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Abstract
Inspired by Kit Fine’s theory of arbitrary objects, we explore some ways in which the
generic structure of the natural numbers can be presented. Following a suggestion of
Saul Kripke’s, we discuss how basic facts and questions about this generic structure
can be expressed in the framework of Carnapian quantified modal logic.

Keywords Quantified modal logic · Individual concepts · Generic structures ·
Arbitrary objects

1 Introduction

Kit Fine proposed, defended and explored his approach to reasoning about arbitrary
objects in [4] and [5]. The approach taken naturally gives rise to an interesting theory
of mathematical structure—which was articulated in [13] (note that Fine discussed a
somewhat similar theory in [6, pp. 618–619]). Now from the viewpoint of this theory,
the natural number structure can be conceived as an ‘arbitrary’, or ‘generic’, system
of objects, which may be called the generic ω-sequence. Then two ways of modelling
this generic structure formally suggest themselves:
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– one is in the spirit of [2], according to which any particular ω-sequence can be
thought of as an admissible instance of the natural number structure;

– another is in the spirit of [8, 12], according to which we are to restrict ourselves
to computable ω-sequences;

Both of these will be considered below.
It was proposed in [14, p. 73] that reasoning with arbitrary objects can in effect be

represented using Carnapian modal logic with quantifiers over individual concepts,
i.e. functions from possible worlds to elements of a given domain (cf. [3])—instead of
Fine’s own framework. Following Kripke’s proposal, we explore how different facts
and questions about the generic structure of the natural numbers can be expressed
in this setting. In fact, the structure in question is a good test case for the formal
investigation of generic structures in general. Note also that a distinctive feature of
our approach—which will play a key role in our modelling—is that we supplement
the original modal language with a special intensional predicate.

2 Two Kinds of Generic Structure

Roughly speaking, a generic (or arbitrary) structure is an entity that can be in different
states. In particular we shall be concerned with the generic structure of the natural
numbers, with the states representable as various ω-sequence orderings of some fixed
underlying countably infinite plurality of objects—so it will also be called the generic
ω-sequence. In this case we may view any natural number as an arbitrary object
too, or rather as an individual concept, i.e. a function from states to elements of the
underlying set. It will be seen shortly how both arbitrary and specific natural numbers
arise in this framework.

Next we describe two essentially different versions of this generic ω-sequence. In
the present article we shall not adjudicate between these but rather confine ourselves
to uncovering some of their logical/metamathematical properties.

2.1 The ‘Full’ Version

Without loss of generality, and purely for exposition, we may identify the underlying
countably infinite plurality of objects with N itself. Let

G := the collection of all permutations of N.

Now suppose that we follow the slogan ‘any ω-sequence will do’ from [2]—as is
also done in [16]. To be more precise, since every permutation of N can be viewed
as a specific ω-sequence, we define the state space of our generic ω-sequence to be
G. Let us think of G as the full generic ω-sequence. Clearly, |G| = 2ℵ0 , so there are
continuum many states that the full generic ω-sequence can be in.
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Take σ to be the signature of Peano arithmetic, i.e. {0, s, +, ×, =}, and N to be
its standard model, which serves as the intended interpretation of σ . Naturally, every
π ∈ G induces its own isomorphic copy π [N] of N, given by:

π [N] |= π (i) = 0 ⇐⇒ N |= i = 0;
π [N] |= s (π (i)) = π (j) ⇐⇒ N |= s (i) = j ;
π [N] |= π (i) + π (j) = π (k) ⇐⇒ N |= i + j = k;
π [N] |= π (i) × π (j) = π (k) ⇐⇒ N |= i × j = k

—in other words, π [N] can be obtained by applying π−1 to the intended interpreta-
tions of the symbols in σ .1

Intuitively an arbitrary number in G is a kind of ‘individual concept’ which for
each state π picks out some position in π , regarded as an ω-sequence. Formally, ar-
bitrary numbers in G can be identified with function from G to N. Denote by A the
collection of all arbitrary numbers in G. Evidently, |A| = 22

ℵ0 .
Roughly, the specific numbers are treated as limiting values of arbitrary numbers.

To illustrate how this works, consider the arbitrary number α such that for every
π ∈ G,

α (π) = π (0),

i.e. for each state π ∈ G, α picks out the object that plays the role of 0 at π (regarded
as an ω-sequence). Naturally, this α may be thought of as the specific number 0 inG.
Then, in general, we define the specific number n in G to be the arbitrary number α

given by

α (π) = π (n).

Denote by S the collection of all specific numbers. Obviously, |S| = ℵ0.

2.2 The ‘Computable’ Version

Of course most of the permutations of N induce non-computable presentations—
e.g. there are continuously many π ’s in G such that the interpretation of s in π [N],
and hence also that of +, is not Turing computable. Since it is possible to compute
with (ordinary) natural numbers, one might want to disqualify these ‘incomputable’
permutations from being states of our generic ω-sequence; see [1, pp. 275–277],
[8] and [12]. So, one might insist that the structures that instantiate our intended
interpretation must represent constructive systems of notations.

This line of reasoning leads to narrowing the state space G to

G
c := the collection of all computable permutations of N

1All σ -structures are assumed to be normal, so = has its usual meaning
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(whose elements are regarded as constructive systems of notations)—which gives
a computable isomorphism type. Let us think of Gc as the computable generic ω-
sequence. Evidently, there are only countably many Turing machines, hence |Gc| =
ℵ0.

As in the case of the full generic ω-sequence, one can then go on to identify the
collection of all arbitrary numbers in G

c with the set Ac of all functions from G
c

to N; obviously |Ac| = 2ℵ0 . And the specific numbers in G
c are treated as limiting

values of arbitrary numbers, similarly to how we did for G.
We shall be concerned with both G and G

c. Occasionally, we shall write G when
there is no need to differentiate between these two; let A be the collection of all
functions from G to N.

3 Formal Presentation

It was suggested in [14, p. 73] that Fine’s reasoning with arbitrary objects can be
represented using Carnap’s individual concepts. We shall follow this approach in a
certain way, by regarding G as essentially a possible worlds model of Carnapian qua-
ntified modal logic S5 with equality (see [3, Chapter V]). Now we present a formal
semantics for our framework and also describe some variation on it which will turn
out to be useful.

