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Vom Zählen zu den Zahlen: On the Relation Between
Computation and Arithmetical Structuralism†

Leon Horsten∗

This paper sketches an answer to the question how we, in our arithmeti-
cal practice, succeed in singling out the natural-number structure as our
intended interpretation. It is argued that we bring this about by a combi-
nation of what we assert about the natural-number structure on the one
hand, and our computational capacities on the other hand.

In our article ‘Computational structuralism’ [Halbach and Horsten, 2005],
Volker Halbach and I argued that the intended models of arithmetic
are determined, in part, by our computational practice. The position
that we developed and defended was an elaboration of a suggestion
made in [Horsten, 2001, p. 126]. I still stand by the main thesis of
[Halbach and Horsten, 2005], when appropriately understood. But I am
dissatisfied with the way in which we argued our case. The present article
is an attempt to do better. The principal aim is to get the view expressed
there, at least as I interpreted it, across better.

The most important weakness of [Halbach and Horsten, 2005] is that
we did not always keep the question that we wanted to answer firmly in
focus throughout the paper. Perhaps this was caused by a lack of con-
fidence on the part of the authors. Anyhow, it resulted in giving undue
attention to objections that really missed the mark, and failing to give due
attention to aspects of matters that were central to the matter at hand.

I will not critically review the arguments in [Halbach and Horsten,
2005] here. Instead, I will try to tell the story of computational structural-
ism afresh. And I do not claim that Volker Halbach would agree with the
theses or with the arguments that I will formulate in this paper.
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276 HORSTEN

I

I will not have much to say about structuralism applied to disciplines
other than arithmetic. The structuralist credo, applied to arithmetic, can
be expressed as follows:

Thesis 1. Arithmetic is about one single structure: the structure of the
natural numbers.1

If we accept this thesis, then there are several philosophical questions
that arise, among which are the following:

1. How do we know that arithmetic is about one single structure?
2. What is the nature of this single structure?
3. How do we manage to single out this structure?

These questions should not be conflated. Although they are of course
related, one answer does not fit all. The first is an epistemological ques-
tion. The second is a metaphysical question. The third is a reference-fixing
question [Horsten, 2010, section 4].

The third question is the only one that will be addressed in this paper.
It is not primarily one of term reference. The question is not simply how it
comes about, for instance, that the numeral ‘2’ refers to the number 2 rather
than the number 37. The question is how we come to be able to constrain
what we are talking about when we do arithmetic at least to elements of an
isomorphism type. This question is an aspect of a philosophical problem
that Hodes expresses eloquently:

. . . the phenomena of word reference and of speaker reference,
and our referential abilities themselves, have a microstructure about
which we can give an informative account. . . . The challenge to the
mathematical-object theorist is: Tell us about the microstructure of
reference to, e.g., cardinal numbers. In what does our ability to refer
to such objects consist? What are the facts about our linguistic prac-
tice by virtue of which expressions in our language designate such
objects and the concepts under which they fall or fail to fall? [Hodes,
1984, p. 126]

I will not be concerned with cardinal numbers in general, but with the
natural numbers only. And I will pose this question not in the framework
of mathematical-object theory, but in the context of mathematical struc-
turalism. So for me, Hodes’s question takes roughly the following form:

Question 1. How do we manage to single out the structure of the natural
numbers as the interpretation of our arithmetical vocabulary?

1 Here, as well as in Question 1 below, I am using the term ‘structure’ in a non-
committing way, as being neutral between an ante rem and in rebus interpretation.
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VOM ZÄHLEN ZU DEN ZAHLEN 277

In addressing this question, I will adopt the ‘paradigmatic view of sci-
entific theories’, according to which a science, so also arithmetic, is more
than a list of axioms. I take arithmetic to be a human practice. Ordinary
people have for ages been using arithmetic for all kinds of purposes. But at
some point a class has emerged that is occupied with arithmetic in a profes-
sional way: the mathematicians. Lay people defer to the mathematicians as
specialists about the natural numbers. So the mathematicians’ professional
activity of computing on the natural numbers and proving facts about the
natural numbers forms part of arithmetical practice.

This will turn out to be of some importance in what follows. I do not
wish to presume that there is only one way in which the structure of the
natural numbers can be singled out (as we will see). But on one traditional
way of looking at the problem, it is somewhat mysterious how it can be
done at all.

