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Abstract. We critically discuss Cleland's analysis of effective procedures as 'mundane effective 
procedures'. She argues that Turing machines cannot carry out mundane procedures, since Turing 
machines are abstract entities and therefore cannot generate the causal processes that are generated by 
mundane procedures. We argue that if Turing machines cannot enter the physical world, then it is hard 
to see how Cleland's "mundane procedures" can enter the world of numbers. Hence her arguments 
against versions of the Church-Turing thesis for number theoretic functions miss the mark. 
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There exists a large number of variants of the Church-Turing thesis (CT). 
Schematically, they all have the following form: 

Every X Y is Z .  

The position Z is occupied by a precise mathematical notion, such as 'A- 
computable', 'Turing-computable', 'general recursive', 'Grzegorczyk-computable' 
(Grzegorczyk, 1957) . . .  Y is a nominal expression. Candidates for it are 
'function', 'process', 'procedure', ' r u l e ' . . .  If 'function' occupies the Y-position, 
then this function can then be further specified as being N ~ N (where 'N' denotes 
the set of natural numbers), or R---~R (where 'R' denotes the set of real 
numbers), or A---~ A (where A is a relational structure of some sort) (Friedman, 
1971) , . . .  X is an adjectival expression. Notions such as 'effective', 'effectively 
computable', 'mechanical', 'algorithmical', 'constructive', 'calculable ' . . .  occupy 
its place. 

When philosophers are speaking of the CT, they refer to the "original" CT, i.e. 
what the founding fathers (Church and Turing) meant when they first proposed it 
(see Turing, 1936-1937). The idea is that even if there is vagueness or ambiguity 
in what they proposed, there has got to be something like a core meaning of CT. 
On the other hand, some variants are universally acknowledged to be properly 
speaking extensions of CT. 1 For yet others, the matter is not easy to decide. 
These are typically statements for which Y = 'N--~ N function', and Z = 'Turing- 
computable' (or one of its famous equivalents). 2 So such statements typically 
differ from each other only in their X-position. The question arises whether (1) 
these X-terms all stand for the same concept (which can then perhaps be more or 
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less suggestive of its correct analysis), or whether (2) they stand for different 
concepts, 3 in which case we have different theses. In this latter case, there is the 
further question whether these concepts are extensionally equivalent or not. 

In her paper 'Is the Church-Turing thesis true?', Cleland looks at three 
versions of CT (Cleland, 1993, pp. 283-284): 

CT I Every effectively computable N---~N function is Turing-computable. 
CT 2 Every effectively computable function is Turing-computable. 
CT 3 Every effective procedure is Turing-computable. 

In her discussion of CT2, CMand focusses on R--->R functions, and in her 
discussion of CT3, she concentrates on physical (as opposed to purely mental) 
procedures. 

Clearly there is the following ordering of strength: 

CT 3 > CT 2 > CT1 

She regards CT 1 as the "original" CT, whereas CT 2 and C T  3 a r e  recognized to be 
extensions of CT. 

Cleland doubts all three variants of CT, but acknowledges that the ordering of 
strength of evidence she presents is proportional to the ordering of strength of the 
variants she discusses. Her strategy is to formulate a new analysis of the general 
concept of effective procedure, rivaling the one of Turing (Cleland, 1993, p. 285). 
This will allow her to reject CT 3 . Subsequently she investigates to what extent the 
considerations that lead her to reject CT3, also allow her to cast doubt on its 
weaker relatives CT 2 and CT 1. 

In Cleland's account, 'effective mundane procedures', i.e. everyday procedures 
such as recipes, directions, . . ,  are taken as prototypical examples of effective 
procedures (Cleland, 1993, p. 286). She extracts the general features of 'effective 
procedures' from an analysis of these mundane procedures. Like Turing mach- 
ines, mundane procedures can be formulated as "lists of instructions indicating 
that certain kinds of action are to be performed in a given order in time" 
(Cleland, 1993, p. 288). But in contrast to Turing machines, mundane procedures 
generate causalprocesses when they are followed (Cleland, 1993, p. 286). In other 
words, whereas Turing machines are working in abstract space, so to speak (they 
operate on abstract entities), mundane procedures are working in the physical 
world. And a mundane procedure is called effective if following it invariably 
results in a certain kind of outcome (Cleland, 1993, p. 291), namely in the 
intended physical outcome of the procedure (in the case of a baking recipe, the 
intended outcome could be a cake). This makes it fair, on Cleland's analysis, to 
call mundane effective procedures causally effective procedures. And it makes 
effectiveness of a procedure relative to what is taken to be the intended outcome 
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of the procedure (Cleland, 1993, p. 294). In sum, mundane effective procedures 
are a two-tiered affair: 

(1) effective procedures specify an ordered list of instructions that should be 
followed, 

(2) effective mundane procedures have a causal effectiveness. 

