈
I1 (B)+R 1

, I1 (T)+R 1

〉
|=t A.

Proof: Suppose A ∈ I1 (B)+R 1
. Then A ∈ I1 (T)+R 1

, whereby

〈
I1 (B)R 1

, I1 (T)R 1

〉 |=sv A.

So by closing off (which we can by the previous proposition), we see that

〈
I1 (B)+R 1

, I1 (T)+R 1

〉
|=t A

�
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2.4 Some easy fixed point calculationsFirst we consider the absolute Gödel sen-
tence, which says of itself that it is unknowable in principle.

Proposition 2.7 Let G be such that �PATB G ←→ ¬B (G). Then G,¬G /∈ I1 (B)+R 1
.

Proof:

Case 1: ¬G ∈ I1 (B)+R 1
=⇒ B (G) ∈ I1 (B)+R 1

=⇒ B (G) ∈ I1 (T)+R 1
=⇒ G ∈

I1 (B)+R 1
. Contradiction.

Case 2: G ∈ I1 (B)+R1
=⇒ ¬B (G) ∈ I1 (B)+R1

=⇒ ¬B (G) ∈ I1 (T)+R 1
=⇒ B (G) ∈

I1 (T)−R 1
=⇒ G ∈ I1 (B)−R 1

. Contradiction. �

In other words, according to R 1, the absolute Gödel sentence is absolutely undecid-
able by the knowing agent. Note that the reasoning of the above proposition holds for
any consistent fixed point of R 1.

Proposition 2.8 Let G be as in the previous proposition. Then G,¬G /∈ I1 (T)+R 1
.

Proof:

Case 1: ¬G ∈ I1(T)+R 1
=⇒ B(G) ∈ I1 (T)+R 1

=⇒ G ∈ I1 (B)+R 1
=⇒ G ∈ I1 (T)+R 1

.
Contradiction.

Case 2: G ∈ I1 (T)+R 1
=⇒ ¬B (G) ∈ I1 (T)+R 1

=⇒ B (G) ∈ I1 (T)−R 1
=⇒ G ∈

I1 (B)−R 1
=⇒ G ∈ I1 (T)−R 1

. Contradiction. �

Only the last step of this last proof will not go through for the stronger inductive rules
that will be considered in the next section. And intuitively it is not clear that it should
go through: there may be sentences which are definitely unprovable but which are
nevertheless definitely true. Actually, there is a familiar Gödelian argument to show
that G should really be in the extension of the truth predicate. For suppose that the ab-
solute Gödel sentence is knowable in principle. If it is knowable, then it is true. But it
says of itself that it is unknowable! So we reach a contradiction. Therefore G must be
unknowable. But since this is exactly what it says of itself, it must be true.10 On the
other hand, this argument certainly has the flavor of strengthened liar-type reasoning.
And at least in the case of truth, we know that strengthened liar arguments lead to se-
rious trouble. In the Gödelian argument under consideration, the suspicious step is
the move from the inconsistency of the assumption that G is knowable to the conclu-
sion that G is (definitely!?) unknowable. One might seriously wonder whether such
a principle will not, in the present setting, necessarily lead to contradictions. This
question will be taken up in Section 3.

Next we consider the knower sentence,11 which says of its own negation that it
is subjectively knowable.

Proposition 2.9 Let K be such that �PATB K ←→ B (¬K). Then K,¬K /∈
I1 (B)+R 1

.

Proof:

Case 1: ¬K ∈ I1 (B)+R 1
=⇒ ¬B (¬K) ∈ I1 (B)+R 1

=⇒ ¬B (¬K) ∈ I1 (T)+R 1
=⇒

B (¬K) ∈ I1 (T)−R 1
=⇒ ¬K ∈ I1 (B)−R 1

. Contradiction.
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Case 2: K ∈ I1 (B)+R 1
=⇒ B (¬K) ∈ I1 (B)+R 1

=⇒ B (¬K) ∈ I1 (T)+R 1
=⇒ ¬K ∈

I1 (B)+R 1
. Contradiction. �

So according to R 1 the knower sentence is also absolutely undecidable by the know-
ing agent.

Proposition 2.10 Let K be as in the previous proposition. Then K,¬K /∈ I1 (T)+R 1
.

Proof:

Case 1: K ∈ I1 (T)+R 1
=⇒ B (¬K) ∈ I1 (T)+R 1

=⇒ ¬K ∈ I1 (B)+R1
=⇒ ¬K ∈

I1 (T)+R 1
. Contradiction.