3.1 A Framework

Let us elaborate on the ideas from the previous section. In addition to the symbols of
the signature σ of Peano arithmetic, our formal language L includes:

– a countable set Var = {x, y, z, . . . } of variables;
– the connective symbols ¬ and ∨;
– the quantifier symbol ∃;
– the modal operator symbol ♦, read as ‘it is possible that ’;
– the extra unary predicate symbol Sp, read as ‘ is specific’.

Notice that in the context of first-order logic, we shall treat ∧, → and ∀ as defined,
rather than as primitive. The L -formulas are then built up in the usual manner:

– if t1 and t2 are σ -terms, then t1 = t2 is an L -formula;
– if � is an L -formula, then ¬� is an L -formula;
– if � and � are L -formulas, then � ∨ � is an L -formula;
– if x is a variable and � is an L -formula, then ∃x � is an L -formula;
– if � is an L -formula, then ♦� is an L -formula;
– if t is a σ -term, then Sp (t) is an L -formula.

We abbreviate ¬ (¬� ∨ ¬�) to � ∧ �, ¬� ∨ � to � → �, ¬∃x ¬� to ∀x �, and
lastly ¬♦¬� to��. Of course, x, y, z, . . . are intended to range over arbitrary natu-
ral numbers. However, the L -formula x = y will not express the identity of x and y,
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but only their ‘coincidence’ at a given possible world (cf. [14, p. 71]). Still, identity
turns out to be expressible, via

� (x, y) := � (x = y),

as one may expect. It should also be remarked that Sp is the only symbol of L with
intensional meaning, and its presence will play a crucial role for the expressive power
of L . Notice that the first-order σ -formulas are a subset of the L -formulas. These
formulas will be occasionally called purely arithmetical.

Any possible world is a permutation of N, which may or may not be computable,
depending on what we put for G. Intuitively a possible world represents a specific
‘state’ in which G might be; on the other hand, there is no ‘state’ in which G actually
is, i.e. no preferred world. As was mentioned earlier, we associate with each π ∈ G
the σ -structure π [N]. More precisely,

π [N] := 〈N; 0π , sπ , +π , ×π , =π 〉
where =π is the ordinary equality relation on N, and the others are given by:

0π := π (0);
sπ (i) := π

(
π−1 (i) + 1

)
;

i +π j := π
(
π−1 (i) + π−1 (j)

)
;

i ×π j := π
(
π−1 (i) × π−1 (j)

)
.

Here 0, s, + and × on the right sides have their standard meaning, as inN. Thus, for
instance, we define i +π j to be (roughly speaking) the number that plays at π the
role of the sum of the role that i plays at π and the role that j plays at π .

By a valuation in A we mean simply a function from Var to A. Naturally, every
valuation γ in A can be inductively extended to σ -terms:

γ (0) := λπ .
[
0π

];
γ (s (t)) := λπ .

[
sπ ((γ (t)) (π))

];
γ (t1 + t2) := λπ .[(γ (t1)) (π) +π (γ (t2)) (π)];
γ (t1 × t2) := λπ .[(γ (t1)) (π) ×π (γ (t2)) (π)].

Here λπ .[. . . π . . . ] traditionally denotes the function which maps each π in G to
. . . π . . . .

Of course the ‘standard’ interpretation of Sp in G would be

S := {λπ .[π (n)] | n ∈ N}.
Nevertheless, it is instructive to allow Sp to be interpreted by other subsets of A as
well. Given an S ⊆ A, we define, for any L -formula �, valuation γ in A and world
π ∈ G, what it means for � to be true in 〈G, S〉 at π under γ , written 〈G, S〉 |=π

� [γ ], as follows:

– 〈G, S〉 |=π t1 = t2 [γ ] iff (γ (t1)) (π) = (γ (t2)) (π);
– 〈G, S〉 |=π ¬� [γ ] iff 〈G, S〉 �|=π � [γ ];
– 〈G, S〉 |=π � ∨ � [γ ] iff 〈G, S〉 |=π � [γ ] or 〈G, S〉 |=π � [γ ];
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– 〈G, S〉 |=π ∃x � [γ ] iff there exists α ∈ A such that 〈G, S〉 |=π �
[
γ x
α

]
;

– 〈G, S〉 |=π ♦� [γ ] iff there exists π ′ ∈ G such that 〈G, S〉 |=π ′ � [γ ];
– 〈G, S〉 |=π Sp (t) [γ ] iff γ (t) ∈ S.

Here we use γ x
α for the valuation which agrees with γ except that γ x

α (x) = α, viz.

γ x
α (y) :=

{
γ (y) if y �= x,

α if y = x.

Clearly, if � is of the form �(x1, . . . , x
), i.e. the free variables of � are among
x1, . . . , x
, then it does not matter what values γ assigns to the elements of Var \
{x1, . . . , x
}, so we may write

〈G, S〉 |=π � [γ (x1), . . . , γ (x
)],

or more explicitly 〈G, S〉 |=π � [x1/γ (x1), . . . , x
/γ (x
)]. Further, when � is an
L -sentence, i.e. no variable occurs free in �, this becomes 〈G, S〉 |=π �.

Proposition 1 Let S ⊆ A and π ∈ G. Then for any purely arithmetical L -formula
�(x1, . . . , x
) and (α1, . . . , α
) ∈ A
,

〈G, S〉 |=π � [α1, . . . , α
] ⇐⇒ π [N] |= � [α1 (π), . . . , α
 (π)].

Proof By an easy induction on the construction of �.

Corollary 2 The collection of all purely arithmetical sentences true in 〈G, S〉 at π

coincides with the first-order theory ofN.

Proof The set of first-order σ -sentences true in 〈G, S〉 at π coincides with the first-
order theory of π [N] by the Proposition above. Moreover, since π [N] and N are
isomorphic, their first-order theories coincide. So the result follows.

We say that � is generically true in 〈G, S〉 under γ , written 〈G, S〉 |= � [γ ], iff
〈G, S〉 |=π � [γ ] for all π ∈ G. As before, in the case where � is an L -sentence
we can omit γ and write 〈G, S〉 |= �. We notice that the notion of generic truth
does not presuppose there being an ‘actual’ world in which arbitrary numbers take
their ‘actual’ values.

