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Abstract We investigate and classify the notion of final derivability of two basic 

inconsistency-adaptive logics. Specifically, the maximal complexity of the set of final 

consequences of decidable sets of premises formulated in the language of proposi 
tional logic is described. Our results show that taking the consequences of a decidable 

propositional theory is a complicated operation. The set of final consequences accord 

ing to either the Reliability Calculus or the Minimal Abnormality Calculus of a decid 

able propositional premise set is in general undecidable, and can be E^-complete. 
These classifications are exact. For first order theories even finite sets of premises can 

generate such consequence sets in either calculus. 

Keywords Adaptive logic Paraconsistent logic Dynamic logic Undecidability 

1 Introduction 

Adaptive logics have been proposed as systems for reasoning sensibly from inconsis 

tent premise sets. When an inconsistent set of premises is given, the rules of adaptive 

logic allow one to derive sound information concerning the class of those models that 

are no more inconsistent than is required by the premises. 
The distinguishing feature of adaptive logic is that it involves a revision rule. In 

general, consequences that are drawn from a premise set are provisional: it occa 

sionally happens that the reasoner is forced in the course of a reasoning process to 

withdraw earlier conclusions. By thus inferring and occasionally revising according 
to the rules of adaptive logic, the reasoner gradually zooms in on the structure of 
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the minimally inconsistent models, i.e., the models that verify no more contradictions 

than are necessary to make a given inconsistent set of premises true. 

We shall investigate complexity aspects of adaptive consequence relations. As our 

point of departure, we consider two very basic inconsistency-adaptive logics, devel 

oped by Diderik Batens. In order to keep these questions manageable, we will work 

in a simplified setting. For this reason, we concentrate on the propositional fragment 
of Batens' systems of adaptive logic. We will be interested in Batens' two main sys 
tems of adaptive logic, called ACLuNl and ACLuN2 by him, or also the reliability 

reasoning strategy and the minimal abnormality reasoning strategy. Both strategies 

will be investigated in this paper. We will be mostly concerned with propositional 

adaptive logics, but we shall also make some remarks about adaptive predicate logics. 
Even though in general a consequence that is adaptively drawn from a set of 

premises is r?visable by further extending the argument, there are also situations in 

which a reasoner has adaptively arrived at a consequence for which no reasons can be 

adduced for retracting them in a later stage. Such a consequence is said to be an un 

revisable or final consequence of the set of premises. The focus of this paper is on the 

complexity of the collection of final consequences of a recursive (but possibly infinite) 
set of premises. Propositional derivability relations are usually recursive, or at worst 

recursively enumerable operations. But it will turn out that the final consequence 

operation is substantially more complicated than that. 
We shall argue that these complexity results for adaptive logic have philosophical 

implications. They cast some doubt on Batens' philosophical thesis that adaptive 
consequence closely reflect how people actually reason on the basis of inconsis 

tent theories and that provisional, finite adaptive proofs provide an ever improving 
approximation of the final consequences of a set of premises. And these results have 

consequences for humanly attainable convergence to the truth in the infinite limit 

concerning adaptive derivability questions. 

2 Propositional adaptive logic 

The system which we present first is close to the basic inconsistency-adaptive logic 
called ACLuNl, which was formulated in Batens (1999) and which is referred to in 
the literature as the reliability strategy. We shall refer to it as the Reliability Calculus. 

Here we concentrate on the propositional fragment of ACLuNl. 
In order to facilitate metamathematical analysis, we describe a system which is 

equivalent to the propositional fragment of ACLuNl. We shall call our system ALI. 

The (non-essential) differences with ACLuNl are highlighted as we go along. In our 

discussion, we also refer to general features of architectures for adaptive logic.1 

2.1 The architecture 

We work in a propositional language C which contains the connectives ->,a,v,? . 

As is typical for adaptive logics, our logical system ALI contains an upper limit logic, 
a lower limit logic and a collection of abnormalities. As upper limit logic, we take a 

Hilbert-style formalization of classical propositional logic. As lower limit logic, we take 
a Hilbert-style formalization of propositional paraconsistent logic. For definiteness, 

1 On this score, a useful article is Batens (1999). We will have occasion to refer to it several times. 
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let the lower limit logic be the propositional fragment of the system CLuN, as pre 
sented in Batens (1999, p. 452). We shall describe CLuN in more detail in the next 
subsection. As our abnormalities, we take disjunctions of outright contradictions. 

An adaptive proof is a finite sequence of 6-tuples (Ux,... /?6) such that: 

1. /?j is the line number; 
2. li2 is a sentence of C: it is the sentence which is derived at line /. 
3. /|3 is a rule of the upper limit logic or of the lower limit logic; 
4. /?4 indicates the lines on which the inference depends; 
5. l?5 lists the formulas which must be assumed to behave consistently for the 

inference to be reliable.2 
6. //6 contains the line numbers of derived formulas which cause the inference to be 

marked, i.e., judged to be unreliable. 

This account is exactly like that of Batens (1999), except that the marking situation 

is explicitly taken to be part of a line in a proof.3 

2.2 A weak paraconsistent logic 

As the lower limit logic, we take the simple paraconsistent system CLuN, or, to be 

absolutely precise, its propositional fragment. 

