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ABSTRACT
In this article ideas from Kit Fine’s theory of arbitrary objects are applied
to questions regarding mathematical structuralism. I discuss how sui generis
mathematical structures can be viewed as generic systems of mathematical
objects, where mathematical objects are conceived of as arbitrary objects in
Fine’s sense.

1. WHAT ARE MATHEMATICAL THEORIES ABOUT?
Many philosophers today consider mathematical structures to be the subject
matter of mathematics. On the one hand there is sui generis or non-eliminative
structuralism. According to sui generis structuralism, the subject matter of a
mathematical theory is a mathematical structure or a family of mathemati-
cal structures, where mathematical structures are understood to be abstract
universals. On the other hand there is eliminative structuralism, which is not
wedded to abstract universals.

Inspired by work of Fine, I explore in this article a new answer to the question
what mathematical structures are. My account makes use of elements of Fine’s
theory of arbitrary or generic objects [Fine, 1983; 1985] and extends this to a
theory of arbitrary or generic systems of objects [Fine, 1998]. Thus it combines
elements of object-Platonism with elements of structure-Platonism.
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Following a tradition in the discussion of structuralism in the philosophy
of mathematics, I take the distinction between algebraic mathematical theo-
ries (such as group theory) and non-algebraic mathematical theories (such as
arithmetic) to be important in this context. On the proposed account, a non-
algebraic mathematical theory is about arbitrary (or generic) objects. These
arbitrary objects are abstract, and they form an abstract structure, which is a
generic system of arbitrary objects. An algebraic theory, in contrast, describes
not one single structure but a family of structures, where again a structure is
understood as a generic system of objects.

I proceed as follows. First, I state my reasons for being dissatisfied with
existing versions of both non-eliminative and eliminative structuralism (Section
2). Next, I discuss Kit Fine’s theory of arbitrary objects, how it can be extended
to a theory of generic systems (Section 3, Section 4), and to an interpretation
of the theory of pure sets (Section 5). This will lead to a new account of the
nature of mathematical structures; I will explain in some philosophical detail
what this position amounts to (Section 6). Before closing, I compare my position
with rival accounts (Section 7).

2. MATHEMATICAL STRUCTURALISM
A distinction is drawn between eliminative structuralism and non-eliminative
structuralism [Shapiro, 1996, p. 81]. Non-eliminative and eliminative struc-
turalists agree that different systems of concrete objects can have a structure
in common. But Platonistic structuralism maintains that such mathematical
structures exist independently of the systems that instantiate them; elimina-
tive structuralists regard talk of mathematical structures as loose talk that can
ultimately be replaced by talk about systems being isomorphic to each other.

Another distinction can be drawn between algebraic and non-algebraic math-
ematical theories [Shapiro, 1997, pp. 40–41]. Intuitively, an algebraic theory is
one that is intended to be about many different structures. A non-algebraic
theory, in contrast, intends to describe one structure only.

Eliminative structuralists hold that every mathematical theory, algebraic or
non-algebraic, is about a multiplicity of systems of objects. The non-eliminative
structuralist can only partly agree with this thesis of distributed reference for
mathematical theories. She agrees with the eliminative structuralist that alge-
braic theories are about many structures. But she insists that the distributed
reference hypothesis does not hold for non-algebraic theories and claims to have
evidence for this: we speak of ‘the natural-number structure’. Non-algebraic the-
ories are about a unique subject matter: the subject matter of a non-algebraic
theory is the unique structure that it purports to describe.1

Eliminative structuralism comes in many flavours. One popular variant is
set-theoretic structuralism, which takes the structures that a mathematical the-
ory is about to be sets endowed with operations [Mayberry, 1994]. But this

1 In more recent work, Shapiro questions whether non-eliminative structuralism should
commit itself to this unique reference thesis: see [2006, p. 243].
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364 • Horsten

assumes a form of set-theoretic reductionism that many today find hard to
accept. Eliminative structuralism does not have to take structures to be sets.
It can, for instance, take structures to be physical arrangements (‘pluralities’)
of objects that stand in specific physical relations to one another. But this is
taking mathematical structures to be physical in nature, which is is another
form of reductionism that is hard to accept. I will not pursue this debate here.

More importantly for present purposes, according to eliminative structural-
ism there is no sense in which even non-algebraic theories can be said to be
about mathematical objects. But mathematical theories are about mathematical
objects:

The language of mathematics speaks of objects. This is a rather trivial
statement; it is not clear that we can conceive any developed language
that does not. What is of interest is that, taken at face value, mathemat-
ical language speaks of objects distinctively mathematical in character:
numbers, functions, sets, geometric figures, and the like. To begin with,
they are distinctive in being abstract. [Parsons, 2008, p. 1]

Existing forms of non-eliminative structuralism cannot be charged with
implausible reductionist claims. Moreover, according to non-eliminative forms
of mathematical structuralism, non-algebraic theories can be taken to be about
objects. Consider Shapiro’s version of non-eliminative structuralism [1997]. On
this view, a mathematical structure contains places or roles that can be occu-
pied by objects. Nonetheless, the places themselves can be viewed as objects
that can be organised into a system that instantiates the structure [Shapiro,
1997, pp. 100–101].

However, at this point the non-eliminative structuralist is faced with two
problems.