Case 2: ¬K ∈ I1 (T)+R 1
=⇒ ¬B (¬K) ∈ I1 (T)+R1

=⇒ B (¬K) ∈ I1 (T)−R 1
=⇒

¬K ∈ I1 (B)−R 1
=⇒ ¬K ∈ I1 (T)−R 1

. Contradiction. �

Here again only the last step of the last proof will not go through for the stronger
inductive rules that will be considered in the next section. And by a parallel argu-
ment to that for the truth of G, one might ask whether K should not really be in the
anti-extension of the truth predicate. For suppose that the negation of K is know-
able. Then the negation of K must be true. But since K says of itself that its negation
is knowable, we obtain that its negation must be unknowable. But this contradicts
the assumption. So the negation of K is unknowable. But since K says of itself that
its negation is knowable, it must be false.12 By arguments similar to those for G and
K one can convince oneself that neither the liar sentence (L) nor its negation belong
to the extension or the anti-extension of B or T (this is left to the reader). Also, the
question can be raised whether L and ¬L should not really be in the anti-extension
of B. For the familiar liar argument shows that from the assumption that L is true, a
contradiction can easily be derived: if L is true, then ¬L, whereby it is not the case
that L is true. Since it is therefore inconsistent to assume that L is true, L must be
determinately unknowable. Here the suspicious principle is the move that allows one
to conclude from the inconsistency of assuming that a sentence is true to the conclu-
sion that it is definitely unknowable. But note that this principle is weaker than the
suspicious principle involved in the Gödelian argument for the truth of G.

In sum, the previous propositions show that the knower sentence and the abso-
lute Gödel sentence behave as one would at first blush expect on a Kripkean picture,
but one wonders whether it is possible to construct arguably sound inductive rules
for which the least fixed point verifies G, falsifies K, and takes both L and ¬L to be
definitely unknowable.

3 More Kripkean hierarchies

3.1 The ruleR 2 We will now introduce a new inductive rule R 2, which is just
like R 1, except for the successor clause for I (B)−α+1. To describe this rule we first
introduce some terminology.

Definition 3.1 If U ,V are partial structures, then we say that U is a substructure
of V (abbreviated: U ⊆ V) if and only if UB+ ⊆ VB+,UB− ⊆ VB−,UT+ ⊆ VT+,

and UT− ⊆ VT−.
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Definition 3.2 A partial structure U = 〈
UB+,UB−,UT+,UT−〉

is said to be inclu-
sive if and only if

UT+ ⊆ {
A | 〈

UB+,UB−,UT+,UT−〉 |=sv A
}

and
UT− ⊆ {

A | 〈
UB+,UB−,UT+,UT−〉 |=sv ¬A

}
Definition 3.3 For every partial structure U = 〈

UB+,UB−,UT+,UT−〉
, we say that

U is normal if and only if UB+ ∩ UB− = UT+ ∩ UT− = ∅, U is inclusive, and UB+ ⊆
UT+.

The idea behind this definition is that in order to be a putative candidate for being
a suitable partial interpretation for L PATB , a structure must at least be inclusive and
have the property that whatever it takes to be knowable is true.

For partial structures U extending the initial stage
〈
I1 (B)0 , I1 (T)0

〉
of the rule

R 1, we denote as Ii (B,U)+α the extension of B at stage α of the rule which is just
like R i except that the initial partial structure is U. Similar conventions hold for
Ii (B,U)−α , Ii (T,U)+α , Ii (T,U)−α .

We also introduce notation to refer to the structure that has been defined by the
αth stage of a rule R i.

Definition 3.4 S i
α ≡ 〈

Ii (B)+α , Ii (B)−α , Ii (T)+α , Ii (T)−α
〉

When it is clear from the context which rule we are referring to, we will sometimes
omit the superscript from S i

α.
Now we define R 2 to be the inductive rule which is just like R 1, except for the

fact that the successor clause for I (B)−α+1 now reads:

I2 (B)−α+1 = I2 (T)−α+1 ∪{
A | for all normal structures U ⊇ S2

α: if U |=sv A,
then there is a β such that I1 (T,U)+

β
is inconsistent

}

In other words, at successor stages α + 1 we add to the anti-extension of B those sen-
tences ϕ which are such that if ϕ were assumed to be true and the hierarchy were
continued in accordance with the rule R 1 from stage α onward, then I (T)+

β
would

become inconsistent for some β. The underlying idea is that if assuming ϕ to be true
would lead, according to some correct rule, to an inconsistency at some stage, then
that sentence ϕ is definitely unknowable. Or, shorter still, if it is inconsistent for a
given sentence to be true, then it is definitely unknowable.

