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Abstract

This article reflects on the influence of the Polish school in logic on
mathematical philosophy. The focus lies on developments after the
second world war.

1 Introduction

The Polish school in logic has had a dramatic influence on philosophy in
the twentieth century. The inter-war period is considered the heyday of
the Polish school. And the prime example of influence of logic on mathe-
matical philosophy that it has produced consists in Tarski’s theory of truth.
It has served as a paradigm of the way in which techniques from mathe-
matical logic can fruitfully be applied to philosophical questions.

Not only Tarski’s work, but the whole history of the Polish school
of logic in the interwar period has in recent decades been the subject of
outstanding scholarly work. Much less has been written about the influ-
ence of the Polish tradition in mathematical logic on philosophy after the
second world war. My intention here is not to give an overview of the
post-war history of logic in Poland and its influence on philosophy. I will
merely argue that the Polish school in mathematical logic has continued to
produce deep results that cry out for philosophical reflection and exploita-
tion.
∗I am grateful to the participants to the session on Poland’s contribution to logic and

philosophy in the Academia Europaea Conference (Wrocław, 2013) for their valuable
comments and suggestions in response to my lecture.
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My argument will be based on two examples with which I am famil-
iar. I will focus on two post-war strands in mathematical logic in which
the Polish school has played an important role: the theory of satisfac-
tion classes and saturated models on the one hand, and the ultraprod-
uct construction on the other hand. I will show that they have an impact
on mathematical philosophy already, and I predict that the influence of
these strands of research on mathematical philosophy will deepen in the
decades to come.

2 Tarski and truth theory

Tarski played an immense role in the establishment of logic as a branch
of mathematics. It is well known that Tarski did all he could to bring out
the mathematical meaning of his logical results, sometimes even at the
expense of the natural readability of his articles.

But Tarski was also sensitive to problems that were discussed in scien-
tifically minded philosophical circles in Poland before the second World
War. He famously gave a rigorous definition of truth in an (interpreted)
formal language [Tarski 1935]. This has since then been uniformly re-
garded as a paradigm example of Carnap’s method of logical analysis
[Carnap 1950, chapter 1]. Nowadays we would regard this as a landmark
accomplishment in mathematical philosophy.1

It has been observed that Tarski’s primary aim in formulating his the-
ory of truth was to make metamathematics a respectable mathematical en-
terprise [Hodges 2008]. Indeed, Tarski’s work on truth can be seen as the
birth of model theory as a branch of mathematical logic, which is in turn
a branch of mathematics. Nonetheless, Tarski’s work on truth does show
that where many mathematicians consider it positively harmful for their
mathematical career to engage with philosophical questions, Tarski took
the opposite view. And history has shown that this was a fruitful attitude
to take.

In philosophy, this has given rise to a discipline that is called formal
theories of truth. This is a discipline that is located in philosophical logic.
Nowadays it uses techniques and results of mathematical logic. But its
intention is to shed light on the philosophical concept of truth. And, by
doing so, Tarski’s work has transformed the traditional philosophical de-
bates about the nature of truth. Tarski’s work has brought out the function
that the concept of truth fulfils (it allows us to express propositions that we

1See [Horsten 2013], [Leitgeb 2013], [Horsten & Douven 2008].
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could not express without it), and the logical laws that the concept obeys.
As a side effect, it has caused philosophers to revisit and to a significant
extent to doubt the alleged metaphysical content that the concept of truth
possesses.2 After Tarski’s work, truth has gradually come to be seen more
as a logico-linguistic concept than as a metaphysical concept.

Tarski defined what it means to be a true sentence of a language that
does not itself contain that same notion of truth. After Tarski, the emphasis
slowly shifted to defining notions of truth for sentences that themselves
contain that very same notion of truth. The work of Kripke and of Belnap,
Gupta, and Herzberger in the United States stands out here.3

But even today, much can be learned from Tarski’s work on truth. Re-
call that Tarski’s aim was to define truth for mathematical theories. His
theorem on the undefinability of truth entailed that a materially adequate
truth theory can only be formulated in a stronger metalanguage. More-
over, Tarski required that the metatheory must be able to carry out the
logical proof techniques in model theory in which truth plays an essential
role. This entails that the truth theory is not allowed to be interpretable in
the background mathematical theory:4 otherwise the background mathe-
matical theory would be able to simulate the behaviour of the truth pred-
icate. At the same time, model theorists tend to adopt an algebraic stance
towards the mathematical theories that they study. That is, they consider
all models of the mathematical theory that they investigate as being on a
par. (Moreover, model theorists think of models as first-order models.) But
this entails that a theory of truth for a mathematical theory ought to be
semantically conservative: every model of the mathematical theory should
be expandable to a model of the union of the mathematical theory and
the truth theory. Otherwise the truth theory would exclude models of the
background theory. In sum, Tarski’s requirements entail that a truth the-
ory should be at the same time non-interpretable and semantically conser-
vative. Thus it is natural to wonder whether there are natural formal truth
theories that meet these two requirements. This is a non-trivial question,
for the requirements seem to pull in opposite directions. We will briefly
return to this question later in this article.5