We should note that Cleland does not restrict behavior of performing lists of 
instructions to humans, or even to living organisms. For towards the end of the 
paper (Cleland, 1993, pp. 306-307) she suggests that a material object traveling 
through space can be seen as following a rule. 

Cleland says that on her construal of effective procedures as causally effective 
mundane procedures, the question whether the versions of CT that she discusses 
are true becomes at least in part an empirical question (Cleland, 1993, p. 309): 4 
we must investigate if there are procedures in the physical world (that meet some 
conditions, e.g. that compute N---~ N functions) that are not Turing-computable. 

Now Cleland exploits her analysis of 'effective procedure' to reject C T  3 . Her 
point is simply that whereas physical procedures operate in the physical world, 
Turing machines operate in an abstract world. Causal processes, yielding physical 
results, are operating in the physical world. Turing machines can only yield 
abstract results. So there are things that effective procedures can do which cannot 
be done by Turing machines. Of course it may be that implementations of Turing 
machines can do these kinds of things, but implementations of Turing machines 
are not Turing machines (by the definition of Turing machines!) (Cleland, 1993, 
pp. 301-302). And even if Turing machines can "simulate" all causally effective 
procedures, then at best there may be a structural correspondence of some sort 
between certain Turing machines and certain mundane effective procedures 
(Cleland, 1993, pp. 302-303). But again: that alone does not undermine the point 
that Cleland wants to make, for structural correspondence is not the same as 
identity. So her thesis still stands: CT 3 ought to be rejected. 

Let us now look at CT e and CT 1. Even though she admits that she does not 
present knock-down evidence that they are in fact false (Cleland, 1993, p. 286), 
Cleland does think that there are good reasons to seriously doubt these theses too 
(Cleland, i993, p. 304). Let us first look at CT z. She proposes us to consider an 
example that goes more or less along the following lines. Take a Newtonian 
universe - let us suppose for simplicity that it is 2-dimensional: one dimension for 
space (s) and one for time (t) - a n d  a material Object (o) moving at unit speed in 
this universe. This situation is diagrammed in Figure 1 (see next page). This 
object o, travefing through space, can be seen as pairing places with times 
(Cleland, 1993, p. 306). So if we let these places and times stand for the 
corresponding real numbers, then the object can be seen as computing the 
identity function f(x) --x from R to R (Cleland, 1993, p. 306). Now one can grant 
that this Newtonian universe is not our universe. But it does seem that our 
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/ 
Fig. 1. 

universe could have been like this. And it seems likely that whatever the exact 
physical-mathematical structure of our universe is really like, there is a good 
chance that the conditions needed for the construction of situations that can be 
interpreted as computing a real-valued function (such as continuity conditions and 

the like) do obtain in it. So we have good reasons to doubt CT 2. 
Actually, we do not see why Cleland does not extend this argument to CT 1. 

Consider a device that measures the spin of an incoming electron. Such a device 
can be seen as computing a N---~ {0, 1} function, namely a function from incoming 
electrons ( t ime-ordered) to spins ( + 1 / 2 , - 1 / 2 ) .  If time is infinite, and the 
machine is left running forever,  and after every point in time there will be 
electrons entering the machine (and perhaps some other not too far-fetched 
conditions have to hold), then the function it computes is total. Moreover ,  it 
seems at first sight extremely unlikely that the resulting function would be 
Turing-computable.  Nevertheless, we do not want to exclude that physical 
arguments can be advanced to show that the result is after all Turing-computable. 
Working out the details of such examples is always tricky, so that it may be fair to 
say that there are at present no absolutely convincing examples of physical 
processes computing functions that are not Turing-computable (Cleland, 1993, p. 
285). 

In any case, for several reasons Cleland's line of reasoning is unacceptable. Let  
us look again at the example of the object moving through Newtonian space. 

First, it is not clear in which sense o can be said to be carrying out a (list of)  
instruction(s). Perhaps "travel through space at velocity 1" is a formulation of the 
sort of instruction that o is following. And perhaps any similar instruction, as long 
as it is obeying the laws of motion, counts as an instruction that an object can 
perform. If that is so, then even an object at rest in absolute space and time is 
performing an instruction ("stay put") ,  and hence is computing a function. But 
we do not  see in which sense this can be seen as an action, "as opposed to 
something which merely happens or is undergone" (Cleland, 1993, pp. 287-288). 
Actually it is not clear from her account to what extent all movements have to be 
seen as actions. For  she considers the collapse of a bridge as a generic event which 
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is not  an action-kind (Cleland, 1993, p. 311, note 9). But cannot the collapsing of 
a bridge be seen as a complex movement? And if that is so, then what is the 
relevant difference between the collapsing bridge and o moving through space? 
There seems to be something to explain here. Perhaps Cleland's forthcoming 
theory of action will answer these questions. So let's put this issue aside. 