First, the objects that populate sui generis structures are according to non-
eliminative structuralism in some sense incomplete. A rough statement of what
is intended (when applied to arithmetic) is to say that numbers only have
structural properties [Shapiro, 1997, pp. 72–73]. However, it has turned out to
be very difficult to make the intended meaning of such statement sufficiently
precise in a way that does not lead to counterexamples.2 Shapiro has also come
to recognise that it is difficult to give a satisfactory philosophical account of
the incompleteness of mathematical objects [2006, Section 1]. For instance, the
number 7 might have the property of being my least favourite number, even
though this is not a ‘structural’ property.

Secondly, as Hellman points out [2006, p. 546], Shapiro’s view is vulnerable to
a permutation objection. If, in the ante rem structure N of the natural numbers,
we permute its places (in a non-trivial way), then we obtain a system N

′ that
is isomorphic to N. We can then ask, in the spirit of [Benacerraf, 1965]: what

2See [Linnebo and Pettigrew, 2014] and [Korbmacher and Schiemer, forthcoming].
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could possibly make N, rather than N
′ be the unique sui generis structure that

arithmetic is about?
The aim of this article is to articulate and explore a new position according

to which mathematical theories are not only about structures but also about
objects. So it cannot be a form of eliminative structuralism. The position to be
developed is expected to attribute the ‘right’ kind of incompleteness to natural
numbers, and should not be vulnerable to the permutation objection.

3. ARBITRARY OBJECTS
A theory of arbitrary objects was developed in [Fine, 1983] and [Fine, 1985].
I will now briefly and informally review some the main tenets of this theory.3

Consider any category of entities. It is helpful to fix (without essential loss
of generality) on some particular kind of mathematical objects: the natural
numbers, say. There are specific natural numbers, such as the number 23. But
beside specific natural numbers, there are also arbitrary natural numbers. An
arbitrary number is what a mathematician refers to when she says: ‘Let m be
a natural number . . . ’,4 and then goes on to reason about m.

There are many arbitrary natural numbers. For instance, it would make
perfect sense for our mathematician, in the course of her argument, to add
‘Now let n be another natural number . . . ’, and go on reasoning about both m
and n.

In general, an arbitrary natural number does not determinately have any
specific natural number as its value. There is no determinate matter of fact, for
instance, about whether the value of our mathematician’s arbitrary number m
is 23.5

There can be a determinate fact about whether an arbitrary number x is
numerically identical with an arbitrary number y. Our mathematician was per-
fectly within her rights when she required the arbitrary numbers m and n to
be non-identical. She might just have said, more clearly perhaps: ‘take any two
arbitrary numbers m and n such that m �= n, . . .’

When an arbitrary natural number does not determinately have some given
specific number as its value, there is a sense in which it can be the specific
number in question. Thus we can say that arbitrary numbers can be in dif-
ferent specific states. These possible situations (states) may be understood in
a Lewisian realist way, but one can also understand talk about states in a
Kripkean, deflationist, way. (I will not take a stance on this matter.)

There is, however, no actual specific state in which the arbitrary number is.
The best we can say, perhaps, is that an arbitrary number ‘actually’ is in a
‘superposition’ of specific states.

There are degrees of arbitrariness. If our mathematician says ‘Let m be an
arbitrary natural number larger than 10’, then she refers to a number that is

3 In what follows, I may be guilty of adding a few tenets of my own to Fine’s theory.
4This is denied by Breckenridge and Magidor [2012]: see Section 7.3 below.
5Again, Breckenridge and Magidor [2012] deny this.
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less arbitrary than when she says ‘Let m be an arbitrary natural number larger
than 5’. So one might say that a natural number is completely arbitrary if it
can be any specific natural number whatsoever. In some sense, specific natural
numbers are closely related to limiting cases of arbitrary natural numbers. For
many purposes they can be identified with arbitrary natural numbers that have
an absolutely minimal degree of arbitrariness. But it is important to see that,
strictly speaking, no arbitrary number is identical to any specific number. An
arbitrary number is the sort of thing that can be in a state, whereas a specific
number cannot be in a state.

Since a completely arbitrary natural number can be in any specific state
whatsoever, a completely arbitrary natural number has only those ‘specific’
(Fine calls them ‘classical’) properties that every specific natural number has.
Let us call this Fine’s principle. It is not a simple matter to spell out precisely
what ‘specific’ properties are,6 and I will not attempt to do so here. But self-
identity is one such specific property of the completely arbitrary number m
above, whilst ‘possibly being identical with the arbitrary number n (above)’ is
not.

An arbitrary number can be more or less likely to be in a given state. For
instance, an arbitrary natural number between 25 and 50 is unlikely to be a
power of 2.7

The concept of arbitrary object has only played a marginal role in philosophy.
There are two reasons for this. First, arguments have been put forward that
purport to show that it is philosophically untenable to maintain that there are
arbitrary objects [Frege, 1979, p. 160]. Second, it has been argued that the
concept of arbitrary object cannot be put to good use. For instance, Russell’s
doctrine of incomplete symbols shows how it is not necessary to take the phrase
‘the man in the street’ to be a denoting term referring to some ‘arbitrary man’.
Fine intended to counter both of these arguments.

Fine sought to defuse the first objection by articulating a coherent and nat-
ural concept of arbitrary object. I assume for the purposes of the discussion
that he was successful in this enterprise.