The traditional answer to the reference-fixing question is that we single
out structures by what we assert about them. McGee formulates this as
follows:

What we learn when we learn mathematical vocabulary, apart from
learning how to count and measure, is a body of mathematical theory.
What else could the answer be? The meaning of a mathematical term
is wholly dependent upon our use of the term . . . and our practical
uses of the term aren’t enough to determine the truth values; so what
else is left but our use of the term in theorizing? [McGee, 1997, p. 40]

According to the received view, when we try to explicate what we assert
about the intended structure of arithmetic and regiment it, we arrive at first-
order Peano arithmetic (PA1). McGee goes further and claims that when
we accept the principle of mathematical induction, we implicitly commit
ourselves to accepting instances of the induction principle that belong to
any possible first-order extension of the language of arithmetic. If for every
set there is some such extension containing a predicate true of exactly the
elements of the set, then this amounts to postulating the full second-order
induction axiom. If not, if for instance only denumerably many sets are
nameable in some such extension, then this strategy does not suffice to
exclude nonstandard models. I will come back later in this article to the
strategy of appealing to second-order logic (as is done, for example, in
[Shapiro, 2000]). For now, let us go along with conventional wisdom.

Then PA1 is seen as more than a collection of strings of symbols. It
is assumed that PA1 is intended to be about some domain(s) of discourse,
that predicates have subsets of the domain as their extension and so on,
and that the logical symbols have their usual fixed interpretation. This is
the sense in which we take PA1 to be interpreted by first-order models.
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278 HORSTEN

In fact, this is something that needs to be argued for (and some arguments
have been given), but in the dialectic, this is often simply taken for granted.
It follows from the compactness theorem that PA1 has many models, even
many denumerably infinite ones, that are not isomorphic with each other.
So we have failed to single out the structure of the natural numbers.

Now we could, with Skolem or Putnam perhaps, acquiesce in this con-
clusion, and deny that arithmetic has an intended interpretation that is
unique up to isomorphism [Putnam, 1980]. But I will do the opposite. I will
presume that we can isolate the natural-number structure in our referential
practice. So I will have no qualms about referring to the natural num-
bers and operations on them in my philosophical account. The question
addressed in this article is how we have managed to refer to the natural-
number structure: how has our reference to the natural-number structure
come about?

II

We referentially determine the natural-number structure in our arithmeti-
cal practice. What we assert — the finished product so to speak — plays
an important role. And PA1 does a decent job of capturing what we assert
in arithmetic, at least since the age of Fermat. By focussing on arithmetic
since the age of Fermat, it is implied that some induction is assumed. I
shall argue that before use of mathematical induction was at least implicit
in arithmetical practice — whenever that was — a single structure was
probably not singled out by our arithmetic practice. Less than full arith-
metical induction is needed for my argumentation to go through.2 But I
will set this matter aside, and for simplicity’s sake assume full PA1.

As we have seen, asserting PA1 does not suffice. It merely restricts us
to PA1-models M of signature 〈D, sM , +M , ×M〉, say. The extra ingredient
whereby we fix the intended structures is related to the fact that numbers
are entities that mathematicians calculate on or with. We can calculate
scores of arithmetical functions. Addition is one of the most elemen-
tary functions that we can calculate. We have learned a simple algorithm
that allows us in principle to calculate arbitrarily large sums of natural
numbers.

The sense in which addition is algorithmically computable is not to be
understood as Turing-computability or μ-recursiveness. What is operative
here is the pre-theoretical practical sense of computability which has moti-
vated the mathematical definitions of computability. It is a practical notion
of computing on strings of symbols. This capacity of algorithmically

2 See [Halbach and Horsten, 2005, p. 185].
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VOM ZÄHLEN ZU DEN ZAHLEN 279

calculating on strings of symbols is itself rooted in a more primitive
capacity of engaging in rule-governed behaviour.

It may sound trite that we calculate with or on the natural numbers — I
certainly hope it does. But on standard ante rem structuralist accounts, this
is strictly speaking a category mistake. We (and our abstract alter egos: the
Turing machines) calculate with or on representations, on numerals, but
not on the numbers themselves. After all, in a computation use is made of
the internal structure of the objects on which we compute. On an ante rem
structuralist picture, numbers do not have any internal structure. So there
is no room for the structuralist to bring in any constraint of calculability
— at least not directly.