A more serious point is that the function that o computes is not uniquely 
determined. 5 Even supposing absolute space and absolute time .in her example, it 
seems that "absolute origin of the reference frame" is asking too much: there is 
no basis in objective reality for that. 6 But if we take a different origin of our 
reference frame, o computes a different function. If we allow galilean transforma- 
tions of our reference frame, o computes even more functions. And why can't we 
accelerate reference frames any way we like, why can't we associate real numbers 
with places and times any way we like? If that is permitted, then any R--* R 
function is computable (indeed, every such function is then actually computed!). 
But that would mean that the concept of computability, as applied to real 
numbers, becomes trivial. Cleland owes us a story about the restrictions on 
association of numbers with times and places. And those restrictions ought no to 
appeal explicitly or implicitly to any of the "mathematical" notions of effective- 
ness! 

This line of reasoning can be extended to CT 1. If we look only at the positions 
associated with natural numbers in our space and time dimensions, then o 
computes the identity function from N to N. But if we perform a wild enough 
permutation of the natural numbers associated with the time-dimension, then the 
function that o computes becomes of an arbitrarily high recursion theoretic 
complexity. 

But it gets worse. If the moving o does any pairing at all, then it pairs places 
with times, not  real numbers with real numbers. For the same reasons as the ones 
for which Cleland so emphatically refuses the identification of Turing machines 
(abstract, mathematical entities) with physical machines, one should refuse the 
identification of physical entities (places, times) with mathematical entities (real 
numbers). In a slogan: if Turing machines cannot enter the physical world, then 
mundane procedures cannot enter the world of numbers (i.e. the mathematical 
world). 

All the arguments that Cleland adduces to reject the former identification can 
be adduced to reject the latter identification. Let us illustrate this. For instance, 
one could reply that the structure of space and time is in some sense the structure 
of the real numbers. Therefore when o pairs times and places, it pairs real 
numbers. But saying that (the structure of space) = (structure of time) = (structure 
of the real numbers) can only mean that there is an i somorphism between these 
structures. But again, as Cleland herself emphasizes, isomorphism is not identity, 
times and places are not numbers, and identity is what we need for saying that o 
computes a number-theoret ic  function. 

Cleland could bite the bullet and say that places and times are real numbers. 
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Then indeed o can be interpreted as computing an R-+  R function. For reasons 
that have been elaborately discussed in the philosophy of mathematics, we think 
that is not an attractive option. And even ignoring the well-known problem that 
there seems no preferred way of identifying times and places with real numbers, 
there is the question why, if real numbers occupy the physical universe, Turing 
machines (which are also mathematical entities) cannot also exist in the physical 
world. It seems that you cannot have it both ways. Either you make a strict 
separation between the physical and the mathematical universe (as we believe 
Cleland does), and then there seems no way that physical procedures compute on 
numbers. Or you somehow try not to make the separation so strict, but then you 
have to be very careful that your Turing machines do not enter the physical 
world. The main thesis of this paper is that this is the challenge that Cleland is 
facing. 

Let us pause a moment and take stock. Cleland analyses effective procedures as 
effective mundane procedures. On this analysis, CT 3 is clearly false. This is so, 
not for empirical reasons (or one would have to take the term 'empirical' in a very 
broad sense), but for conceptual reasons ("abstract machines cannot  generate 
physical, causal processes"). But if we are right, then on this analysis CT 1 and 
CT 2 come out true (and not "probably false", as Cleland suggests), for mundane 
effective procedures can never compute number theoretic functions (these are 
also conceptual, nonempirical considerations). 

But surely this is a problematic outcome. It trivializes all number theoretic 
variants of CT (i.e. variants of CT which pertain to the effective, mechanical, 
a lgor i thmica l , . . ,  computability of number theoretic functions). Having a false 
antecedent, all such statements are vacuously true. In particular, this holds for 
CT 1. But the "original" CT surely has more content than this. And this can only 
be if unlike Cleland's notion of effectiveness, the notion of effectiveness that 
Church and Turing were using does not have a built-in component of causality. So 
rather than seeing Cleland's analysis as an improved analysis of the concept that 
Turing analyzed in terms of Turing machines, we propose to regard it as an 
analysis of a different concept. Causal effectiveness is a physical concept, whereas 
mathematical effectiveness, the concept analyzed by Turing, is an informal 
mathematical concept. Also, CT 2 is devoid of empirical content. This stands in 
contrast to the mainstream literature, where the interesting number theoretic 
extensions of CT are mostly taken to have empirical content, and to be hard to 
decide (see Earman,  1986 and Penrose, 1989). In sum, the thesis that physical 
machines can effectively compute number theoretic functions is regarded as 
obviously true, and rightly so (after all, that is what our personal computers do!). 