Fine countered the second objection in a double movement. On the one hand,
he gestured at a number of other applications for the concept of arbitrary object,
such as the theory of infinitesimals, the notion of forcing in set theory, . . . 8 On
the other hand, he worked out two applications in detail. First, he formulated
a natural semantics for first-order logic in terms of the notion of arbitrary
object [1985]. Second, he discussed in detail how a theory of Cantorian (and

6Fine recognises that it is difficult to give a precise description of the distinction
between ‘classical’ and ‘generic’ conditions [1985, Chapter 1]. For a discussion of this
distinction, see [Breckenridge and Magidor, 2012, Section 2.1.3].

7Fine does not connect, as I do, the concept of arbitrary object with a concept of
probability. Since the relevant probability functions should be uniform distributions on an
infinite space, it might be appropriate to appeal to techniques of Benci et al. [2013] to
model them. However, I leave this discussion for another occasion.

8As far as I know, these potential applications have not yet been worked out in detail.
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Dedekindean) abstraction could be developed based on the theory of arbitrary
objects [1998].

Russell showed that many uses of arbitrary objects are non-essential : much
talk involving arbitrary objects can be adequately paraphrased in ways that
do not involve them. A somewhat similar point can be made about Fine’s use
of arbitrary objects in his new semantics for first-order logic. The silence with
which his effort seems to have been met9 is due to the fact that we have perfectly
adequate semantics for first-order logic that do not involve arbitrary objects.10

Fine’s account of Cantorian abstraction, however, does strike me as a use of
the theory of arbitrary objects that is much harder to dismiss as philosophically
redundant. Moreover, Fine himself observed that this account can be extended
to form the basis of a new form of mathematical structuralism for non-algebraic
mathematical theories. A primary aim of the present article is to explore the
ramifications of Fine’s brief but suggestive remarks in Section VI of his [1998]
on these matters in some depth, not only for the interpretation of non-algebraic
but also for the interpretation of algebraic theories. My account will diverge
in key points from the way Fine thought that this new form of structuralism
should look. I will point out where this is the case, and I will state my reasons
for developing it in a different way.

4. GENERIC SYSTEMS
Generic systems can be seen as a special kind of arbitrary entity. My account
of generic systems is intended to be completely general. In order to illustrate
how it works for particular mathematical theories, I will concentrate on one
non-algebraic theory (arithmetic), and one algebraic theory (graph theory).

I take what I am doing to be an exercise in näıve metaphysics in the sense
of [Fine, 2017]. That is, I investigate the nature of generic systems. As a tool
in this investigation, I explore in this section how some generic systems can
best be modelled in set theory. The purpose of this is to discern metaphysical
properties of generic systems. For instance, a set-theoretic way of modelling a
generic system will give an answer to questions such as: how is a generic system
incomplete? How many objects does it contain? What kinds of things are the
states? In how many states can this generic system be? Such answers are only
as good as the set-theoretic model is at representing fundamental properties
of the generic system in question. But generic systems, like Fine’s arbitrary
objects, constitute a metaphysical realm in their own right; far be it from me
to advocate an ontological reduction of generic systems to sets.

4.1. Maximally Arbitrary ω-Sequences
Suppose that the physical world around us consists of a countably infinite
collection A of objects, which we may label as a0, a1, a2, . . .

9An exception to this is [King, 1991].
10The situation is somewhat similar, in this respect, to theories of the mathematical

continuum that involve infinitesimals.
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Consider all ways in which this collection can be ordered as an ω-sequence.
Mathematically, this amounts to considering all functions from N to A. Let us
write down all such functions in a long list L. It is clear that this list has 2ℵ0

entries: let pα (for every α < 2ℵ0) be line α in this long list L.
The entries in this long list (i.e., the pαs) constitute all the possible specific

ω-sequences in the physical world that we are considering. Thus the pαs can be
seen as exhausting the possible states that a generic ω-sequence can be in.

The possible state space should be sufficiently large to accommodate every
possible specific state. But there seems no reason to assume that it is larger.
So we propose that the pαs are labels for the possible states. Then we can take
the list L to give the possible state profile of an arbitrary ω-sequence. The state
profile of a generic ω-sequence is all we care about; so we may for modelling
purposes take the list L to be an arbitrary ω-sequence.

Of course there are infinitely many other such lists of order type 2ℵ0 — there
are in fact 22ℵ0 of them. We take each of them to specify the state profile of
some arbitrary ω-sequence, or, in brief, to be an arbitrary ω-sequence.

The list L is a maximally arbitrary ω-sequence. A much less arbitrary ω-
sequence is given by a list (of cardinality 2ℵ0) of functions from N to A almost all
of which are identical to some particular function f . This arbitrary ω-sequence
is then overwhelmingly likely to be the specific ω-sequence f . And specific
ω-sequences can then be seen as canonically embedded in the arbitrary ω-
sequences. They are embedded as the lists that have the same ω-sequence on
each row.

Generic systems consist of arbitrary objects. Generic ω-sequences consist of
arbitrary natural numbers. To see how this works, consider again our long list
L. An arbitrary natural number is a thread or fiber through L, i.e., formally,
a function from 2ℵ0 to A. So there are 22ℵ0 arbitrary natural numbers in L.
Elementary arithmetical operations on arbitrary natural numbers are defined
pointwise. Take the sum a + b of the arbitrary numbers a and b, for instance.
This is the arbitrary number that in each state w takes the value of the sum of
the value of a at w and the value of b at w according to the state (ω-sequence)
w. Elementary operations can then straightforwardly be seen to satisfy the
familiar properties of arithmetical operations (such as commutativity of +, for
instance).11

4.2. The Generic Countable Graph
Let us do this also for countable simple graphs, and let us do it in the same
way. Informally it is clear what we should do, but, for definiteness, let us see
in detail how it goes.