It is not enough for the objects of the domain of a model to have inter-
nal structure for computation to be possible. Consider the following unin-
tended model O . The domain of O consists of a denumerably infinite set
of physical objects chosen in an arbitrary way from the universe: a shoe,
a cat’s hair, a star from the crab nebula, some mud, the mereological sum
of the star and the cat’s hair,. . . . Every object in the domain plays the role
of a standard number, but the successor function is random: the star is the
zero, the mud is the number 1, . . . . The operations + and × are defined
from the successor function in the usual way. Now even though O is in
fact isomorphic to N, the successor function, addition, and multiplication
are not computable in any recognisable sense.

For any of the standard in rebus structuralist accounts, the system O is
as much an intended system as the system of the standard arabic numerals
with the successor, addition, and multiplication relations defined on them
in the expected way. Indeed, it would seem that the systems isomorphic to
N that we can compute on (in any recognisable sense of computation) are
quite exceptional. Therefore we may conclude that on standard in rebus
structuralist accounts, it is impossible to calculate with or on most systems
of objects that play the role of the natural numbers.

The objects that we do compute with are structured expressions that
belong to notation systems: we call them numerals. The numerals that
we use (the Hindu-Arabic numerals, the Roman numerals, the binary
numerals) are recursively generated. Not all recursive notation systems
are intended either. Consider our ordinary Arabic notation system. Now
permute the numerals in some highly non-recursive way, so that, e.g., ‘12’
becomes the successor of ‘231’, and so on. Then the successor function
and the addition function on this randomised notation system are not com-
putable anymore. The numerical systems that we do successfully use are
not only recursively generated; they are ordered in such a way that ele-
mentary arithmetical functions are computable on them.

When actual computers calculate, they use token numerals rather than
types. This is also what we humans do when we compute on a piece
of paper. Presumably there are only finitely many numeral tokens in the
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universe; so not every multiplication of natural numbers can in fact be
computed. When we idealise from actual computers to Turing machines,
we move from token numerals to types. A similar thing happens when we
idealise away from actual human computation, leaving the boundedness
of our memory behind. But the important thing is that the algorithms that
actual and idealised computers and computors follow, exploit the internal
structure of the numerals.

Computability can be defined number-theoretically, using Kleene’s
T -predicate and U function symbol, for instance. This allows us to bypass
the complication that strictly speaking humans and abstract computing
devices compute on strings of symbols. But I propose to take folk wis-
dom more literally. If we really calculate on numbers, then the domains of
the models that are singled out in our arithmetical practice are composed of
expressions: symbolic entities that have internal structure, and that belong
to a recursively generated notation system with a finite basis.

One thing we have learned at our mother’s knee is how to use an
algorithm for computing arbitrary sums of integers. The algorithm we use
will be dependent in part on which notation system for the natural numbers
that we use (Roman, Arabic, binary, . . . ). But we all use an algorithm for
computing sums.

This aspect of our arithmetical practice gives us a handle on the refer-
ence fixing problem. Here is my thesis about the way in which we have
narrowed down the reference of our arithmetical vocabulary:

Thesis 2. The reference of our arithmetical vocabulary is determined by
our principles of arithmetic together with our use of an algorithm for com-
puting sums.

For one thing, this means that intended models have to be denumerable,
otherwise it would not make sense to say that we can compute on them
in the ordinary sense of the word. So intended models M of arithmetic
are denumerable models of signature 〈D, sM , +M , ×M〉, say, satisfying the
principles of Peano arithmetic and such that there is at least an algorithm
for carrying out the operation +M .

Tennenbaum’s theorem says that all models of Peano arithmetic in
which the addition function is Turing-computable, are isomorphic to the
standard natural-numbers structure [Tennenbaum, 1959]. So if we assume
Church’s Thesis, then we can appeal to Tennenbaum’s theorem to claim
that the models that are intended according to Thesis 2 are all isomorphic
to the natural numbers.3 (Indeed, it is not hard to see that these intended
models are pairwise recursively isomorphic.) So there are two factors,

3 I am here only sketching the argument on the basis of a rough statement of Tennen-
baum’s theorem. For a more detailed discussion, see [Halbach and Horsten, 2005, §§ 2 and
3].
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inherent in arithmetical practice, that conspire so as to enable us to single
out the natural numbers structure in our referential practice. Firstly, num-
ber candidates form symbolic systems that make our numerical assertions
true. Secondly, number candidates are entities that we can calculate with.