Corollary 3 The collection of all purely arithmetical sentences true generically in
〈G, S〉 coincides with the first-order theory ofN.

Proof Immediate.

Note that since there is no restriction on π ′ in the defining condition for 〈G, S〉 |=π

♦� [γ ], the intended accessibility relation is, in effect, the Cartesian square of G—
and thus ♦ satisfies the propositional laws of S5. One readily verifies that in 〈G, S〉,
Leibniz’s scheme of identity

∀x ∀y (x = y → (� (x) → � [x/y]) ∧ (� [x/y] → �(x)))
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fails already for the Sp-free L -formulas, but holds for the �-free L -formulas.
Roughly speaking, the basic quantificational principles that hold in 〈G, S〉 are, unsur-
prisingly, those for Carnapian quantified modal logic. It is easy to see that the Barcan
formula/scheme

∀x ��(x) → �∀x � (x)

and its converse both hold in 〈G, S〉.2 The so-called Ghilardi formula/scheme
�∃x � (x) → ∃x ��(x),

which can be regarded as a choice principle, fails already for the Sp-free L -formulas
(though its converse holds in 〈G, S〉, of course).3 For consider the L -formula

� := (x = 0) ∧ ¬� (x = 0);
then 〈G, S〉 |= �∃x � and yet 〈G, S〉 �|= ∃x ��.

3.2 A Useful Variation

Now we are going to give a somewhat simpler yet equivalent semantics for L—
which will turn out to be quite helpful in what follows. We do not suggest that this
version is intuitively better than the original one, but rather wish to attract attention
to its technical advantages.

The idea is to identify directly each π [N] with N. Thus we do not want to think
of possible worlds as permutations of N. Let a non-empty set W be given. Then we
shall write W for NW , viz. the collection of all functions from W to N. In the present
context, the elements of W play the role of possible worlds, and those of W the role
of arbitrary numbers.

Similarly to before, by a valuation in W we understand simply a function γ from
Var to W , which can be extended to σ -terms in the natural way:

γ (0) := λw.[0];
γ (s (t)) := λw.[s ((γ (t)) (w))];

γ (t1 + t2) := λw.[(γ (t1)) (w) + (γ (t2)) (w)];
γ (t1 × t2) := λw.[(γ (t1)) (w) × (γ (t2)) (w)].

Here w ranges over W , of course.
Clearly, the ‘standard’ interpretation of Sp in the present context would be

F := {λw.[n] | n ∈ N}.
Nevertheless, we allow Sp to be interpreted by other subsets of W too. Given an
F ⊆ W , let us define 〈W, F 〉 �w � [γ ] exactly as before, but with W and F in place
of G and S respectively.

2Cf. also [9, p. 357] and [19, Sections 2.1–2.2].
3Cf. also [9, Footnote 1 on p. 358] and [19, pp. 54–56].
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For the rest of this subsection, assume |G| = |W |, viz. the cardinalities of G and
W must be equal. Fix a one-to-one function ι from W onto G. For each α ∈ A, define

αι := λw.
[
(ι (w))−1 (α (ι (w)))

]
.

In particular, if W = G and ι = λw.[w], then αι := λw.
[
w−1 (α (w))

]
. Given an

R ⊆ A
, take

Rι := {(
αι
1, . . . , α

ι



) | (α1, . . . , α
) ∈ R
}
.

As might be expected, we have:

Theorem 4 Assuming that |G| = |W |, let S ⊆ A. Then for any L -formula
�(x1, . . . , x
), (α1, . . . , α
) ∈ A
 and w ∈ W ,

〈G, S〉 |=ι(w) � [α1, . . . , α
] ⇐⇒ 〈W,Sι〉 �w �
[
αι
1, . . . , α

ι



]
.

Proof One can easily verify that for any first-order σ -term t (x1, . . . , x
), (α1, . . . ,

α
) ∈ A
 and w ∈ W ,

(γ (t)) (ι (w)) = (ι (w))
(
(γ (t))ι (w)

)
,

where γ is a valuation which maps x1, . . . , x
 to α1, . . . , α
 respectively—in other
words,

(γ (t)) (ι (w)) plays the role of
(
(γ (t))ι (w)

)
at ι (w).

From this observation it is a short step to the desired result, which we can now prove
by induction on the construction of �.

Suppose � is atomic. Then the result follows quickly by the observation made
above.

The case when � = ¬� is immediate from the inductive hypothesis.
The case when � = � ∨ � is also immediate from the inductive hypothesis.
Suppose � = ∃y � (x1, . . . , x
, y). Note that λα.[αι] is a one-to-one function

from A onto W , so in particular, every β ∈ W has the form αι with α ∈ A. Thus the
result follows quickly from the inductive hypothesis.

The case when � = ♦� is immediate from the inductive hypothesis—because
every π ∈ G has the form ι (w) with w ∈ W .

Of course, things look simpler in 〈W, Sι〉 than in 〈G, S〉. For instance, if Sp has
its standard meaning in 〈G, S〉, then so does Sp in 〈W,Sι〉, and vice versa—more
formally,

S = S ⇐⇒ Sι = F,

independently of the choice of ι. Moreover, S is not closed under permutations of
G, but F (i.e. the set of all constant functions from W to N) is clearly closed under
permutations of W .

In fact, we shall be mainly concerned with the standard interpretations of Sp. Then
instead of 〈G, S〉 |=π � [γ ] and 〈W,F〉 �w � [γ ] we can write respectively

G |=π � [γ ] and W �w � [γ ],
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or simply π |= � [γ ] and w � � [γ ]. Let us finish with an easy application of
Theorem 4 which gives an alternative definition of generic truth for L -sentences in
the case S = S.

Corollary 5 Assume |G| = |W |. For any L -sentence � and {π1, π2} ⊆ G,

G |=π1 � ⇐⇒ G |=π2 �.

Thus G |= � iff G |=π � for some π ∈ G.

Proof Let � be an L -sentence. It is readily seen that the truth of W �w � does not
depend on the choice of w, i.e. for all {w1, w2} ⊆ W ,

W �w1 � ⇐⇒ W �w2 �.

Now the result follows immediately by this fact and the Theorem above.

In words, any two possible worlds are indistinguishable by L -sentences provided
that Sp has its standard meaning.