Suppose we are given a countable vertex set V = {v0, v1, v2, . . .}. We want
to list all possible particular graphs on subsets of V .

11The mathematical properties of the generic ω-sequence are investigated in [Horsten
and Speranski, unpublished].
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A graph consists of vertices and edges. Edges are often seen as unordered
pairs of vertices. But in the framework of multisets, vertices themselves can
be seen as special cases of edges. So let us take this perspective. Let an edge
between two vertices vi and vj be given as the unordered (multi-)pair {vi, vj}.
And let a vertex vi be given as the multipair {vi, vi}.

We order the unordered multi-pairs of elements of V in lexicographical
fashion, i.e., when i ≤ j and i′ ≤ j′, we say that

{vi, vj} < {vi′ , vj′} if and only if i < i′ or (i = i′ and j < j′).

Then a graph G is given by a countable list of unordered multi-pairs, without
repetitions, well-ordered by <, where we adopt the convention that if {vi, vj}
appears in the list, the multipairs {vi, vi} and {vj , vj} must also belong to the
list.

Consider a list L∗ of such graphs which contains every particular graph on
V exactly once. This list will again be of length 2ℵ0 . The list L∗ gives the
state profile of a maximally arbitrary countable graph on V , where a row in
L∗ describes a specific state that this graph can be in. So we can take it, for
modelling purposes, to be a maximally arbitrary countable graph. There are
22ℵ0 such lists, i.e., generic countable graphs on V .

Generic graphs then consist of arbitrary edges. An arbitrary edge of the
arbitrary graph L∗ is a thread through L∗. So there are 22ℵ0 arbitrary edges
in L∗.

Some generic graphs are less arbitrary than others. There are lists of graphs
(of length 2ℵ0) that list the same particular graph on almost all of their rows.
Such arbitrary graphs are overwhelmingly likely to be one particular graph.
And there are generic graphs that list the same specific graph on each of its
rows; so particular graphs are canonically embedded as limiting cases of generic
graphs.

A celebrated theorem from countable graph theory [Erdős and Rényi, 1963]
says that there exists a simple graph R with the following property [Cameron,
2013]. If a countable graph is chosen at random, by selecting edges indepen-
dently with probability 1

2 from the set of two-element subsets of the vertex set,
then almost surely (i.e., with probability 1), the resulting graph is isomorphic
to R. This graph R is called the Rado graph. In the present context, this the-
orem can be taken to say that with probability 1, the generic countable graph
L∗ is the Rado graph. Thus Erdős’s and Renyi’s theorem can be seen as a
probabilistic categoricity theorem for countable graph theory.

We could now do the same for some other algebraic theory, such as countable
group theory for instance. We would then take a particular countable group to
be given by its multiplication table, and take a generic countable group to be
given by a long list of particular countable groups. We could also move from
countable mathematics to uncountable mathematics by considering the theory
of the real numbers for instance. But the general procedure is clear; so there is
no need to go into details here.
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5. SETS AND ARBITRARY OBJECTS
Nothing has yet been said about the nature of the objects of the underlying
domain of generic systems (ω-sequences, graphs, groups): the choice of the
underlying plurality of objects in Section 4 was an external parameter of the
model. But this is a question that cannot altogether be avoided.

Nothing in mathematical practice dictates that the underlying objects should
be physical in nature. But clearly many of them are required if we want to
extend the view described in this article beyond countable mathematics.

The universe of sets contains a sufficient supply of objects for our mathe-
matical objects and structures. It might seem ad hoc if the subject matter of
set theory would fall altogether outside the scope of the theory of mathematical
structures.

If we admit higher order arbitrary objects, then the theory of arbitrary
objects provides the resources for giving a natural explication of what an itera-
tive hierarchy of set-theoretic ranks may be taken to consist of. A metaphysical
account of how this might work goes along the following lines:

Stage 0 We take some specific object o to be given.
Stage 1 Now consider the arbitrary object which can only be in the state of

being the specific object o; we denote this arbitrary object as 〈o〉. Then
o �= 〈o〉: unlike an arbitrary object, a specific object is not the sort of entity
that can be in states.

Stage 2
(2a) Consider the higher-order arbitrary object that can only be in

the state of being the arbitrary object 〈o〉. Denote this higher-order
arbitrary object as 〈〈o〉〉.

(2b) Consider an higher-order arbitrary object that can only be in one
of the following two states: being the specific object o, or being the
arbitrary object 〈o〉. Denote this object as 〈o, 〈o〉〉.

Stage ω Collect the arbitrary objects that have been generated in the finite
stages.

Later stages Continue in this way into the transfinite.

In this way, a hierarchy of higher-order arbitrary objects, based on one specific
object, is built up. The simple idea of course is to view arbitrary objects as
(non-empty) sets, and their states as their elements. This leaves the specific
object on which the hierarchy is based, which is not the sort of thing that can
be in states, playing the role of the empty set. So we read the pointy brackets
〈. . .〉 as curly brackets {. . .}, and o as ∅. For example, the set {∅, {∅}} is the
arbitrary object which can be a specific object o, but which can also be the
arbitrary object which can only be the specific object o.