Incidentally, settling on an effective method for deciding the succes-
sor relation on the domain of notations is not enough to fix the reference
of our arithmetical vocabulary, for there exist nonstandard models with a
recursive successor relation [Kaye, 1991, p. 157, Exercise 11.10].

Over and above using an algorithm for computing sums, most of us
know that we are using an effective method for computing sums. But such
a reflexive awareness plays no role in the account of reference fixing that
was given above. Knowing that we have an algorithm for computing sums
is not needed to fix on the structure of the natural numbers: it suffices
simply to adopt the algorithm.

III

If one is of an in rebus persuasion, and one is sympathetic to what I have
said so far, then the story pretty much ends here. All the appropriate nota-
tion systems are on a par. Arithmetic is about any one of these models as
much as about any other of them. Or, alternatively, one can say that an
arithmetical assertion involves tacit quantifications over all systems that
satisfy the relevant structural characterisation.

Since the domain of every intended model is a notation system, the
structuralist view that I am proposing has a formalist air to it. Nevertheless,
it certainly cannot be identified with standard formalism, for the number
one is no more identified with the Arabic numeral ‘1’ than with the Roman
numeral ‘I’. Indeed, there is no single ‘real’ number one.

Many in rebus structuralists have nominalistic leanings. Nominalistic
structuralists will insist that the domains of the intended models invariably
consist of concrete entities. Those nominalists who do not eschew modal
notions, need not restrict themselves to actual concrete objects: they may
throw in possible objects to boot.

But a nominalist line is by no means forced upon the in rebus com-
putational structuralist. She may be happy to allow notations to be ‘light’
abstract objects, i.e., abstract objects that are close to concrete entities,
such as the expression types of which concrete inscriptions are instantia-
tions. Of course it is then incumbent on such an in rebus structuralist to tell
a credible story about what it means for humans and machines to compute
on or with types of inscriptions.

Suppose one feels comfortable with reifying abstract signs from con-
crete inscriptions. Then it is but a small step to abstract an ante rem — or
would it be better to say ‘post rem’? — natural-number structure consisting
of positions without internal structure and which feature only relations
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to other positions in the same structure. Thus we can widen the class of
intended models from the recursive isomorphism type generated by the
Arabic numerals to the full class of all ω-sequences, as Benacerraf urges us
to do [1996]. We may even jettison the formerly intended models of arith-
metic and insist that arithmetic is exclusively about this single ante rem
structure. The trade-off is clear. The in rebus structuralist faces a choice
between two options neither of which is very attractive: she can opt for a
slightly dodgy ‘multiple reference’ doctrine of arithmetic, or commit her-
self to the claim that the logical form of arithmetical statements differs
from its surface grammatical form. If arithmetic is about a single ante rem
structure, then this choice is avoided. But if we say that arithmetic is about
the single ante rem structure that all systems (abstract and concrete) have
in common, then we lose the ability to say that we compute on the natural
numbers, for this structure consists of positions without internal structure.
We can only compute on the instantiations of the real natural numbers, for
only these shadowy creatures sport internal structure.

IV

In conversation, Øystein Linnebo posed the following problem for the
computational structuralist. If we are allowed to make free use of what
we say about the natural numbers and what we are able to do with the nat-
ural numbers, then there may be a simpler thesis about how the reference
of our arithmetical language is determined:

Thesis 3. The reference of our arithmetical vocabulary is determined by
our principles of arithmetic together with our ability to count up to every
natural number.

If Thesis 2 is acceptable, then, it appears, Thesis 3 is acceptable, too.
After all, we are able in principle to count up to every natural number. We
learn to count out indefinitely long initial segments of the natural numbers
at a very early age.

Moreover, Thesis 3 gets the models right, at least up to isomorphism.
There presumably is a minimum finite amount of time that it takes to count
out a natural number. And the structure of time is that of the reals. So
we could not possibly count up to a nonstandard number. (Some sort of
caveat may have to be made here for weird space-times with ordinary finite
computors spiraling around black holes;4 that is not clear to me, but let us
leave those aside.)