4 Model-Theoretic Aspects

To get a deeper understanding of the behavior of arbitrary numbers in our framework,
we need to investigate some basic model-theoretic properties of L .

4.1 Definability

Henceforth by a specific number we mean a ‘standard’ specific number, viz. a func-
tion of either of the forms

λπ .[π (n)] and λw.[n]

where n ∈ N, depending on whether G or W is involved.
Given an S ⊆ A, call R ⊆ A
 definable in 〈G, S〉 iff there exists an L -formula

�(x1, . . . , x
) such that for every (α1, . . . , α
) ∈ A
,

(α1, . . . , α
) ∈ R ⇐⇒ 〈G, S〉 |= � [α1, . . . , α
].

If the same � defines R in 〈G, S〉 for all S ⊆ A, we say R is uniformly definable in
G. Similarly for 〈W, F 〉. Remembering the definition of αι from the previous secton,
we have:

Proposition 6 Assume |W | = |G|, and let S ⊆ A. Then for every R ⊆ A
 and every
L -formula �(x1, . . . , x
),

� defines R in 〈G, S〉 ⇐⇒ � defines Rι in 〈W,Sι〉.
Proof Immediate from Theorem 4.

As usual, one can speak of definability of arbitrary numbers and functions on
them:
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– by identifying an arbitrary number with its singleton;
– by identifying a function on the arbitrary numbers with its graph.4

As has been observed earlier, λα.[αι] maps A one-to-one onto W , so we are free to
pass from G to W , and vice versa. To facilitate discussion we mostly deal with W .

For instance, the identity relation on W is uniformly definable in W by the L -
formula

x � y := � (x = y).

The ‘coordinatewise’ addition and multiplication, viz.

R+ :=
{
(α1, α2, λw.[α1 (w) + α2 (w)]) | (α1, α2) ∈ W 2

}
and

R× :=
{
(α1, α2, λw.[α1 (w) × α2 (w)]) | (α1, α2) ∈ W 2

}
,

can then be uniformly defined in W by

�+ (x, y, z) := x + y � z and �× (x, y, z) := x × y � z

respectively. Let us temporarily pretend that σ includes neither 0 nor s. Still, the
specific numbers λw.[0] and λw.[1] will be uniformly definable in W by

�0 (x) := ∀y �+ (y, x, y) and �1 (x) := ∀y �× (y, x, y)

respectively. Hence the ‘coordinatewise’ successor function, viz.

Rs := {(α, λw.[α (w) + 1]) | α ∈ W },
can be uniformly defined in W by

�s (x, y) := ∃z (�1 (z) ∧ �+ (x, z, y)).

Note in passing that as far as definability is concerned there is no significant differ-
ence between σ and, say, the smaller signature {+, ×, =}; in fact, any other σ ′ would
do as well provided that the standard models of σ and σ ′ are first-order interdefinable.

Now for each n ∈ N, denote λw.[n] by n. Define a sequence A0 (x), A1 (x), . . . of
L -formulas by recursion:

An (x) :=
{

x � 0 if n = 0,
∃y (An−1 (y) ∧ x � s (y)) if n > 0.

Evidently, the following holds.

Proposition 7 For each n ∈ N, the specific number n is uniformly definable in W by
the L -formula An (x).

Proof By a trivial induction on n.

4The second convention may look redundant since functions are officially identified with their graphs in
ZFC, and we deal with set-theoretic objects. Still, in first-order logic predicate and function symbols are
often treated separately, and the notions of definability and representability, for instance, are described in
two stages. Also, in computability theory it is common practice to distinguish between functions and their
graphs.
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Furthermore, no non-specific number is definable in W , as will be seen shortly.
However, we need a little more semantic machinery to establish this. Let δ be a per-
mutation of W . For each α ∈ W we denote by α ◦ δ the composition of α and δ,
i.e.

α ◦ δ := λw.[α (δ (w))];
obviously α ◦ δ ∈ W . Given an R ⊆ W 
, take

R ◦ δ := {(α1 ◦ δ, . . . , α
 ◦ δ) | (α1, . . . , α
) ∈ R}.
As one would expect, we have:

Proposition 8 Let δ be a permutation of W and F ⊆ W . Then for any L -formula
�(x1, . . . , x
), (α1, . . . , α
) ∈ W 
 and w ∈ W ,

〈W,F 〉 �δ(w) � [α1, . . . , αn] ⇐⇒ 〈W, F ◦ δ〉 �w � [α1 ◦ δ, . . . , αn ◦ δ].

Proof By an easy induction on the construction of �.

Remember that we abbreviate 〈W,F〉 �w � [γ ], where F denotes the standard
interpretation of Sp, to W �w � [γ ]. Likewise ‘definable in W ’ will stand for
‘definable in 〈W,F〉’.

Corollary 9 For every R ⊆ W 
,

R is definable in W =⇒ R ◦ δ = R for all permutations δ of W .

Proof Assume R ⊆ W 
 can be defined in 〈W,F〉 by an L -formula �. Let δ be a
permutation of W . Evidently, F ◦ δ = F. Hence by the Proposition above, for any
(α1, . . . , α
) ∈ W 
,

W � � [α1, . . . , α
] ⇐⇒ W � � [α1 ◦ δ, . . . , α
 ◦ δ].

Consequently R ◦ δ = R, as desired.

Finally, we are ready for the promised result.

Theorem 10 For every α ∈ W the following are equivalent:

1. α is specific;
2. α is uniformly definable in W ;
3. α is definable in W .

Proof 1 =⇒ 2 Immediate from Proposition 7.
2 =⇒ 3 This is obvious.
3 =⇒ 1 Assume α is definable in W . So by Corollary 9, α ◦ δ = α for all

permutations δ of W . Thus α must be a constant function, and hence specific.
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Is it possible to fix the intended interpretation of Sp by means of a single L -sen-
tence? Curiously the answer turns out to be affirmative. Take the axioms for Sp to
be

B1 := ∀x (x � 0 → Sp (x)),

B2 := ∀x (Sp (x) → Sp (s (y))) and

B3 := ∀x (Sp (x) ∧ x �� 0 → ∃y (Sp (y) ∧ x � s (y))).

We are going to show that the conjunction of these three L -sentences does the job.

Theorem 11 For every F ⊆ W ,

〈W, F 〉 |= B1–B3 ⇐⇒ F = F.