Let us call this the generic hierarchy. The concept that it might perhaps be
taken to capture is the combinatorial set concept, which takes a set of Xes to
be the result of an arbitrary selection process.

The construction of the generic hierarchy makes use of a notion of higher-
order arbitrariness, which in turn requires taking arbitrary objects ontologically
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very seriously. So this is a decidedly Platonistic interpretation of set
theory.

We have seen how the distinction between a and 〈a〉 corresponds to the
distinction between a set and its singleton. It is not clear whether this meta-
physical account gives an adequate explanation of what Lewis has dubbed the
‘mystery of the singleton relation’ [1991]. Some may worry that the distinction
between a specific object and the arbitrary object that can only ever be in
the state of being that specific object is no better motivated than the relation
between an object and its singleton.

An important observation is that the generic hierarchy is the result of an
extreme flattening or extensionalisation of what is at bottom a much more
intensional notion of set. There are, for example, in fact two higher-order arbi-
trary objects that can play the role of the set {∅, {∅}} in stage (2b). These two
arbitrary objects are anti-correlated; if one of them is in the state of being o,
then the other is in the state of being 〈o〉 and vice versa. (So one might denote
these two objects as 〈o, 〈o〉〉 and 〈〈o〉, o〉, respectively.)

The engine of the iterative hierarchy of sets is the full power-set operation.
This operation drops out naturally in the framework of the theory of arbitrary
objects: the description of stages shows how at every stage α + 1, there are 2α

arbitrary objects that naturally represent all the subsets of the domain of sets
that exist at stage α.12

6. WHAT MATHEMATICAL THEORIES ARE ABOUT
Let us now connect the discussion of generic systems to the question of the
subject matter of mathematical theories.

6.1. Non-algebraic Theories
In the setting of arbitrary objects and systems, sense can be made of the com-
monplace statement that arithmetic is about the natural numbers. In fact,
there are two different ways in which this can be made more precise. One
might say that arithmetic is about all specific natural numbers, where specific
numbers are arbitrary objects as described in Section 4.1. Alternatively, one
might say that arithmetic is about arbitrary natural numbers.13 But in either
case, arithmetic is said to be about objects of an abstract kind, in accordance
with object-focussed forms of mathematical Platonism such as Gödel’s. I will
not try to decide here whether it is more natural to say that arithmetic is about
arbitrary natural numbers or about specific natural numbers.

As an illustration, consider Goldbach’s conjecture, which says:

Take any even natural number larger than 2;
it is the sum of two prime numbers.

12 I do not claim that the present account has much new to say about the motivation of
some of the other powerful axioms of standard set theory such as Infinity or Replacement.

13The form of structuralism sketched in [Fine, 1998, §6] takes arithmetic to be about
the specific natural numbers rather than about the specific and the arbitrary natural
numbers.
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Two possible readings are:

(1) Take any specific even natural number n; then n is the sum of two
(specific) primes.

(2) Take any arbitrary even natural number n; then n is the sum of two
(arbitrary) primes.

From the point of view of our set-theoretic model, the arbitrary natural
numbers are located (as threads) in a large structure: the collection of all ω-
sequence orderings of our countable collection A. So there is a sense in which
arithmetic can be said to be about the generic ω-sequence.

The generic ω-sequence can be interpreted in a sui generis manner. Alter-
natively, one can ‘deflate’ the generic ω-sequence in an eliminative way as
supervening on concrete ω-sequences. But then one cannot take arbitrary
objects (i.e., specific and arbitrary numbers) to exist as completed abstract enti-
ties, and that would mean that arithmetic is not about mathematical objects.
So generic ω-sequences are to be understood in a non-eliminative way.

We have seen in Section 4.1 that there are, from a higher-order point of
view, many (completely) arbitrary ω-sequences, which can be obtained from
each other by permutations of the list L. But from within arithmetic as an
independent and self-standing discipline there is only one generic ω-sequence.
All attempts to ‘construct’ other ones are, from the point of view of arithmetic
itself, mere re-labelings of the one and only completely arbitrary ω-sequence. So
from this point of view, our mathematical modelling of the generic ω-sequences
as a list contains excess structure. Therefore a better way of modelling is
obtained when an arbitrary number is taken to be the set

{〈w, a〉 | w is an ω-sequence on A, and a ∈ A},

where A is again the countably infinite set of objects of Section 4.1.14

Whether this way of modelling the generic ω-sequence brings out most of
its structural features depends on wider issues in the philosophy of arithmetic.
Some hold that we must be able to compute on the particular ω-sequences
(states) that instantiate the natural-number structure [Halbach and Horsten,
2005; Horsten, 2012]. If that is so, then the states are ‘computable’ ω-sequences,
i.e., recursive permutations of a recursive notation system for the natural num-
bers (our system of arabic numerals, for instance, or the stroke-notation system
for the natural numbers). On this picture, the generic natural-number structure
can only be in ℵ0 states, and if we go on to define arbitrary numbers as before,
then there will only be 2ℵ0 of those. Again, I will not try to adjudicate here

14This is roughly how Fine understands arbitrary natural numbers (see [1998, p. 630]),
except that I am here giving a set-theoretic representation of arbitrary natural numbers
and the structure to which they belong, whereas Fine does not do so. He instead appeals
to an intuitively given theory of arbitrary objects and locates the generic structures and
objects in the ontology of such a theory.
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which way of modelling the generic natural-number structure is most faithful
to its metaphysical nature.