As with R 1, it will be shown that R 2 has a consistent least fixed point. In
addition it will be shown that the least fixed point of R 2 makes certain sentences
which R 1 classifies as neither determinately knowable nor determinately unknow-
able, come out definitely unknowable. As we will see, one such sentence is the
knower sentence of Section 2.4.

All this would be of little value if we did not have strong reason to believe that
R 2 intuitively is a sound rule, that is, that it classifies intuitively true sentences as
true, intuitively false ones as false, intuitively knowable sentences as knowable, and
intuitively unknowable sentences as unknowable. Here is a philosophical argument
for the soundness of R 2. We already know that the basis of R 2 (stage 0) is sound.
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Since R 2’s clause for limit stages is unobjectionable, it only remains to be verified
that successor stages preserve soundness. And here, evidently, we have to take a close
look at the clause for the anti-extension of B: if it is inconsistent to assume that a sen-
tence is made true, then this sentence is definitely unknowable. Now suppose that for
a given sentence A it is inconsistent that it is made true. Then there are two possi-
bilities. Either A is determinately false or A has no determinate truth-value. In the
former case A is, as a matter of course, definitely unknowable. But even in the latter
case, the only reasonable thing to say is that A is definitely unknowable, for a sen-
tence that has no determinate truth-value can never be known. So in either case A is
definitely unknowable. This appears to be a compelling argument for the soundness
of R 2.

3.2 Properties ofR 2 The extension of B remains constant at all stages of the rule
R 2. Therefore we easily obtain a generalization of Proposition 2.4.

Proposition 3.5 For all normal U extending S1
0, and for all β: I1 (B,U)+

β
⊆

I1 (T,U)+
β

, and I2 (B,U)+
β

⊆ I2 (T,U)+
β

.

Proof: The proof is the same as for Proposition 2.4. �
Note that we retrieve Proposition 2.4 from this more general proposition by taking
U = 〈

I1 (B)0 , I1 (T)0
〉
.

Proposition 3.6 R 2 is monotone in T and B.

Proof: By transfinite induction: first we note that R 1 always preserves monotonic-
ity when it is used as an auxiliary rule. For this we are using the fact that for all α,
I1 (B)−0 ⊆ I1 (B)−α+1. It then suffices to check that I2 (B)−α ⊆ I2 (B)−α+1 for all α.

Case 1: α = 0. Obvious.

Case 2: α = β+ 1. Let A ∈ I2 (B)−α . Then either A ∈ I2 (T)−α or for all normal U ⊇
S2

β: if U |=sv A, then there is a γ such that I1 (T,U)+γ is inconsistent. In the former
disjunct, we have A ∈ I2 (B)−α+1, since I2 (T)−α ⊆ I2 (T)−α+1 ⊆ I2 (B)−α+1. But the
latter disjunct is also acceptable. For take any normal U∗ ⊇ Sβ+1 such that U∗ |=sv A.
Since Sβ+1 ⊇ Sβ, we have U∗ ⊇ Sβ. So, by the inductive hypothesis, I1 (T,U∗)+γ is
inconsistent for some γ. So A ∈ I2 (B)−α+1.

Case 3: α is a limit ordinal γ. Then there is a smallest θ < γ such that A ∈ I2 (B)−β
for all β ≥ θ. Then either A ∈ I2 (T)−θ , whereby A ∈ I2 (T)−γ ⊆ I2 (T)−γ+1 ⊆
I2 (B)−γ+1, or for all normal U ⊇ Sθ: if U |=sv A, then I1 (T,U)+γ is inconsistent for
some γ. Now take any normal U∗ ⊇ Sγ such that U∗ |=sv A. Since Sγ ⊇ Sθ, we have
U∗ ⊇ Sθ. So by the inductive hypothesis, I1 (T,U∗)+γ must be inconsistent for some
γ. So for either disjunct we have A ∈ I2 (B)−γ+1. �

Proposition 3.7 For all α:

(a) I2 (T)+α ∩ I2 (T)−α = I2 (B)+α ∩ I2 (B)−α = ∅.

(b) For all β: I1
(
T, S2

α

)+
β

is consistent.