Proof ⇐= This is obvious.
=⇒ Given an α ∈ W , take

rank (α) := min {α (w) | w ∈ W }.
Assume 〈W,F 〉 |= B1–B3. Using B1–B2 we easily get F ⊆ F . Suppose F �= F.
Consequently there exists α ∈ F \ F. Clearly, α �= 0. So by B3 there must be α′ ∈ F

such that 〈W,F 〉 |= α � s
(
α′). Then rank

(
α′) < rank (α), and moreover, α′ ∈

F \ F—because otherwise the successor α of α′ would be in F. Continuing in this
fashion we obtain an infinite sequence

α, α′, α′′, . . .

of elements of F \ F such that

rank (α) > rank
(
α′) > rank

(
α′) > . . .

This contradicts the well-foundedness of N with the usual ordering, of course.

4.2 Cardinality

Temporarily forget about the condition |W | = |G| and let W be any non-empty set
(of possible worlds). Given an F ⊆ W , by the L -theory of 〈W,F 〉 we mean

Th (W, F ) := {� | � is an L -sentence and 〈W,F 〉 � �}.
Similarly for 〈G, S〉. As might be expected, Th (W,F) and Th (G,S) are abbrevi-
ated to Th (W) and Th (G) respectively. More explicitly Th (W) can be written as
Th (N; W). Obviously, every cardinal a can itself be viewed as a set of worlds of
cardinality a. Thus, for instance,

Th (Gc) = Th (N; ℵ0) and Th (G) = Th
(
N; 2ℵ0

)

—remember Theorem 4. To facilitate the further exposition, we abbreviate

∀x (Sp (x) → �) and ∃x (Sp (x) ∧ �)

to ∀Spx � and ∃Spx � respectively.
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Proposition 12 There exists an L -sentence � such that for every cardinal a,

a � � ⇐⇒ a = ℵ0.

Proof Consider the L -formula

C (x) := ∀Spy ♦ (x = y) ∧ ∀Spy ∀z (♦ (x = y ∧ z = y) → � (x = y → z = y)).

Clearly, for each α ∈ W ,

W � C [α] ⇐⇒ α is a one-to-one function from W onto N.

Take � to be ∃x C (x). Obviously, W � � iff |W | = ℵ0.

Corollary 13 Th (N; ℵ0) �= Th
(
N; 2ℵ0

)
, i.e. Th (Gc) �= Th (G).

Proof Immediate.

Then, since L allows us to distinguish ℵ0 from the other cardinals, the reader may
very well ask whether we can do the same for ℵ1, ℵ2, and so on. The answer turns
out to be negative, as will be seen below. For the rest of this subsection W , U , etc.
stand for sets of worlds. We write W , U , etc. for the corresponding collections of
arbitrary numbers, i.e. NW , NU , etc.

Let �α = (α1, . . . , α
) ∈ W 
. For each �n = (n1, . . . , n
) ∈ N

, define

��α; �n� := {w ∈ W | αi (w) = ni for all i from 1 to 
}.
By the profile of �α we mean the function prof�α from N


 to N ∪ {ℵ0, ℵ1} given by
prof�α (�n) :=

{ ∣∣��α; �n�
∣∣ if

∣∣��α; �n�
∣∣ � ℵ0

ℵ1 otherwise.

In particular, if 
 = 0, then �α = () and N
 = {()}, so prof�α maps () to min {|W |, ℵ1}.
Given �α ∈ W 
 and �β ∈ U 
, we say that �α and �β are congruent, and write �α ∼= �β,
iff their profiles coincide—although the underlying sets W and U need not be the
same.5

Lemma 14 Let �α ∈ W 
 and �β ∈ U 
. Suppose �α and �β are congruent. Then for
every α′ ∈ W there exists β ′ ∈ U such that (�α, α′) and ( �β, β ′) are congruent.

Proof Since {� �β; �n� | �n ∈ N

} is clearly a partition of U , it suffices to define β ′ on

each element of this partition. Consider an arbitrary �n ∈ N

. Obviously,

∣∣��α; �n�
∣∣ =

∞∑
k=0

∣∣�(�α, α′); (�n, k)�
∣∣

and therefore

prof�α (�n) =
∞∑

k=0

prof(�α,α′) (�n, k).

5However, �α ∼= �β implies min {|W |,ℵ1} = min {|U |,ℵ1}, as can be readily verified.
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On the other hand, prof�α (�n) = prof �β (�n) by assumption. So β ′ can be defined on

� �β; �n� in such a way that for each k ∈ N,

prof( �β,β ′) (�n, k) = prof(�α,α′) (�n, k).

In detail, the argument falls into two cases.

i. Suppose
∣∣��α; �n�

∣∣ � ℵ0, and hence
∣∣�(�α, α′); (�n, k)�

∣∣ � ℵ0 for any k ∈ N. Then
|� �β; �n�| � ℵ0, and we can even define β ′ on � �β; �n� so that for each k ∈ N,

∣∣�(�α, α′); (�n, k)�
∣∣ = |�( �β, β ′); (�n, k)�|,

which is more than enough.
ii. Suppose

∣∣��α; �n�
∣∣ � ℵ1, and hence

∣∣�(�α, α′); (�n, i)�
∣∣ � ℵ1 for some i ∈ N. Then

|� �β; �n�| � ℵ1 and therefore � �β; �n� has a subset B of cardinality ℵ1. Certainly
one can define β ′ on B so that for each k ∈ N,

min
{∣∣�(�α, α′); (�n, k)

∣∣, ℵ1
} = min{|B ∩ �( �β, β ′); (�n, k)�|, ℵ1},

and we get the desired result by setting β ′ (u) := i for all u ∈ � �β; �n� \ B.

These are the only cases possible, of course.

We are ready for the key result of this subsection:

Theorem 15 Let �α ∈ W 
, �β ∈ U 
, w ∈ W and u ∈ U . Suppose �α and �β are
congruent, with �α (w) = �β (u). Then for every L -formula �(x1, . . . , x
),

W �w � [�α] ⇐⇒ U �u � [ �β].