So what went wrong? When CT and its extensions are discussed, then there is 
almost always an explicit or implicit assumption that what one is saying holds "up 
to isomorphism", v When we interpret a Turing machine as computing an N--+ N 
function, we are using the obvious correspondence between the structure of finite 
strings of symbols on the tape of a Turing machine and the natural number 
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structure. Only if an assumption of isomorphism between the natural number 
structure and inputs and outputs of physical machines is made can these machines 
be said to compute number theoretic functions. Under such an assumption a 
personal computer can be said to be a Turing machine. Correspondence 
assumptions between physical quantities and finite strings of symbols are made 
when Turing machines are said to compute physical correlations. In sum, 
isomorphism assumptions are made in the mathematical interpretation of Turing 
machines, as well in relating Turing machines to the physical world. If one works 
up to  isomorphism, then one can live in two worlds (the world of mathematics 
and the physical world). Suppose we grant such an assumption, and then read 
C T 1 ,  C T  2 and C T  3 o n  Cleland's analysis of effective procedures as mundane 
effective procedures. Then CT 1 is an open question, as far as we know. CT 2 is 
still false, for the old reason: Turing machines cannot compute total R---~R 
functions. But this has since long been recognized in the literature (see Earman, 
1986, chapter VI). In response, proposals have been made to generalize Turing- 
computability. Even though there is no agreement over what the correct 
generalization of the notion of effective computability to the real numbers is, it 
seems to many that Grzegorczyk-computability may be a good candidate. Once a 
choice is made, there is a real empirical question. Something similar can be said 
for CT3, although it will be very difficult to formulate a reasonable analogon of 
CT on this level of generality. 

But Cleland explicitly refuses to make isomorphism assumptions. Her motiva- 
tion for this is that she wants to ban Turing machines from the physical world. 
Our worry is that as an unwanted side-effect, her mundane procedures may be 
banned from the mathematical world, which is where CT was born, and in which 
it is still strongly rooted (even though the recent literature makes it clear that it 
has extended its branches well into the physical world). So our conclusion is that 
it is incumbent on Cleland to show how her mundane procedures can enter the 
mathematical world, given the fact that she does not allow the isomorphism- 
assumption. We do not exclude that it can be done, but it is far from obvious how. 

Notes 

* The  first au thor  is a postdoctoral  researcher  of  the Belgian National Fund  for Scientific Research.  
The  financial support  of  this organization is gratefully acknowledged. 
1 For  example:  s ta tements  of  CT in which Y = 'R--~ R function' .  
2 For  example:  the s ta tement  "Every  mechanically computable N----~ N function is Turing computable"  
(Gandy ,  1980). 
3 This  can even arise when  two ut terances express the  exact same s ta tement  of CT, for somet imes  the  
same expression can be used to express different concepts. We think that  this is actually happening  in 
the  case of Cleland's  criticism of CT. Her  interpretat ion of the  not ion of effectiveness causes her  thesis 
CT 1 to be a thesis that  is not the  original CT (cff. infra). 
4 We argue below that  this evaluat ion is incorrect if we take Cleland's  a rguments  seriously. 
5 This  in itself might  not  worry her,  given that  she allows the same causal process to s imultaneously 
implemen t  different procedures  (Cleland 1993, p. 304). But  there have to be bounds  on the  possibility 
of  a process to implement  procedures ,  and these are lacking in her  account.  
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6 The same holds for what we take as the direction of our space-dimension. 
7 These isomorphism assumptions often assume quite a bit of idealization, such as ignoring the 
internal structure of physical switches in a physical computer, ignoring storage restrictions of actual 
machines, . . .  

References 

Cleland, C. (1993), 'Is the Church-Turing Thesis True?' Minds and Machines 3, pp. 283-312. 
Earman, J. (1986), A Primer on Determinism, Dordrecht, Reidel. 
Friedman, H. (1971), 'Algorithmic Procedures, Generalized Turing Algorithms, and Elementary 

Recursion Theory', in R. Gandy and C. Yates, eds., Logic Colloquium '69, Amsterdam: North- 
Holland. 

Gandy, R. (1980), 'Church's Thesis and Principles for Mechanics', in J. Barwise, H.J. Keisler, and K. 
Kunen, eds., The Kleene Symposium, Amsterdam: North-Holland, pp. 123-148. 

Grzegorczyk, A. (1957), 'On the Definitions of Computable Real Continuous Functions', Fundamenta 
Mathematica 44, pp. 61-71. 

Penrose, R. (1989), The Emperor's New Mind. Concerning Computers, Minds, and the Laws of 
Physics, London: Vintage. 

Turing, A. (1936-1937), 'On Computable Numbers with an Application to the Entscheidungsprob- 
lem', Proceedings of the London Mathematical Society. Ser. 2, 42, pp. 230-265. 