At any rate, the specific natural numbers form a sub-structure of this larger
structure. The specific natural numbers, ordered in the natural way, of course
themselves form an ω-sequence. This ω-sequence is what Fine regards as ‘the
generic ω-sequence [1998, pp. 618–619].15 This means that on his view, in con-
trast to mine, the generic ω-sequence instantiates itself [Fine, 1998, p. 621].
But that of course leaves the resulting account open to the permutation objec-
tion. Fine himself is well aware of this [1998, p. 625], and he defends his
account against this charge [1998, p. 628–629]. It would take me too long to
go into details here, but I find Fine’s arguments in this matter unconvincing.
Fine’s reply to the permutation objection involves, in the final analysis, making
somewhat arbitrary choices and consequently introducing excess structure.

6.2. Algebraic Theories
We could say that countable graph theory is about the generic countable graph
as modelled in Section 4.2, the realisations of which are concrete graphs. (And
we could recognise again that from a higher-order perspective, there are many
maximally arbitrary countable graphs.) Or, alternatively, we could in a more
in rebus vein say that graph theory is about all particular graphs.

But there are two reasons why saying that countable graph theory is about
the generic countable graph would not fit with mathematical practice. First, this
is not how mathematicians talk and think. They do not take the subject of graph
theory to be one privileged structure, but instead take graph theory to be about
many structures. Second, there are graphs that belong to the subject matter
of countable graph theory but that are not among the states that the generic
countable graph, as described in Section 4.2, can be in. ‘The unconnected two-
element graph’, for instance, is among the graphs that countable graph theory
is about [Leitgeb and Ladyman, 2007]. But this is not a concrete system: it is
not a particular graph on V .

Nonetheless, there is a natural sense in which it can be said that there
are many arbitrary countable graphs on an underlying countable collection
B. By now it is clear how the story goes: Construct a long repeated list in
which each line enumerates all concrete graphs on B. Then an arbitrary graph
is a thread through this list. Among these arbitrary graphs, there are specific
graphs, such as ‘the unconnected two-element graph’. Here by a specific graph
I mean a maximally generic system that in one possible state is realised by a
particular graph that is isomorphic with every concrete graph that realises it
in any other possible situation. (So, in my terminology, specific graphs, being
generic systems, are not the same as particular graphs on V , being concrete
systems.)

15Fine does not discuss the further phenomenon that from a higher-order perspective,
there are many arbitrary ω-sequences.
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Now it is natural to say — or so I maintain — that countable graph theory is
about all arbitrary countable graphs. Alternatively, just as one might say that
number theory is about the specific numbers, it is natural to say that countable
graph theory is about all specific countable graphs. (Notice that both arbitrary
and specific graphs are abstract entities.)

There is a higher-order arbitrary object, the realisations of which are arbi-
trary or specific graphs (the latter of which are themselves also arbitrary
systems). In some diluted sense one might say that countable graph theory
is about this higher-order arbitrary object. But we should not do so. The rea-
son is that, like the generic countable graph of Section 4.2, the higher-order
arbitrary object is not really a structure.

Nonetheless, there are natural structural relations between the higher-order
object and its realisations. If one were to incorporate these structural relations
in the notion of the higher-order object, then one would obtain a notion that
is close to what is called a Lawvere theory [Lawvere, 1963; Pettigrew, unpub-
lished]. Indeed, in his doctoral dissertation Lawvere set out to specify a category
that is a generic group (or a generic ring or a generic field). And that category
would be defined in such a way that then any specific group (or ring or field)
can be identified with a functor from that generic group (or ring or field) into
the category of sets.16

6.3. Generic Structures
Mathematical theories are about mathematical structures and their objects.
But what mathematical structures and mathematical objects are, is a difficult
philosophical question.

On the proposed account, mathematical structures are generic systems and
mathematical objects are arbitrary objects.

Generic systems are governed by an instantiation relation (the relation of
being in a state). Therefore my view is a structuralist position in the philosophy
of mathematics. Clearly it is a Platonistic form of structuralism.

On the proposed view, mathematical structures are more than mere abstract
patterns, to use an expression from [Resnik, 1997]. They differ from Shapiro’s
ante rem structures. Fine’s arbitrary objects play an ineliminable role in my
account, for even specific numbers are arbitrary objects and specific graphs (or
groups or . . . ) are arbitrary systems.

What drives my view, and what has perhaps not been sufficiently recognised
by Shapiro’s places-objects view, is that in the abstractive movement from
system to structure, the notion of object is transformed along with that of
system. The appropriate slogan is: from concrete system to generic system, and
from concrete object to arbitrary object.

I have tried to show how set-theoretical models can give us a feeling of
what a generic system such as the generic ω-sequence is like. At the same

16 I cannot pursue this relation with Category Theory further here, but I am grateful
to Richard Pettigrew for drawing my attention to the connection.
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time, I insisted that the generic ω-sequence is a sui generis entity that cannot
ontologically be reduced to any pure or impure set.