Proof By induction on the construction of �. Note: for every w′ ∈ W there exists
u′ ∈ U such that �α (

w′) = �β (
u′)—simply because

prof �β
(�α (

w′)) = prof�α
(�α (

w′)) = min
{∣∣��α; �α (

w′)�∣∣, ℵ1
} �= 0,

i.e. |� �β; �α (
w′)�| �= 0, and thus � �β; �α (

w′)� �= ∅.
Suppose � is atomic and does not contain Sp, so it has the form t1 = t2 where t1

and t2 are σ -terms. Clearly, we have

w � � [�α] ⇐⇒ tN1 (�α (w)) = tN2 (�α (w)),

and similarly for u and �β. Since �α (w) = �β (u), the result follows.
Suppose� is atomic and does contain Sp, so it has the form Sp (t)with t a σ -term.

For the ⇐ direction, assume w � � [�α]. In other words, tN (�α (w)) �= tN
(�α (

w′))
for some w′ ∈ W . Now take u′ to be an element of U such that �α (

w′) = �β (
u′).

Of course tN( �β (u)) �= tN( �β (
u′)). Thus u � � [ �β]. The ⇒ direction holds by

symmetry.
The case when � = ¬� is immediate from the inductive hypothesis.
The case when � = � ∨ � is also immediate from the inductive hypothesis.
Suppose � = ∃y � (x1, . . . , x
, y). For the ⇒ direction, assume w � � [�α];

thus w � � [�α, α′] for some α′ ∈ W . By Lemma 14 there is β ′ ∈ U such that
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〈�α, α′〉 ∼= 〈 �β, β ′〉, so by the inductive hypothesis we have u � � [〈 �β, β ′〉]. Hence
w � �[ �β]. The ⇐ direction holds by symmetry.

Suppose � = ♦�. For the ⇒ direction, assume w � � [�α]; thus w′ � � [�α] for
some w′ ∈ W . Take u′ to be an element of U such that �α (

w′) = �β (
u′), so by the

inductive hypothesis we have u′ � � [ �β]. Hence u � � [ �β]. The ⇐ direction holds
by symmetry again.

Corollary 16 For any cardinals a and b,

min {a, ℵ1} = min {b, ℵ1} =⇒ Th (N; a) = Th (N; b).
In particular, Th (N; ℵ1) = Th (N; a) for all cardinals a � ℵ1.

Proof Immediate.

For instance, it makes no substantial difference whether we choose 2ℵ0 or ℵ1, and
clearly no assumption about the Continuum Hypothesis has been used to prove this.6

Let us conclude with a remark on finite cardinals. Certainly the condition ‘W has
exactly n members’ is expressible in L . Formally, for each n ∈ N, consider the
L -sentence

Dn := ∃x1 . . . ∃xn ∃y

(∧n−1

i=1

∧n

j=i+1
�

(
xi �= xj

) ∧
∧n

i=1
♦ (y = xi)

)
∧

¬∃x1 . . . ∃xn+1 ∃y

(∧n

i=1

∧n+1

j=i+1
�

(
xi �= xj

) ∧
∧n+1

i=1
♦ (y = xi)

)
.

It is straightforward to show that for every cardinal a,

a � Dn ⇐⇒ a = n.

Thus L allows us to distinguish, in addition to ℵ0, each finite cardinal (and nothing
else).

4.3 Indiscernibility

Although the original semantics for L provided in Section 3.1 may be technically
less convenient than its variation presented in Section 3.2, it has some advantages for
structuralists:

– while N is the preferred first-order structure of the natural numbers in
Section 3.2, we treat it on par with any π [N] in Section 3.1;

– while each n ∈ N plays the same role at all possible worlds in Section 3.2, its
role varies with the choice of π in Section 3.1.

We are going to discuss indiscernibility in terms of the original semantics. Evidently,
one could do it in terms of the alternative semantics as well (recalling Theorem 4)—
but it would seem somewhat unnatural.

6We assume nothing beyond ZFC (the Axiom of Choice was used, for example, in the proof of Lemma 14).
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For expository purposes, we took the underlying countably infinite plurality of
objects to be N itself in Section 3.1. Then every n ∈ N can be embedded into G as

cn := λπ .[n].

Notice that the constant function cn is, in effect, a very arbitrary number, and nothing
like the specific number n in G. (Moreover, if we pass from cn to cι

n using Theorem 4,
then cι

n will be nothing like a constant function, of course.)
In keeping with the spirit of structuralism, we want the elements of the underlying

set to be to the highest possible degree (compatible with the presence of identity)
indistinguishable from each other. To this end, for any {α1, α2} ⊆ A we let

Type (α1, α2) := {�(x, y) | � is an L -formula and G |= � [α1, α2]}.
Now α1 and α2 are said to be relatively distinguishable iff

Type (α1, α2) �= Type (α2, α1)

—this definition and a discussion of its suitability can be found in [15].

Theorem 17 For any {i, j} ⊆ N,

Type
(
ci, cj

) = Type
(
cj , ci

)
,

i.e. ci and cj are relatively indistinguishable.

Proof Let {i, j} ⊆ N. We need to show that for all L -formulas �(x, y),

G |= �
[
ci, cj

] ⇐⇒ G |= �
[
cj , ci

]

—which is, assuming |W | = |G| and using the notation of Section 3.2, equivalent to

W � �
[
cι
i , c

ι
j

]
⇐⇒ W � �

[
cι
j , c

ι
i

]

(by Theorem 4). At the same time it is straightforward to check that:

a. cι
i and cι

j are congruent;
b. for every w ∈ W there exists w′ ∈ W such that

(
cι
i (w), cι

j (w)
)

=
(
cι
j

(
w′), cι

i

(
w′)),

and vice versa.

Thus by Theorem 15 one easily obtains the desired result.

Intuitively, while Theorem 10 guarantees that the specific numbers in G are max-
imally distinguishable from each other, Theorem 17 tells us that the objects in the
underlying set—or rather, their representations in G via λn.[cn]—are at the opposite
extreme.

4.4 Compactness

Let W be a non-empty collection of possible worlds. A set � of L -formulas whose
free variables are among x1, . . . , x
 is called satisfiable in W if there is an �α ∈ W 
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such that W � �
[�α]

for all � ∈ �, and finitely satisfiable if every finite subset
of � is satisfiable. Similarly for G, which can be viewed as the special case when
|W | = |G| by Theorem 4. Not surprising, we have:

Proposition 18 Let W be infinite. There exists a set of L -formulas which is finitely
satisfiable but not satisfiable in W .