Proof: By a double induction. Suppose that there is a least α for which the property
fails. Then it must be a successor ordinal. Let β = α + 1 be the least such ordinal.
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Case 1: Suppose that part (a) of this property fails. Then either there is an A ∈
I2 (T)+

α+1 ∩ I2 (T)−α+1 or an A ∈ I2 (B)+
α+1 ∩ I2 (B)−α+1. The first of these possibil-

ities can be dismissed by the inductive hypothesis. So take any A ∈ I2 (B)+
α+1, and

suppose, for a reductio, that A ∈ I2 (B)−α+1. There are two possibilities.

Subcase 1: A ∈ I2 (T)−α+1. But since A ∈ I2 (B)+
α+1, we have A ∈ I2 (T)+

α+1 (by
Proposition 3.5). So we are contradicting the fact that I2 (T)+

α+1 ∩ I2 (T)−α+1 = ∅.

Subcase 2: We have for all normal U ⊇ Sα: if U |=sv A, then I1 (T,U)+
β

is incon-

sistent for some β. But since A ∈ I2 (B)+
α+1, we have A ∈ I2 (T)+

α+1. That means
that 〈I2 (B)α , I2 (T)α〉 |=sv A, that is, Sα |=sv A. So there must be a β such that
I1 (T, Sα)+

β
is inconsistent, contradicting part (b) of the inductive hypothesis.

Case 2: Suppose that part (b) of this property fails. We show that

I1
(
T, Sα+1

)+
γ

∩ I1
(
T, Sα+1

)−
γ

= I1
(
B, Sα+1

)+
γ

∩ I1
(
B, Sα+1

)−
γ

= ∅

for all γ. We proceed by an induction on γ (so this is the induction inside the main
induction). It suffices to look at successor ordinals, so suppose there is a least ordinal
γ = δ + 1 for which this property fails. By the inductive hypothesis we cannot have
an A ∈ I1

(
T, Sα+1

)+
γ

∩ I1
(
T, Sα+1

)−
γ

, so

Subcase 1: Suppose there is an

A ∈ I1
(
B, Sα+1

)+
δ+1 ∩ I1

(
B, Sα+1

)−
δ+1 .

If A ∈ I1
(
B, Sα+1

)+
δ+1, then A ∈ I1

(
T, Sα+1

)+
δ+1. So if A ∈ I1

(
B, Sα+1

)−
δ+1, then if

A ∈ I1
(
T, Sα+1

)−
δ+1, we would contradict the fact that I1

(
T, Sα+1

)+
γ

∩ I1
(
T, Sα+1

)−
γ

=
∅.

Subcase 2: It only remains to consider the possibility that A ∈ I1
(
B, Sα+1

)−
0 . But

this possibility is easily dismissed, since I1
(
B, Sα+1

)+
0 ∩ I1

(
B, Sα+1

)−
0 = ∅, and

I1
(
B, Sα+1

)+
0 = I1

(
B, Sα+1

)+
β

for all β. �

It follows from these propositions that R 2 has a consistent least fixed point which has
a model in the natural numbers.

Note that in R 2 there is real logical interaction between the knowability pred-
icate and the truth predicate: the anti-extension of B at α depends on putative later
extensions of T, and the anti-extension of B at α, of course, codetermines the exten-
sion of T at stage α + 1. The extension of the truth predicate is thereby enriched by
the anti-extension of the knowability predicate in a way that cannot be obtained in a
similar way in a language which has only one partial predicate (for truth). All this is
made possible by the conceptual relation between knowability and truth: knowabil-
ity entails truth, so not being definitely true entails being definitely unprovable (but
does not in general entail being definitely false!). Since this conceptual relation also
holds between necessity and truth, something similar can be done for a language with
partial predicates for truth and necessity.

Proposition 3.8 L,¬L ∈ I2 (B)−R 2
, where I2 (B)−R 2

is the anti-extension of B at
the least fixed point of R 2.
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Proof: Take any (normal) U ⊇ S0 such that U |=sv L. Extend U according to R 1

until you reach a least fixed point Uf . By monotonicity, Uf |=sv L. But we also have
Uf |=sv L ←→ ¬T (L). So we have Uf |=sv ¬T (L). Since Uf is a fixed point, we
have Uf |=sv ¬L, which gives us a contradiction. So L ∈ I2 (B)−1 , whence by mono-
tonicity we have L ∈ I2 (B)−R 2

. A similar argument yields that ¬L ∈ I2 (B)−R 2
. �

Note that we did not make use of the normality of U in this proof.

Proposition 3.9 ¬G ∈ I2 (B)−R 2
, K ∈ I2 (B)−R 2

.