The previous section contains a sketch of an answer to the question where
the objects out of which the underlying particular ω-sequences are constructed
come from. There is no plausible way, as far as I can see, that the elements of
the underlying plurality of objects can be conjured up, in neo-logicist vein, out
of logical air. They must belong to a realm that has ontological priority over
the generic ω-sequence. This realm can be taken to be the iterative hierarchy of
pure sets. This hierarchy may be thought of as reduced to the generic hierarchy
of Section 5, but it can also be thought of as an alternative that can serve the
same purpose as the set-theoretic hierarchy.17

However we think of this, the models in Sections 4.1 and 6.1 are over-
simplified: no single countable infinity of sets should be privileged. But this
can easily be taken on board; we just have to make our list L (much) longer.
Take for instance the generic ω-sequence as modelled in Section 4.1. Let the
entries in our revised list L consist of exactly all the ω-sequence orderings of
all the countably infinite pluralities of pure sets (or elements of the generic
hierarchy), and then proceed as before. A similar story can of course be told
for other generic systems.

The fact remains that the ambient domain is given special treatment: it is
not itself a generic system. It seems to me that this exception can be well
motivated along the lines of [Burgess, 2015, p. 144].18 Briefly, the motivations
from mathematical practice for adopting a structuralist position for particular
branches of mathematics (number theory, group theory, analysis, topology, . . . )
just do not seem to extend to foundational theories.

7. RIVAL ACCOUNTS
I now turn to a comparison of my view of mathematical structure with rival
accounts of structure and arbitrariness in mathematics. The aim is not so
much to show that my account gives better answers to searching philosophical
questions as to clarify my stance on some of the issues.

7.1. The Incompleteness of Mathematical Objects
It is well-documented that both eliminative and non-eliminative structuralism
carry considerable ontological and/or modal commitments. This is particularly
so for versions of non-eliminative structuralism. The account that I propose
must simply accept such commitments: it is ontologically committed to the
existence of arbitrary objects and generic systems. So there is no question
of avoiding Platonistic commitments. Rather, the question is whether the
proposed account gives plausible answers to vexing philosophical problems.

17After all, the track record of ontological reduction in philosophy is not great.
18 I should mention that Burgess advocates a form of eliminative rather than non-

eliminative structuralism.
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Algebraic theories are about classes of structures that themselves form a
more general structure; non-algebraic theories are about particular structures.
Nonetheless, particular structures are in a sense more fundamental:

Mathematical structures are, roughly, of two kinds, particular (e.g., the
natural numbers) and general (e.g., groups). Mathematics for its first
several thousand years was concerned only with particular structures.
Modern mathematics is much more about general structures, but despite
this shift, the reality of mathematics turns ultimately on the reality of
particular structures. [Isaacson, 2011, pp. 1–2]

In contrast to Isaacson’s structuralism,19 I take non-algebraic mathematical
theories to be not just about structures but also about mathematical objects,
and thus aim to be more faithful to how mathematicians unreflectively tend
to view such structures. Moreover, my aim is to give a detailed account of the
incompleteness of mathematical objects, and I do so in terms of the ability of
mathematical objects to take on particular values. Indeed, the description of
the way in which mathematical objects are incomplete forms the heart of the
proposed theory of mathematical structure.

Shapiro also takes structures to contain objects since an ante rem structure
can be taken to be a system. But this move results in mathematical objects not
having the right kind of incompleteness, as Hellman’s permutation argument
shows.20

The theory of mathematical structure that is advocated in this article does
not succumb to the permutation argument. It is clear that the exact analogue
of the problem that Shapiro faces does not pose itself. A generic structure is
not a state that that same generic structure can be in. Applied to arithmetic,
for instance, this means that the generic ω-sequence is not itself an ω-sequence.
Nonetheless, one may ask, whether this gets to the heart of the matter.21 Can-
not the specific number 0 in the generic ω-sequence ‘play the role’ of the specific
number 1 and vice versa, for instance? But the answer to that question is plainly
no: in every state, the value taken by the specific number 0 plays the 0-role,
and the value taken by the number 1 plays the 1-role. This is the main reason
why I take my theory of mathematical structure to be preferable to Shapiro’s
non-eliminative structuralism.

7.2. Theories and Structures
Nodelman and Zalta [2014] have also proposed a form of ante rem structuralism
that is not subject to the permutation objection. I will now briefly discuss their
position.

Central to their account is a distinction between two kinds of predication:
exemplification and codification. Exemplification is the form of predication that

19 I do not have space here to go into the details of Isaacson’s view.
20See Section 2 above.
21Thanks to James Studd for pressing the objection.
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we are most familiar with. For instance, we have a case of an ordinary object
exemplifying a property when we say that Vladimir Putin is the president of
Russia. But abstract objects can codify predicates or groups of predicates. For
instance, the abstract object redness codifies the property of being red.

On their account, mathematical structures are obtained from mathemat-
ical theories, along roughly the following lines. There is a canonical way of
constructing properties out of propositions via λ-abstraction. A mathematical
theory can be identified with the collection of mathematical propositions that
it logically entails. Therefore, a mathematical theory is associated with the col-
lection of properties constructed out of the propositions that it entails. And
there will be a unique abstract object that encodes exactly those properties. So
we may identify a mathematical structure with this abstract entity [Nodelman
and Zalta, 2014, p. 51].