Proof We prove this for 
 = 1. Traditionally, with every n ∈ N comes a closed
σ -term n, called its numeral, given by:

n :=
{
0 if n = 0,
s
(
n − 1

)
if n > 0.

Now define a sequence �0 (x), �1 (x), . . . of L -formulas by recursion:

�n (x) :=
{
♦ (x = 0) if n = 0,
�n−1 ∧ ♦

(
x = n

)
if n > 0.

On the other hand, let

�∞ (x) := ¬∀Spy ♦ (x = y).

Evidently, {�n | n ∈ N} ∪ {�∞} has the desired properties.

The failure of compactness for L -formulas may point to complexity beyond first-
order arithmetic. In the next section we shall examine certain computational aspects
of L .

5 Complexity Aspects

We are now going to prove that, in fact, both Th (G) and Th (Gc) have the same
complexity as complete second-order arithmetic, i.e. the second-order theory of N.
To make this precise, some basic terminology of computability theory is needed; see
e.g. [17, Chapter 1].

Let P andQ be subsets ofN. We say that P is m-reducible toQ, written P �m Q,
iff there exists a computable f : N → N such that for every n ∈ N,

n ∈ P ⇐⇒ f (n) ∈ Q.

Also, P and Q are called m-equivalent, written P ≡m Q, iff they are m-reducible
to each other. The notion of m-reducibility clearly plays a major role in studying
complexity of decision problems and expressive power of formal languages in the
foundations of mathematics.

Without loss of generality, we can restrict our attention to monadic second-order
arithmetic (since first-order arithmetic allows us to code elements of N
 as elements
of N). Its language L2 includes two sorts of variables, namely:

– individual variables x, y, z, . . . (intended to range over natural numbers);
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– set variables X, Y , Z, . . . (intended to range over sets of natural numbers).7

Accordingly one must distinguish between individual and set quantifiers, viz.

∃x, ∃y, ∃z, . . . and ∃X, ∃Y , ∃Z, . . .

TheL2-formulas—ormonadic second-order σ -formulas—are built up from the first-
order σ -formulas and the expressions of the form t ∈ X, where t is a σ -term and X

is a set variable, by means of the connective symbols and the quantifiers in the usual
way. As one would expect, we write¬∃X ¬� as shorthand for ∀X �, and adopt other
standard abbreviations.

So we wish to show that both Th (G) and Th (Gc) are m-equivalent to the set of
all L2-sentences true in N, denoted by Th2 (N).

5.1 Hardness

First we prove that each of Th (G), Th (Gc) is at least as complex as Th2 (N). And
in fact, our argument below will demonstrate a bit more.

For convenience we pass from G to W (without imposing any restrictions on the
cardinality of W at the moment). We say P ⊆ N


 is absolutely definable in W iff
there exists an L -formula �(x1, . . . , x
) such that for every (n1, . . . , n
) ∈ N


,

(n1, . . . , n
) ∈ P ⇐⇒ W � � [n1, . . . ,n
]

where ni = λw.[ni] for each i ∈ {1, . . . , 
}.

Theorem 19 There exists a computable function τ that, given any L2-formula
�(x1, . . . , x
), produces an L -formula �τ (y1, . . . , y
) such that for every infinite
W and (n1, . . . , n
) ∈ N


,

N |= � [n1, . . . , n
] ⇐⇒ W � �τ [n1, . . . , n
],

i.e. �τ absolutely defines in W the same set as � defines in N.8

Proof Assume W is infinite. Then given any non-empty P ⊆ N, one can find α ∈ W
such that

P = {α (w) | w ∈ W }
—in other words, for all n ∈ N,

n ∈ P ⇐⇒ α and n coincide at some w ∈ W .

Clearly, we want the elements of F to play the role of natural numbers, and those of
W the role of non-empty sets of natural numbers. Of course, the empty set is easy to
model.

7Henceforth we shall identify the collection of all individual variables with Var.
8We can try to allow free set variables in � as well: the translation τ supplied by the proof below shows
that just as for each n ∈ N its role in W is played by n, for each non-empty P ⊆ N its role in W can be
played by an arbitrary α ∈ W that satisfies P = {α (w) | w ∈ W }. There may be infinitely many such
α’s, however, and there seems to be no canonical way to choose between them.
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It is straightforward to effectively convert every L2-formula � into a semantically
equivalent L2-formula �� satisfying the following conditions:

– each atomic subformula of �� is of either of the forms

x = y, x = y + z, x = y × z and x ∈ X;
– no set or individual quantifier occurs more than once in ��.

Now let v0, v1, . . . and V0, V1, . . . be fixed enumerations of the individual variables
and the set variables respectively. Given an L2-formula �, take

�τ := (
��

)τ

with (��)τ defined inductively as follows:
(
vi = vj

)τ := v2i = v2j ;(
vi + vj = vk

)τ := v2i + v2j = v2k;(
vi × vj = vk

)τ := v2i × v2j = v2k;(
vi ∈ Vj

)τ := ♦
(
v2i = v2j+1

);
(¬�)τ := ¬�τ ;

(� ∧ �)τ := �τ ∧ �τ ;
(∃vi �)τ := ∃v2i

(
Sp (v2i ) ∧ �τ

);(∃Vj �
)τ := ∃v2j+1 �τ ∨ (

�
[
Vj := ∅

])τ

where �
[
Vj := ∅

]
denotes the result of replacing each vi ∈ Vj in � by vi �= vi .

Observe that for every L2-formula �
(
vi1 , . . . , vi


)
the corresponding L -formula

�τ
(
v2i1 , . . . , v2i


)
absolutely defines in W what is needed, as an easy induction on

the construction of � shows.

We remark that in the context of monadic second-order logic the difference
between the signature σ of Peano arithmetic and its fragment {0, s, +, =}, which is
the signature of Presburger arithmetic, turns out to be inessential, because we can
eliminate × from L2 without any loss of expressiveness; see [18] for details and
further references.9 In view of Theorem 19, the same applies to L . However, the
reader should bear in mind that although multiplication is absolutely definable using
a ×-free L -formula, expressing set quantifiers in L requires ♦, and in particular, no
purely arithmetical ×-free formula can do this job.