Proof: This is similar to the proof of the previous proposition. �
The absolute Gödel sentence does not belong to the anti-extension of B at the least
fixed point of R 2.

Proposition 3.10 G /∈ I2 (B)−R 2
.

Proof: We must show that for each Sα, there is a normal U ⊇ Sα such that U |=sv G
and I1 (T,U)+

β
is consistent for each β. Consider an arbitrary Sα. We form a par-

tial structure U by adding G to the anti-extension of B of Sα. Then U |=sv ¬B (G),
whereby U |=sv G. Moreover, U is normal.

UB+ ∩ UB− = UT+ ∩ UT− = ∅. For otherwise G would belong to the extension
of B of Sα, whereby G would belong to the anti-extension of T of Sα, contradicting the
normality of Sα. Moreover, it is easy to see that the extension and the anti-extension
of B and T cannot become overlapping after an application of the successor clause of
R 1. Thus I1 (T,U)+

β
is consistent for each β. �

This, of course, implies that G does not come out true at the least fixed point of R 2.
In order to make the absolute Gödel sentence come out true at the least fixed point we
need to consider an inductive rule that is stronger than R 2.

3.3 The ruleR 3 The rule R 3 is defined exactly like R 2 except that the successor
clause for I (B)−α+1 now reads:

I3 (B)−α+1 = I3 (T)−α+1 ∪{
A | for all normal structures U ⊇ S3

α: if U |=sv B (A) ,
then there is a β such that I1 (T,U)+

β
is inconsistent

}

The motivating idea behind R 3 is that if it is inconsistent to assume that a sentence ϕ

is knowable, then ϕ is definitely unknowable. This rule will allow us to classify the
absolute Gödel sentence as definitely true.

3.4 Properties ofR 3

Proposition 3.11 R 3 is monotone in T and B.

Proof: The proof is the same as for Proposition 3.6. �
Proposition 3.12 If U is normal, then for all β: I3 (B,U)+

β
⊆ I3 (T,U)+

β
.

Proof: The proof is the same as for Proposition 3.5. �
Proposition 3.13 For all α:

(a) I3 (T)+α ∩ I3 (T)−α = I3 (B)+α ∩ I3 (B)−α = ∅.

(b) For all β: I1
(
T, S3

α

)+
β

is consistent.
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Proof: As with R 2 (Proposition 3.7), except for case 1, subcase 2, which now goes
as follows. We have for all normal U ⊇ Sα: if U |=sv B (A), then there is a β such
that I1 (T,U)+

β
is inconsistent. We have A ∈ I3 (B)+

α+1. But since the extension of

B does not grow at successor stages of R 3, we have A ∈ I3 (B)+α . This implies that
Sα = 〈I3 (B)α , I3 (T)α〉 |=sv B (A). Therefore there must be a β such that I1

(
T, S3

α

)+
β

is inconsistent, contradicting part (b) of the inductive hypothesis. �
It is easy to see that R 3 is at least as strong as R 2.

Proposition 3.14 For all A, if A ∈ I2 (T)+R 2
, then A ∈ I3 (T)+R 3

.

Proof: It suffices to note that, by normality, if for all normal U ⊇ S such that U |=sv

A there is a β such that I1 (T,U)+
β

is inconsistent, then if S ⊆ S∗, it must be the case

that for all U∗ ⊇ S∗ such that U∗ |=sv B (A) there is a β such that I1 (T,U∗)+β is in-
consistent. The result then follows by monotonicity. �
In fact, R 3 is stronger: it classifies the absolute Gödel sentence as true.

Proposition 3.15 G ∈ I3 (T)+R 3
.

Proof: Take any normal U ⊇ S0 such that U |=sv B (G). Extend U according to
R 1 until you reach a least fixed point Uf . By monotonicity we have Uf |=sv B (G).
And since U is normal, Uf is also normal. So G ∈ UT+

f . And since Uf is a fixed
point, we have Uf |=sv G. But we also have Uf |=sv G ←→ ¬B (G). So we have
Uf |=sv ¬B (G), which leaves us with a contradiction.