In any case, the importance of Tarski’s theory of truth is not restricted
to philosophy. The concept of truth has been used as the cornerstone of
a highly influential theory of meaning for natural languages. The central

2See [Horsten 2011, chapter 2].
3See [Kripke 1975], [Gupta & Belnap 1993].
4The concept of interpretability was discovered and investigated by Tarski after the

second world war.
5See section 3.
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thesis here is that the meaning of a given sentence consists of the circum-
stances (or “possible worlds”) in which the sentence is true. This idea was
implemented in detail for fragments of English by one of Tarski’s most
influential students, Richard Montague [Montague 1974]. The implemen-
tation proceeded by interpreting the circumstances in which a sentence
is true as models in the mathematical sense of the word, and by taking
these models to be models of intensional higher-order logic. Thus Tarski’s
work on truth has had a profound influence on natural language seman-
tics, which is a sub-field of linguistics.

Of course Tarski’s influence on philosophy and related disciplines is
not restricted to his work on truth. In particular, Tarski carried out ground-
breaking research on the question of the demarcation of the class of logical
notions [Tarski 1986]. However, I will not further comment on this line of
research here.

3 Polish logic after the second world war

Even though Tarski is the most important exponent of the Polish School in
logic of the inter-war period, it is well documented that the Polish School
was so much more than Tarski alone. The history of the Polish School in
logic up to the second world war, and its roots in developments in Polish
philosophy, have been thoroughly investigated.6 The history of logic in
Poland after the second world war, and its influence on related disciplines,
have as far as I know not been investigated in nearly the same level of
detail. It is not my aim to write the history of logic in Poland after the
second world war, and I would not be in the least qualified to do so. All I
want to argue for in this article, is that it would be well worth doing so.

Just before the German invasion of Poland, Tarski left for the United
States, where he founded the most influential post-war research centre in
mathematical logic. And with Tarski’s (and Gödel’s) move to the United
States, the centre of gravity of mathematical logic also moved from Europe
to the United States.7 Moreover, the main names that I associated in the
previous section with Tarski’s influence of mathematical logic on cognate
disciplines (Kripke, Gupta, Belnap, Montague. . . ) suggest that the centre
of gravity of mathematical philosophy also moved to the United States.
Thus one might think that the horrors of the second world war mark the
end of the illustrious Polish school in logic and its influence on philosophy.

6See for instance [Wolenski 1989], [Simons 2002], [Betti 2004].
7Mostowski stayed in Europe, but also in set theory Tarski and his disciples set the

agenda after the second world war.
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In what follows, I shall argue that to think so would be to commit a grave
mistake. It is true that since the second world war the United States has
been a powerhouse in mathematical logic and that developments in math-
ematical logic that took place there have had an enormous influence on
neighbouring disciplines. But the importance of Polish logicians remains
enormous even after the second world war.8

In what follows, I want to focus on two post-war theorems in math-
ematical logic that have a strong Polish connection, and reflect on their
possible philosophical significance. These are but examples that are in-
tended to illustrate that the post-war Polish Logic school has produced
results that simply cry out for philosophical exploitation. What follows
are merely examples that I myself am somewhat familiar with; I by no
means want to suggest that these examples are the most important ones!

4 Truth theory again: satisfaction classes

It is known that many axiomatic theories of truth are proof-theoretically non-
conservative: if they are added to a background theory (say to Peano Arith-
metic: PA), then they enable the combined theory to prove theorems not
involving the notion of truth that cannot be proved in the background the-
ory. A standard example is the compositional theory of truth that is called
CT.9 This theory CT consists of Peano Arithmetic with the truth predi-
cate allowed in the induction scheme, plus the axioms that state that the
truth predicate commutes with the logical connectives. CT is a very nat-
ural truth theory. But it is well-known that CT is proof-theoretically not
conservative over PA. For instance, it proves the Gödel sentence for PA.
Many (but not all!10) deflationists about truth argue that since the con-
cept of truth should be neutral about mathematical, metaphysical, physi-
cal,. . . matters, a good truth theory should be proof-theoretically conserva-
tive over its background theory. Thus they find CT inadequate as a truth
theory for PA.

The standard argument for the proof-theoretical non-conservativeness
of CT over PA uses an instance mathematical induction (in CT) in which
the truth predicate occurs. Thus it is natural to consider the compositional
truth theory CT�, which is just like CT except that its induction scheme

8Mostowski was an immensely influential figure in the Polish school of mathematical
logic after the second world war. See [Ehrenfeucht et al 2008].