Corollary 20 Th2 (N) is m-reducible to both Th (G) and Th (Gc).

Proof For each infinite W , Th2 (N) is m-reducible to Th (N; W) by the Theorem
above. Since Th (G) = Th

(
N; 2ℵ0

)
and Th (Gc) = Th (N; ℵ0), the result

follows.

9While in the context of first-order logic this is not so, of course.
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Thus the expressive power of L is greater than or equal to that of L2. In effect,
the equality holds, as will be established in the next subsection.

5.2 Boundedness

Further, the complexity of Th (G) and Th (Gc) turns out to be bounded by that
of Th2 (N). In order to prove this, we shall reconsider the technique developed in
Section 4.2.

Theorem 21 For every W , Th (N; W) is m-reducible to Th2 (N).

Proof By Corollary 16, without loss of generality, we can restrict to W ’s with |W | �
ℵ1. The most interesting case is where |W | = ℵ1; the other cases are, in fact, much
simpler, and may be treated similarly. Assume W has cardinality ℵ1.

Briefly stated, Theorem 15 allows us to replace possible worlds by tuples of ele-
ments of N, and arbitrary numbers by functions from tuples of elements of N to ele-
ments of N ∪ {ℵ0, ℵ1}—hence the result follows. Formally, we are going to suitably
redefine �.

Throughout the proof by an 
-profile we shall mean a function from N

 to N ∪

{ℵ0, ℵ1} that takes ℵ1 as value at least once.10 Denote by Prof
 the collection of all

-profiles; note that Prof0 coincides with {prof()}, where prof() is the unique function
from {()} to {ℵ1}. Evidently,

Prof
 =
{
prof�α | �α ∈ W 


}
.

Remember that by Theorem 15, any two elements of W 
 with the same profile are
indistinguishable by L -formulas.

Moreover, in view of Theorem 15, given an L -formula � (x1, . . . , x
) and �α ∈
W 
, the only thing we need to know about w ∈ W is �α (w). For 
 �= 0 this amounts
to switching from worlds to 
-tuples that �α takes as value at least once. Accordingly,
for each f ∈ Prof
 we consider

Wf :=
{
�n ∈ N


 | f (�n) �= 0
}
.

Certainly reducing the number of quantifiers in a given � (x1, . . . , x
) requires pass-
ing to tuples of length greater than 
. To see how to do it in the present setting, let
f ∈ Prof
, g ∈ Prof
+1, �n ∈ Wf and �m ∈ Wg . We say 〈g, �m〉 extends 〈f, �n〉, written
〈g, �m〉 � 〈f, �n〉, if:
i. f ( �p) = ∑∞

i=0 g ( �p, i) for every �p ∈ N

;

ii. �m = (�n, i) for some i ∈ N.

Intuitively, (i) guarantees that g can be obtained by appropriately splitting f (cf. the
argument for Lemma 14), and by (ii) it can be assumed that we deal with the same
world.

10In other words, the sum of the elements in the range of this function must be ℵ1—in general, one needs
to substitute |W | for ℵ1, of course.
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Now we are ready to redefine � in a suitable way. Namely, for any L -formula
�(x1, . . . , x
), f ∈ Prof
 and �n ∈ Wf , define

�n � � [f ]

inductively as follows:

– �n � t1 = t2 [f ] iff tN1 (�n) = tN2 (�n);
– �n � ¬� [f ] iff it is not the case that �n � � [f ];
– �n � � ∨ � [f ] iff �n � � [f ] or �n � � [f ];
– �n � ∃y � [f ] iff there are g ∈ Prof
+1 and �m ∈ Wg such that 〈g, �m〉 � 〈f, �n〉

and �m � � [g];
– �n � ♦� [f ] iff there is �m ∈ Wf such that �m � � [f ];
– �n � Sp (t) [f ] iff tN (�n) = tN ( �m) for all �m ∈ Wf .

Then using Theorem 15, it is straightforward to show that for every L -formula
�(x1, . . . , x
), �α ∈ W 
 and w ∈ W ,

w � � [�α] ⇐⇒ �α (w) � � [prof�α].
Therefore Th (N; W) coincides with the set of all L -sentences � which satisfy () �
� [prof()]. To complete the argument, we make the following observations:

a. each 
-profile, being a countable object, can be encoded as a subset of N;
b. � can be readily expressed within L2, so there exists a computable function ρ

from L -sentences to L2-sentences such that

() � � [prof()] ⇐⇒ ρ (�) ∈ Th2 (N).

This gives the desired m-reduction.

Corollary 22 Both Th (G) and Th (Gc) are m-reducible to Th2 (N).

Proof Since Th (G) = Th
(
N; 2ℵ0

)
and Th (Gc) = Th (N; ℵ0), the result follows.

Finally, we get:

Theorem 23 Th (G), Th (Gc) and Th2 (N) are m-equivalent to each other.

Proof Immediate from Corollaries 20 and 22.

6 Directions of Further Research

It would be interesting to continue the investigation of generic structures and
their metamathematical aspects. Let us briefly mention some directions that might
profitably be explored.

– In this article we have been concerned with the model-theoretic and complexity
aspects of G, i.e. G and Gc. On the other hand, one may also wish to develop
some proof theory for reasoning about these generic structures. Of course, no
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computably enumerable system of axioms and rules can capture Th (G) or
Th (Gc), by Corollary 20; however, Corollary 22 suggests that one may try to
develop proof systems for them in much the same fashion as in second-order
arithmetic.

– We have shown that the L -theories of G and Gc both have the same complexity
as complete second-order arithmetic. One might wonder what happens when we
restrict ourselves to reasonable fragments of L . The answer is clear in some
cases (e.g., when × is excluded from the language), but it requires a deeper
analysis in others.

– Another issue not touched on here concerns the study of the notions of inde-
pendence and determinateness within the Carnapian framework we exploited.
It would be interesting to investigate the relationship between the present
framework and that of the so-called independence-friendly logic (which was
introduced in [10], and advocated in [11]) and its variations (see, for instance,
[7]).

– In effect we do not have to limit our attention to arithmetic and its reducts—the
notion of generic truth can be applied to other structures as well.

All these fall beyond the scope of this paper, and are the subject of future work.
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