So G ∈ I3 (B)−1 . If we extend the process to a least fixed point, we still have G ∈
I3 (B)−R 3

, that is,
〈
I3 (B)R 3

, I3 (T)R 3

〉 |=sv ¬B (G). But since
〈
I3 (B)R 3

, I3 (T)R 3

〉
|=sv G ←→ ¬B (G), we have

〈
I3 (B)R 3

, I3 (T)R 3

〉 |=sv G. And since we are at a
fixed point, we have G ∈ I3 (T)+R 3

. �
G is an example of a sentence which is in I3 (B)−1 but not in I1 (B)−α for any α. By
using suitable coding techniques, for each successor stage α+ 1 which is smaller than
the closure ordinal of R 3, a new sentence can be found which is in I3 (B)−α+1 but
which does not belong to the anti-extension of B at any stage of the inductive rule
which is just like R 3 until stage α and like R 1 afterward.13 So there is a strong sense
in which R 3 is an extension of R 1. For instance, take the sentence G ′ such that

�PATB G ′ ←→ (¬B (G) → ¬B
(
G ′)) .

It is not hard to see that G ′ first enters the anti-extension of B of R 3 at stage 2. G ′

never enters the anti-extension of B of the rule which is like R 3 until stage 1 and like
R 1 afterward.

Proposition 3.16 ¬K ∈ I2(T)+R 3
.

Proof: Take any normal U ⊇ S0 such that U |=sv B(¬K). Extend U according to
R 1 until you reach a least fixed point Uf . By monotonicity, Uf |=sv B(¬K). Since U
is normal, Uf is also normal. So ¬K ∈ UT+

f . And since Uf is a fixed point, we have
Uf |=sv ¬K. But since Uf |=sv B(¬K) and since we have

Uf |=sv K ←→ B(¬K),

we also have Uf |=sv K. Contradiction.
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So ¬K ∈ I3(B)−1 , whereby ¬K must be an element of I3(B)−R � . So

〈I3(B)R 3
, I3(T)R 3

〉 |=sv ¬B(¬K).

Since also
〈I3(B)R 3

, I3(T)R 3
〉 |=sv K ←→ B(¬K),

we have 〈I3(B)R 3
, I3(T)R 3

〉 |=sv ¬K. And since 〈I3(B)R 3
, I3(T)R 3

〉 is a fixed point,
we have ¬K ∈ I3(T)+R 3

. �
So the least fixed point of R 3 makes the absolute knower sentence come out false,
which is in line with our intuitions about this sentence.

Sentences involving iterated knowability predicates behave in essentially the
same way. For instance, take a sentence K ′ such that it is provable in PATB that
K ′ ←→ BB(¬K ′). An argument much like the previous one shows that ¬K ′ is also
in the extension of the truth predicate at the least fixed point of R 3. Again, this is in
line with our intuitions about such sentences.

3.5 On the philosophical motivation ofR 3 The philosophical argument that was
given in Section 3.1 for the intuitive soundness of R 2 does not carry over to the
stronger rule R 3. Prima facie the fact that it is inconsistent for a sentence A to be
knowable does not by itself ensure that it is definitely unknowable. For how can we
be sure that in such cases there always is a fact of the matter whether A is knowable?

I will argue against this that R 3’s successor clause for the extension of B does
have a considerable degree of plausibility. Nevertheless, the support that I am able
to give for R 3 is admittedly significantly weaker than the philosophical support that
was adduced for R 2.

R 3 can be motivated by means of a comparison with the kind of reasoning that
is involved in our evaluation of the liar sentence:

L Sentence L is not true.

Using the left-to-right direction (T (L) → L) of the naı̈ve Tarskian truth scheme, we
see that it is inconsistent to assume that L is true. In normal circumstances this would
be taken as ample reason to conclude that L is false. After all, this would just be a
simple instance of a reduction ad absurdum inference. But in the present case there
are overriding reasons against drawing this inference. For we can use the right-to-left
direction (L → T (L)) of the Tarskian truth scheme to show that it is equally incon-
sistent to hold that L is false. Hence, we conclude in a Kripkean spirit that L has no
determinate truth value.

Compare this with an evaluation of the absolute Gödel sentence:

G Sentence G is subjectively unknowable.

We have seen in Section 2.4 how an instance of the reflexivity principle B (A) → A
can be used to show that it is inconsistent to assume that G is subjectively knowable.
Thus we are again strongly tempted to conclude from our reductio that G should be
classified as subjectively unknowable. And this time there is no overriding reason to
resist this temptation. For to argue, by analogy with our argument concerning the liar
sentence, that it is also inconsistent to hold that G is unknowable, one would need to
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appeal to the converse A → B (A) of the reflection principle for subjective knowa-
bility. But this is a principle that has very little intuitive appeal.