An advantage of Thesis 3 is that it leaves out this business about
Tennenbaum’s theorem altogether. In that sense, it seems a much simpler

4 This scenario was first entertained in [Pitowski, 1990]. For a good overview of the
literature to which this gave rise, see [Welch, 2011].
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and more straightforward proposal. If anything, it seems to make nailing
down the intended models an altogether trivial affair. Also, if matters are
as Thesis 3 has them, then we need not assume that we are asserting any
induction principles at all in arithmetical practice. It suffices that we accept
the recursive axioms of addition and multiplication (and the successor
axioms).

We do indeed learn at a very tender age how effectively to count
out indefinitely many numbers. We learn that the natural numbers are
0, 1, 2, . . . , 9, 10, 11, . . . , 100, 101, and so on. The question is how the
‘and so on’ should be understood. What is understood by the child is that
you can go on as long as you like (using the recursive notation system):
you always get natural numbers.

If the teacher is of the strict and rigorous type, then she might even want
to go further. In an attempt to make absolutely sure that unintended inter-
pretations of natural-number talk are excluded, she may add, after teaching
the children to count out indefinitely many natural numbers:

. . . and that is all the natural numbers there are. All the natural num-
bers can be counted up to in this way.

By this assertion the teacher implicitly conveys to her pupils the informa-
tion that her desk, for instance, is not a natural number; it is not the sort of
thing that will ever be counted out in this way.

One may wonder if the teacher’s assertion is not sufficient to exclude
all nonstandard interpretations of the child’s idiolect. To repeat, if it is
reasonable to suppose that future-directed time is structured as the half-
line [0, ∞), and if there is a fixed minimal amount of time that is required
to count out a number, then only standard numerals can in principle be
counted out.5

In order for the teacher’s assertion to constrain the admissible interpre-
tations of the child’s idiolect to an isomorphism type, nature must play its
part (by having a time dimension that is structured in the right way, and so
on). But the child also has to do something: she has to take on board what
the teacher says. And for her to do this, she has to understand fully the
content of the teacher’s assertion. But the child can only take this content
fully on board if she already has the standard natural-number concept. She
must already understand that the moments at which numerals are counted
out are ordered like the standard natural numbers. She must know what it
means that for every natural number there is a finite linearly ordered set of
moments such that at the last of these, the number is counted out. But the
child does not have the required conceptual machinery yet.

5 I do not here consider the possibility in principle, if it is one, to count faster and faster,
so that before a fixed moment in time all the standard numerals have been counted out.
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Suppose that the child can in principle count out arbitrarily long initial
segments of the natural numbers. And suppose that for any two numerals,
the child is able to tell whether the second of them ‘gives us’ the successor
of the first one. Then even if she assents to the standard axioms for addition
and multiplication, non-standard models are still possible interpretations of
her idiolect. But if we are also convinced that the child has mastered the
algorithm for addition, then we must conclude that she has in her language
singled out the natural-number structure.

Mastery of the enumeration procedure for counting out the natural
numbers is not sufficient in the context of Peano arithmetic to single out
the natural-number structure. It does not guarantee that the domain of
discourse exhausts the standard natural numbers. How is it different for
addition? How does our arithmetical practice guarantee that our addition
algorithm is total? The answer is that it is part of the child’s elementary
instruction. Her teacher says: ‘In order to find the sum of any two natural
numbers, this is what you do: . . .’. So the mastery of the algorithm for
addition entails that the addition operation singled out in the idiolect of
the child is total and computable. If it is not total, then the child has not
completely mastered the algorithm. If it is not computable, then the child
has not mastered an algorithm for it.

The child will never be able to present conclusive evidence that she is
able to count out arbitrarily long initial segments of the natural numbers,
nor that she is capable in principle of adding arbitrary natural numbers.
And in this respect, the mathematical community as a whole is no better
off than the child of five. Thus a Kripkensteinian sceptic may refuse to
admit that we are ever able to single out the natural-numbers structure by
anything that we do [Kripke, 1982]. I do not have anything to add to the
vast literature on the tenability of this radically sceptical stance. Here, I
presume that it is reasonable to attribute to a person the ability to count
out arbitrarily large initial segments of the natural numbers and to have an
algorithm for addition.