9For a detailed discussion of CT, see [Halbach 2011, chapter 8], or [Horsten 2011, chap-
ter 6].

10See [Horsten 2009].
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does not contain instances in which the truth predicate occurs. It is very
natural to think that there is an easy argument to show that CT� is proof-
theoretically conservative over PA and thus meets the requirement that
many deflationists impose on it. The argument goes as follows. Take any
model of PA. Expand it to a model of the truth predicate by making sure
that the compositional axioms hold for it —remember: we do not have
to worry about the induction axiom. Then the completeness theorem for
first-order logic gives the desired conclusion.11 But this argument is falla-
cious, for not every PA-model can be expanded to a CT�-model.

Kotlarski, Krajewski, and Lachlan in the beginning of the 1980s proved
the following important theorem that bears on this question [Lachlan 1981],
[Kotlarski et al 1981]:

Theorem 1 A countable model is recursively saturated if and only if it has a
satisfaction class.

Being recursively saturated means that all recursive types are realised, and
having a satisfaction class means that it can be extended with a truth pred-
icate for which the compositional truth axioms hold. The left-to-right di-
rection of Theorem 1 is due to Lachlan; the right-to-left direction is due to
Kotlarski, Krajewski, and Lachlan. Lachlan is a Canadian logician; Kot-
larski and Krajewski are Polish.12 The proof of Theorem 1 is too compli-
cated to figure in what is taught in a typical intermediate logic course.

Thus the Kotlarski-Krajewski-Lachlan theorem teaches us that things
are not as simple as they appear at first sight. Nonetheless, one direction
of Theorem 1 (the direction that is due to Kotlarski et al) can be used to
show that CT� is proof-theoretically conservative over PA after all. This is
because by a result of Barwise and Schlipf,13 every countable model of PA
has an elementary equivalent recursively saturated extension. So for some
deflationists, CT� can be a satisfactory truth theory for PA after all: it de-
pends on whether they cash out the requirement of ‘theoretical neutrality’
on the truth predicate in a semantical or in a proof theoretical way. By thus
settling the question of the conservativeness of CT�, and (perhaps more im-
portantly) by extensionally distinguising the concepts of proof theoretic
and semantic conservativeness, Kotlarski, Krajewski, and Lachlan have
made a signal contribution to mathematical philosophy. They give us an

11Even some of the strongest mathematical logicians of the twentieth century have
fallen for this: see for instance [Feferman 1991, Lemma 2.4.2].

12Kotlarski died some years ago: see In Memoriam: Henryk Kotlarski (Bulletin of Sym-
bolic Logic 16(2010), p. 145).

13See [Barwise & Schlipf 1976].
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analysis that can be seen as a refinement and deepening of Tarski’s analy-
sis of the concept of truth.

Now let us return to the Tarskian requirement of a truth theory S for
a given mathematical theory that was described in section 2 (and let the
background mathematical theory be PA): S should be semantically conser-
vative over PA. Again, the theory CT� initially looks like a good candidate.
CT� is a natural truth theoryThe standard argument for showing that CT is
not conservative over PA cannot be carried out in CT�. But the Kotlarski-
Krajewski-Lachlan theorem shows that despite this, CT� does not satisfy
requirement (2). Although CT� is proof-theoretically conservative over
PA, it is not semantically conservative over PA, for not all PA-models are
recursively saturated.14

Of course this is just the beginning of the story of the Tarskian chal-
lenge. The foregoing considerations still leave the question whether there
is an attractive truth theory that meets (1) and (2) wide open. It merely in-
dicates that the problem is not as simple as one might at first think. I will
not pursue this story further here, save to say that there is a natural truth
theory, due to Martin Fischer, that meets both Tarskian demands. For an
extended philosophical discussion of Tarski’s requirements and the way
in which they are met by Fischer’s theory, see [Fischer & Horsten unpubl].

Note, finally, that the considerations in this section constitute merely
the beginning of the use of the theory of satisfaction classes and saturated
models in the theory of truth. Indeed, the foregoing suggests that more
insight into the concept of truth that may be obtained by investigating the
concepts of recursive saturation and of satisfaction class.

5 Infinitesimal probabilities

A second important mathematical theorem that has Polish post-war roots
is Łoś’ celebrated theorem [Łoś 1955]:

Theorem 2 Let {Mi | i ∈ I} be a set of models indexed by a set I, and let F
be an ultrafilter on I. Then any first-order sentence φ is true in the ultraproduct
relative to F of the set {Mi | i ∈ I} if and only if {i | Mi |= φ} ∈ F.