In this way one obtains the impression that there can be no overriding reasons
against concluding from the inconsistency of the knowability of a sentence to its de-
terminate unknowability (unlike the parallel situation for the notion of truth). And
in the absence of such overriding considerations, one ought not to resist the intuitive
pull of reductio ad absurdum-type of inference patterns. In sum, since we have evi-
dence for it (its intuitive plausibility) and no threat of overriding evidence against it
(inconsistencies), we have good reasons to believe the clause for the anti-extension
of B to be intuitively sound.

So we have good reasons for believing that R 3 is indeed a coherent inductive
rule and that it classifies certain paradoxical sentences in what appears to be the
“right” way. Of course, it does not follow from this that, perhaps in the context of
some additional justifiable constraints, R 3 does not classify some other paradoxical
sentences in the “wrong” way (although I have been unable to come up with such
examples). As was said before, there is no getting away from the fact that R 2 is sub-
stantially more secure than R 3.

3.6 Further issues and open problems It would seem that the rules R 2 and R 3

give rise to a hierarchy of inductive rules. In R 2, for instance, R 1 is used as an aux-
iliary rule. But since we now know R 2 to be an unobjectionable inductive rule, the
rule R 2′ , which is just like R 2 except that its auxiliary rule is R 2 instead of R 1, is
also unobjectionable, and so on. It is clear that the resulting hierarchy of inductive
rules must have a least fixed point. But I am at present unable to see whether there
are sentences in the extension of the truth predicate according to R 2′ which are not
also in the extension of the truth predicate according to R 2. In other words, for all I
know this hierarchy of inductive rules may reach a fixed point very quickly.

Of course there are complexity questions even for R 2 and R 3. On the one hand,
their extensions are at least as complex as the extension of T in the least fixed model
of the classical Kripkean construction with supervaluations, so they are at least 	1

1
(see Burgess [4]). But they are also at most 	1

1, because any inductively defined set
(over the standard model of arithmetic) is 	1

1, even if inductive definitions are iterated
(see e.g., [7], pp. 89–90). So their complexity is exactly 	1

1.14

In the inductive rules that we have considered, the extension of B was kept con-
stant at all stages. If we would concentrate on necessity instead of knowability, things
would be somewhat different. First, it would seem to be more natural to work with a
Kleene scheme than with supervaluations. But second, we could let the extension of
the necessity predicate coincide with the extension of the truth predicate at all stages.
For if a sentence ϕ of LPATB is definitely true, then it is so in virtue of facts about
the natural numbers and facts about the logical properties of truth and necessity. But
since these facts are all necessary, ϕ must be necessary also. So the extension of the
necessity predicate would be as complex as the extension of the truth predicate.

4 Comparison with context-sensitive approachesContext-sensitive theories of
the paradoxes have been proposed in order to validate certain types of intuitively
correct strengthened-liar-type reasoning concerning semantic and epistemic notions.
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The way in which they are able to deal with the epistemic paradoxes is generally con-
sidered one of the strengths of these approaches.15 Within the context-sensitive tradi-
tion there are several proposals as to how the epistemic paradoxes should be handled.
In Burge’s and in Gaifman’s versions of the theory, truth and falsehood accrues to to-
kens of sentences. On such an account the sentence token,

G Sentence G is subjectively unknowable.

has no truth-value, but by that very fact a distinct token of the sentence type will be
true ([9], p. 125). On Barwise and Etchemendy’s Austinian account, truth and fal-
sity accrues to propositions which have an implicit situation index built in. On this
account, the proposition expressed by G asserts that its own knowability is not con-
tained in the situation s to which G is restricted. This proposition is considered true,
but the proof witnessing that it is true does not belong to situation s ([9], p. 128). The
fact witnessing the truth of G does, however, belong to a more comprehensive situa-
tion s′. A similar analysis is given of other intuitively paradoxical epistemic sentences
such as the knower sentence.

It would appear at first sight that—short of moving up to the metalanguage—
the context-insensitive theories would find it difficult to recognize a sense in which
sentences such as the absolute Gödel sentence and the knower sentence have a def-
inite truth-value. For instance in [11], which purports to give a Kripkean, context-
insensitive theory of knowledge, the absolute Gödel sentence and the knower sen-
tence are left without a truth-value.

Nevertheless, the context-insensitive theory that was sketched in the present pa-
per yields evaluations that are more in consonance with the strengthened-liar-type
evaluations of the context-sensitive approaches. On this account the absolute Gödel
sentence is definitely true and the knower sentence is definitely false. But the proofs
of these facts are inaccessible to the knowing agent: the truth of the absolute Gödel
sentence and the falsity of the knower sentence cannot be established “from the in-
side.”