The child need not have any reflective knowledge about her algorith-
mic addition powers. She just has to know what to do in response to the
teacher’s instructions (such as ‘28, 23: add!’). When the child has acquired
the right disposition, the admissible interpretations of her natural-number
talk are restricted to an isomorphism type.6 Here, too, there is a part that the
world has to do, and a part that the child has to do. The world has to ensure
that the algorithm terminates in a finite number of steps; the child has to
master the algorithm. But, unlike fully taking on board what the teacher
says when she says ‘and that is all the numbers there are’, the child can

6 It is not easy to give an exhaustive philosophical account of what it means to have a
disposition to respond to input according to a rule. But that is a philosophical problem that
I am not addressing here.
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do this without first having to come to understand somewhat sophisticated
concepts (such as the concept of finiteness). The child does not need to
know that her method always works; she may even not yet possess the
concept of a method or the notion of finiteness that is involved in it.

Of course the teacher could, instead of teaching the child how to add,
explain from the outset that the natural numbers are given by the smallest
collection closed under the recursive operations for generating numerals.
I assume that the child can take this on board.7 And when she does, the
admissible interpretations of her idiolect are appropriately constrained. It
also allows the child to grasp fully the content of the assertion ‘. . . and that
is all the natural numbers there are’. However, this is not the way things are
typically done. For such an explication to have a sufficiently determinate
meaning for the child, some elements of set theory have to be in place.
Something like the operation of taking intersections of infinite sets needs
to be grasped. The teacher can indeed explain this if she so chooses. But
I maintain that in our world, the interpretation of the child’s arithmetical
vocabulary is not narrowed down in this way.

It is sometimes argued that a mastery of the concept of set is not neces-
sary for something like the above explanation to succeed. Understanding
of plural talk in English may suffice to obtain the required result; we may
be allowed the benefits of a ‘second-order’ account without committing
ourselves to sets [Boolos, 1984]. This line of thought has given rise to an
extensive debate in the literature, to which I have little to add. But even if
plural talk is not merely talk about collections in disguise, the plural story
will have to be structurally similar to the set-theoretic story given above
[Linnebo, 2003]. And I do maintain that a story with this structure is usu-
ally given to a child only after she has been taught a method for adding
natural numbers.

In sum, at the level of speaker’s reference, the intended models typi-
cally are restricted to an isomorphism type by first learning to count out
the numerals, then to learn how to execute elementary operations algo-
rithmically, and subsequently to accept a degree of mathematical induc-
tion. Even though learning how to to count out the natural numbers in the
natural order comes even earlier in a child’s development than learning
how to add and accepting the principle of mathematical induction, it is not
this ability to count out the natural numbers that fixes the natural-numbers
structure as the reference of the child’s arithmetical vocabulary.

At the level of word meaning, the account that I have been defending
has implications for the historical development of the meaning of our
arithmetical words. After all, reference fixing is a historical process. The

7 Of course a philosophical account has to be given of how the child acquires a suffi-
ciently standard concept of set and and of operations on (infinite) sets. But the onus is not
on me to give this explanation.
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descriptive claims entailed by my account are the following. At some very
early stage in history, humans constructed recursive notation systems for
natural numbers. At some later point, elementary algorithmic operations
were introduced (addition, multiplication) and it was realised that they sat-
isfy certain principles. Even at that point the interpretation of arithmetical
vocabulary had not been narrowed down to an isomorphism type. This
happened only when (relatively modest) mathematical induction princi-
ples became accepted principles of mathematical practice. But this does
mean that non-standard models were excluded well before Dedekind and
others asserted that the full second-order induction axiom governs the nat-
ural numbers.

Our determination of the interpretation of the language of mathemat-
ical analysis is a wholly different matter. Modern mathematical analysis
is a much more abstract discipline than arithmetic. Concerning our deter-
mination of the interpretation of our analytical vocabulary, a story involv-
ing second-order logic or set theory may well have to be told. But the
interpretation of our arithmetical language was already determined before
the mathematical community had a passable understanding of set-theoretic
notions.

V

If we did not have an algorithm for computing sums, then we could never
have learned how in principle to add arbitrary natural numbers. But we
have learned how to compute sums.

How do we know that we can algorithmically calculate arbitrary sums?
How do we know that all our additions of natural numbers are (finitely)
terminating calculations?