This is an ante rem form of structuralism that differs from the accounts
that we have so far discussed. It associates a unique ante rem structure even
with each algebraic theory, and thus comes closer to the account that I pro-
pose than to Shapiro’s version of non-eliminative structuralism. Moreover, it
aims at attributing exactly the right kind of incompleteness to mathematical
structures. Consider for instance the theory of dense linear orderings. It will
be, on Nodelman’s and Zalta’s account, about an abstract entity (structure)
that encodes all the properties of this theory. In particular, it encodes neither
countability or uncountability, since there are both countable and uncountable
dense linear orderings.

Mathematical structures contain mathematical objects on Nodelman’s and
Zalta’s account. The objects that a structure contains are extracted from the
theory from which the structure is obtained. Roughly, objects correspond to
the terms that the theory contains. The object corresponding to a term of a
theory will again be an abstract object that codifies the properties that the
theory attributes to it. Thus the Peano Arithmetic structure will be, in some
sense, about all and only the familiar objects 0, 1, 2, . . . And this will have as a
consequence that there will be no cross-theory identification of mathematical
objects: the number 0 of Peano Arithmetic will be distinct from the number 0
of real analysis.22

However, since mathematical objects are identified by means of clusters
of properties satisfied by the denotation of a term according to a given the-
ory, there is no room in their account for numerically distinct but strongly
indistinguishable objects:

An element of a structure must be uniquely characterizable in terms of
the relations of the structure. [Nodelman and Zalta, 2014, p. 73]

But this is in a tension with ways in which mathematicians tend to speak. Take
for instance the theory of countable dense linear orderings without endpoints.

22So on this point Nodelman’s and Zalta’s account is closer to [Resnik, 1997] than to
[Shapiro, 1997].
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Intuitively, one would say that any corresponding structure contains countably
many numerically distinct objects that are all indistinguishable from each other.
But on Nodelman’s and Zalta’s theory, the structure that this theory describes
does not contain any objects.

The moral of this is, I think, that there is more to the objects of a structure
than the discriminating powers of our best theory about the structure. On my
account, there is a sense in which even arithmetic is about many mathematical
objects (arbitrary numbers) that are mutually highly indistinguishable from
each other.

7.3. Reference and Dependence
Recall our mathematician from Section 3 who enters the lecture room and says
‘Let m be an arbitrary natural number’. What is she referring to?

On Breckenridge’s and Magidor’s [2012] account, she is referring to a specific
natural number but it is in principle impossible for anyone to know which one.
So any arbitrariness lies on the side of the reference relation rather than on
the side of the objects referred to. Fine [1985, p. 18] in contrast holds that
the mathematician is referring to the (unique) independent arbitrary natural
number. Later on in the lecture, Fine would add, she may introduce other
arbitrary natural numbers that depend on m.

Like Fine’s account, the view developed in this article imputes arbitrariness
to the objects referred to. But it is nonetheless very different from Fine’s. On my
account, there are no independent arbitrary numbers. All we can say is that all
arbitrary numbers are correlated with one another in complicated ways; there
is no ontological priority of some over others.

If Fine is right, there is only one natural number that the mathematician’s
use of ‘m’ can refer to: there is then no mystery about how the reference rela-
tion finds its target. Nonetheless, as Breckenridge and Magidor [2012, p. 391]
observe, the mathematician could go on to say ‘Now let n also be an arbitrary
natural number.’ It is not clear in which sense n depends on m (or vice versa).

I conclude from this, with Breckenridge and Magidor, that if we take, along
with Fine, arbitrary numbers seriously, then there is more than one candidate
arbitrary natural number for our mathematician to be referring to when she
says ‘Let m be a natural number.’ Indeed, we have seen that according to my
account, there are many completely arbitrary natural numbers. But then the
question arises: in virtue of what does ‘m’ refer to one arbitrary natural number
rather than to another one?

When Breckenridge and Magidor [2012, p. 380] claim that ‘m’ refers to some
specific natural number, they are faced with a similar question. In response,
they say that the reference of ‘m’ is a brute, unexplained semantic fact. There
is no explanation of why the mathematician refers to the number 172 (if she
does), rather than to the number 3, for instance. This forces them to deny that
reference supervenes on language use.

The generic structuralist can take a similar line, and hold that the reference
of ‘m’ to some arbitrary number is a brute semantic fact. But denying the
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supervenience of reference on language use strikes many as a radical claim.23 It
might be more reasonable to hold that just as it is indeterminate whether the
term ‘i’ refers to one place in the structure of the complex plane rather than to
another,24 it is indeterminate to which completely arbitrary number the term
‘m’ refers.

8. IN CLOSING
I have explored a new account of mathematical structure. All I can hope to have
achieved is to have articulated and defended this view to the extent that readers
are convinced that it deserves a hearing in the community of philosophers of
mathematics.

The focus of this article has been mainly on matters metaphysical, although
some attention was also paid to aspects of semantic reference. Implications for
mathematical epistemology have not been touched upon at all. In particular,
Benacerraf’s notorious access problem [1970], which can in some shape or form
be raised for every form of mathematical structuralism, was not addressed. This
is not because I do not regard it as an important problem; I just do not have
space to discuss it in this article.

There are also many technical questions that arise naturally and need to be
addressed, such as: What is a suitable formal framework for reasoning about
generic structures? and Can we formally define notions of indistinguishability
of arbitrary mathematical objects in a structure? These questions and others
like it are addressed in [Horsten and Speranski, unpublished].
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