Acknowledgments I am indebted to Tony Anderson, John Burgess, Igor Douven, Herman
Roelants, Albert Visser, and two anonymous referees for valuable comments on earlier ver-
sions of this paper. The research for this paper was supported by a postdoctoral fellowship of
the Fund for Scientific Research (Flanders), which is gratefully acknowledged.

NOTES

1. Morgenstern [11] also explores a Kripkean approach to knowability. However, her ap-
proach differs substaintially from the theory that is developed here (cf. Section 4).

2. For a discussion of the notion of subjective knowability, see Koons [9], p. 46 ff.

3. Thanks to Albert Visser for pointing this out.

4. A referee pointed out that due to the transfinite character of R 0 it is not immediately clear
that even the successor clause of R 0 for B is not too strong. This becomes obvious only
when we see that at transfinite stages no new sentences are added to the extension of B.

5. He calls the resulting theory KFT .

6. VF stands for a ‘van Fraassen’. For a detailed description and a proof-theoretic inves-
tigation of VF , see Cantini [5].
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7. Koons [9] explores an extension of the Kripke-Feferman system with axioms that govern
the notion of subjective knowability ([9], pp. 124–26).

8. For instance, one question concerning such systems that would arise is the following:
what is the proof-theoretic strength of the intuitionistic theory that is entailed by such a
system under Gödel’s modal translation from intuitionistic to (epistemic) classical the-
ories?

9. Otherwise our inductive rules would be badly synchronized, in the sense that there would
be stages of the rules at which not everything that is definitely knowable would also be
definitely true.

10. Note the similarity between this argument and the standard argument that establishes the
truth of the Gödel sentence for, say, Peano Arithmetic.

11. Kaplan and Montague [8] have used this sentence to generate an epistemic paradox: the
so-called Paradox of the Knower.

12. Note the similarity between this argument and the standard argument that establishes the
falsity of the so-called Jeroslow sentence for, say, Peano Arithmetic.

13. This holds also with R 2 substituted for R 3.

14. Thanks to an anonymous referee for pointing this out.

15. See Anderson [1], Burge [3], and Gaifman [6]. Koons [9] is an excellent survey of ap-
plications of context-sensitive approaches to epistemic and doxastic paradoxes.

REFERENCES

[1] Anderson, C. A., “The paradox of the knower,” The Journal of Philosophy, vol. 80
(1983), pp. 338–55.

[2] Barwise, J., and J. Etchemendy, The Liar, Oxford University Press, Oxford, 1987.

[3] Burge, T., “Epistemic paradox,” The Journal of Philosophy, vol. 81 (1984), pp. 5–29.

[4] Burgess, J., “The truth is never simple,” The Journal of Symbolic Logic, vol. 51 (1986),
pp. 663–81.

[5] Cantini, A., “A theory of formal truth arithmetically equivalent to I D1,” The Journal of
Symbolic Logic, vol. 55 (1990), pp. 244–59.

[6] Gaifman, H., “Pointers to truth,” The Journal of Philosophy, vol. 89 (1992), pp. 223–
61.

[7] Hinman, P., Recursion–Theoretic Hierarchies, Springer–Verlag, New York, 1978.

[8] Kaplan, D., and R. Montague, “A paradox regained,” Notre Dame Journal of Formal
Logic, vol. 1 (1960), pp. 79–90.

[9] Koons, R. C., Paradoxes of Belief and Strategic Rationality, Cambridge, Cambridge
University Press, 1992.

[10] Kripke, S., “Outline of a theory of truth,” pp. 53–81 in Recent Essays on Truth and the
Liar Paradox, edited by R. Martin, Oxford, Oxford University Press, 1984.

[11] Morgenstern, L., “A first-order theory of planning, knowledge and action,” pp. 99–114
in Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 1986 Con-
ference, edited by J. Halpern, Morgan Kaufman, Los Altos, 1986.



UNKNOWABILITY AND TRUTH 405

[12] Reinhardt, W., “Some remarks on extending and interpreting theories with a partial
predicate for truth,” Journal of Philosophical Logic, vol. 15 (1986), pp. 219–51.

Department of Philosophy
University of Leuven
Kardinaal Mercierplein 2
B–3000 Leuven
BELGIUM
email: Leon.Horsten@hiw.kuleuven.ac.be