The immediate answer is that we can actually prove that they do
[Halbach and Horsten, 2005, p. 179]. We take our algorithm for comput-
ing sums, translate it in (or regiment it as) a Turing machine, and prove in
arithmetic that its computations always finitely terminate.

As noted in Section 2, Church’s Thesis is assumed in this line of reason-
ing. Church’s Thesis is widely regarded as correct. Even though it cannot
be proved mathematically, it is strongly supported by Turing’s analysis of
the notion of algorithm [Soare, 1996; Sieg, 1994]. It is generally accepted
that Turing’s idealisations about the structure of time, memory,. . ., are
the appropriate ones. And this means that alternative notions of compu-
tation, such as Infinite Time Turing Machine computation, do not model
our notion of algorithmic computation correctly.

It is sometimes objected that non-standard models would judge all
Turing machine additions to be terminating as well. But the length of some
of their ‘computations’ would be given by a non-standard number. So what
value does our ‘proof’ that all additions finitely terminate really have?
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This is a sceptical challenge, albeit a less radical one than the Krip-
kensteinian scenario that was briefly discussed earlier. It is based on the
so-called ‘just more theory’ move in [Putnam, 1980], for it rests on the
observation that the theory consisting of first-order Peano arithmetic plus
the assertion that addition is recursive, also has non-standard models. It is
clear that with respect to this challenge, second-order logic is in the same
boat as computational structuralism.

Note in this context that the full proof of the finite termination of
calculations of sums is actually not so easily reproduced in first-order
logic, because of the fact that informal talk about algorithms is not readily
expressed in classical first-order logic. Also, it is not clear how formalis-
ing talk about algorithms in first-order logic would be helpful: our informal
talk about algorithms is more than uninterpreted first-order theory anyway.
And this points us to what is in my view the correct response to the scepti-
cal charge. Our already interpreted mother tongue, of which the language
of mathematics is part and parcel, is and must necessarily be rock bottom.
We have no alternative but to express our arguments in it, and can only
hope to be understood by others.

Be this as it may: the reference-fixing question is what I set out
to address, not sceptical challenges. The question was: given that most
of what we think we know about the natural numbers is correct, how
have we managed to fix the reference of our arithmetical vocabulary? To
assume that this requires us to answer sceptical challenges would be a
mistake.

An analogy may be instructive here. As a philosopher of science you
may be interested in unobservable entities. Then it is a legitimate philo-
sophical question how we manage to refer to unobservables. Perhaps some
sort of stipulative act of initial baptism (‘water molecules are what this
stuff consists of’) did the job? Or perhaps we have managed it in some
other way. It is not immediately clear that answering this question requires
us to answer the question how we know that there are unobservables in the
first place. And even if we know that there are unobservables, we may be
puzzled about how we have managed to fix reference to them.

References

Benacerraf, P. [1996]: ‘Recantation or Any old ω-sequence would do after all’,
Philosophia Mathematica (3) 4, 184–189.

Boolos, G. [1984]: ‘To be is to be a value of a variable (or to be some values of
some variables)’, Journal of Philosophy 81, 430–449.

Halbach, V., and L. Horsten [2005]: ‘Computational structuralism’,
Philosophia Mathematica (3) 13, 174–186.

Hodes, H. [1984]: ‘Logicism and the ontological commitments of arithmetic’,
Journal of Philosophy 81, 123–149.

 at G
oteborgs U

niversitet on O
ctober 20, 2012

http://philm
at.oxfordjournals.org/

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


288 HORSTEN

Horsten, L. [2001]: ‘On our ability to fix intended structures’, in: T. Derksen,
ed., Moving Ahead: Philosophy of Mind and Realism, pp. 121–134. Studies
in General Philosophy of Science. Tilburg: Tilburg University Press.

——— [2010]: ‘Having an interpretation’, Philosophical Studies 150, 449–459.
Kaye , R. [1991]: Models of Peano Arithmetic. Oxford Logic Guides. Oxford:

Oxford University Press.
Kripke, S. [1982]: Wittgenstein on Rules and Private Language: An Elementary

Exposition. Oxford: Basil Blackwell.
Linnebo, Ø. [2003]: ‘Plural quantification exposed’, Noûs 37, 71–92.
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