The ultraproduct model thus “inherits” first-order properties from its fac-
tors. For instance, if all its factors are models of the field axioms, then the

14Indeed, more is true. Not even the theory TB, which consists of PA (with truth
allowed in the induction scheme) plus the Tarski-Biconditional sentences of the form
T(g(A)) ↔ A, where A ranges over arithmetical sentences and g is the function that
assigns Gödel codes to sentences, is semantically conservative over PA. See [Strollo 201?].
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ultraproduct model will also make the field axioms true. Thus, on account
of Łoś’ theorem, ultrapower models are suitable for constructing for given
theories: models that have special properties.

In set theory, the ultraproduct construction has for decades been a
workhorse for constructing models of the standard axioms of set theory
(and of large cardinal axioms). And also in analysis, ultraproduct con-
structions have been used to generate non-standard models of the princi-
ples of analysis. In particular, ultraproduct constructions can be used to
construct models of analysis that contain infinitely small real numbers (in-
finitesimals), thus proving Leibniz’s interpretation of analysis to be coher-
ent after all, centuries after the time when this interpretation was first pro-
posed. These models are investigated in non-standard analysis [Robinson 1961].

Non-standard analysis has never become very popular with mathe-
matical analysts even though it arguably yields more intuitive proofs of
basic theorems than the standard ε− δ approach does. The reason for this
is the so-called transfer phenomenon, which says that a first-order theorem
is true in a non-standard model if and only if it is true in the standard
model. Thus, in some sense, non-standard models do not yield anything
new. So analysts don’t feel that they need them.

But for probability theory, which is of course intimately related to anal-
ysis, the situation is somewhat different. For there are basic chance situa-
tions that standard (or classical) probability cannot model, but that can be
modelled by certain natural non-standard probability functions that are
generated by an ultraproduct construction.

Classical probability, as encapsulated in the Kolmogorov axioms [Kolmogorov 1933],15

is notoriously bad at describing uniform distributions (fair lotteries) on in-
finite sample spaces. A uniform probability distribution on a countably
infinite space is simply incompatible with the Kolmogorov axioms. And
the only uniform probability distribution on uncountable spaces that is
compatible with the Kolmogorov axioms is the uniform zero distribution.
But this uniform zero distribution effaces the distinction between impossi-
bilities and infinitely remote contingencies: both are assigned probability
zero.

Using the ultraproduct construction, non-standard probability func-
tions that do model fair lotteries on countably infinite and uncountably in-
finite sample spaces can be defined [Wenmackers & Horsten 2013], [Benci et al 2013].
Such functions assign a non-zero but infinitesimal probability to each point
event, and probabilities of the point events ‘sum’ to 1. Łoś’ theorem guar-
antees that these nonstandard probability functions satisfy the basic Kol-

15The Kolmogorov axioms include the principle of σ-additivity.
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mogorov axioms.16 Moreover, for every sample space, these functions
are defined on the full power set, so that no sets are classified as non-
measurable.

In recent years, a priori philosophical arguments have been advanced
that intend to show that infinitesimals cannot play a useful role in prob-
ability theory.17 So there is a puzzle. Either the generalised probability
functions that are produced by the ultraproduct construction have prop-
erties that are philosophically abhorrent, or the philosophical arguments
against infinitesimal probabilities are fallacious. Again, this is not the
place to pursue this question further.18 It suffices to say that here we have
another example of a way in which methods from mathematical logic in-
form mathematical philosophy.

The mathematical properties of the infinitesimal probability functions
defined in [Benci et al unpubl] are presently only very incompletely un-
derstood. And we know from other areas of mathematical logic (set the-
ory, model theory) that ultraproduct constructions are extremely versa-
tile and powerful, and can yield deep insight. So there is every reason
to believe that in the theory of infinitesimal probabilities, we a present
have a poor insight into the possibilities and impossibilities. We have only
stratched the surface: there must be much more to come.

6 Conclusion

I have considered two developments in mathematical logic after the sec-
ond world war in which Polish logicians played a key role. The first devel-
opment is of somewhat more recent date (the early 1980s), but the second
development took place more than fifty years ago. So one might won-
der why they have not influenced mathematical philosophy before now.
Wolenski suggests that during the communist period in Poland after the
second world war it was ideologically unacceptable to engage in (mathe-
matical) philosophy to the extent that it had been done before the war.19

This is must certainly be part of the explanation. But it is also important
to realise that the relevant results and proof techniques are substantially
more difficult than the work in mathematical logic that has been exploited

16Instead of σ-additivity, these probability functions satisfy a generalised form of infi-
nite additivity.

17See for instance [Williamson 2007], [Easwaran unpubl], [Pruss 2012].
18Many of the objections against infinitesimal probabilities are addressed in

[Benci et al unpubl].
19See [Wolenski 2013].
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by mathematical philosophers until recently. It just takes time for philoso-
phers to digest the philosophical relevance of deep results in mathematical
logic.

At any rate, I hope that the foregoing has shown that the Polish school
in logic remained very strong after the second world war, and that we
may expect its results deeply to impact on developments in mathematical
philosophy for decades to come.
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