Proof-theoretically, CLuN is characterized as follows. The axioms and rules of 

CLuN are those o? positive logic plus the principle of excluded third (0 v ~-0).4 The 

axioms and rules of positive logic are exactly those of classical propositional logic, 

except for those axioms and rules which govern the behavior of the negation operator: 
those are omitted. So the idea behind CLuN is that the meaning of all the proposi 
tional logical connectives is exactly like that in classical propositional logic, except for 

negation. All that is postulated for negation is that every formula must have at least 

one of the truth-values True and False. 

Semantically, CLuN can best be characterized as follows. Consider the variant on 

truth-tables, called *-tables, where the rules for evaluating the logical connectives 

v, a,-* are just as usual, except for negation (- ). In *-tables, all negated formulas 

(so not just negations of proposition letters!) are treated as if they were atomic prop 
osition letters, except that of each pair 0, -?0 at least one has to be assigned the value 

True. Then we say that a formula 0 follows semantically from a finite set 0i,... ,0W 

(denoted 
as 0i,... ,0? \=cluN 0)) if and only if in a *-table for 0i,... ,0?,0, on all 

lines where <f>i,... ,<f>n are true, 0 also comes out true. 

It may be useful at this point to present a simple example of a *-table. Suppose we 

want to know hether p v q, ->p ^cLuN q- Then we write a *-table as follows: 

pvq 
- 

/? p q 

1 111 
1 Oil 
1 110 
1 0 10 
1 10 1 

2 We are using the words 'consistently' and 'reliable' in an informal sense here. What this precisely 
amounts to is specified below. 

3 
Compare the above with Batens (1999, pp. 456^157). 

4 A detailed description of CLuN is given in Batens (1999, Sect. 3). 
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First, observe that in this *-table --p is treated as if it were an atomic proposition 
letter. Second, this *-table shows that the inference is not semantically valid in CLuN. 

For on the third row, both pv q and ->p are true, whereas q is false. But on this row, 

both/7 and 
- 

/? receive the same truth value, namely True. The adaptive logician would 

summarize the situation as follows: q does follow from p v q and -*p as long as we 

assume that p does not behave in an abnormal way?which it does on the third line 
of the *-table. So it is not the case that/? v q, ->p \=cluN *7 

There is a completeness property which connects the *-tables with the axioms and 
rules of CLuN. This is implicit in (Batens, 1999, p. 452): 

Proposition 1 For all <p\,..., 0?, 0: 

01,. 
. . 

,(pn \~CLuN 0 O 01, ,<t>n \=CLuN 0 

Since the semantic consequence relation based on the *-tables is obviously a decision 

method, the proof system for CLuN is a decidable calculus. 
There also exists an effective relation between derivability in the classical proposi 

tional calculus CL and derivability in CLuN. 

Proposition 2 Suppose we have 0i,... ,cpn Y~cl 0- Then in its *-table, there may be 

lines on which the premises are true while the conclusion is false. But according to such 

lines, there must be formulas 0/ such that both \?/t and -?0/ receive truth value 1. Then 

if\?/\,...,\?rk cire all such formulas, it follows that 

01,. 
. . 

,0? \~CLuN 0 V (0i A -.^x) V ... V (01 A ->0?). 

2.3 Writing down a line in an adaptive proof 

A theory T is, as usual, a collection of sentences. On any line in an ALl-proof from a 

theory T, one is (of course) allowed to write down a sentence of T. It is then written 
down after a line number, annotated as a Premise (entry 3), dependent on no earlier 
lines (entry 4 is empty), assuming no sentences to behave consistently (entry 5 is 

empty). The description of the marking instructions (entry 6) is deferred to the next 
subsection. 

We are also allowed to derive a sentence from earlier lines. The idea is to write 
down a sentence on a line of a proof in accordance with a rule of the upper limit logic, 
i.e., classical logic, while keeping track (in the fifth entry) of the consistency of the 
formulas on which this depends. This idea is implemented in the following way. Sup 
pose 0 follows classically from earlier derived sentences 0i,... ,0?. Then according 
to proposition 2 above, we effectively find a set of formulas 0i,..., 0& such that 

0 V (0! A -0i) V ... V (0? A -0?) 

follows in CLuN from 0i,... ,cpn. In such a situation we may write down, on a new 

line, 0. We indicate which rule is used (entry 3), from which lines it is derived (entry 
4), and which formulas are assumed to behave consistently (entry 5). Proposition 2 

guarantees that there is an effective procedure for doing this. In this fifth entry we 
collect the fifth entries of the lines on which 0i,..., 0? are derived plus 0i,..., 0>. 

Let us consider a simple example of a derivation in our propositional adaptive 
logic. Suppose we define our theory Ti thus: 

Fi 
= 

{pvq,^q] 
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Then a simple derivation from 1^ looks like this: 

1 pvq Pr 0 00 
2 -*q Pr 0 0 0 

3/? Z)S 1,2 q 0 

Here DS stands for 'Disjunctive Syllogism'. However, in the sequel we will not be 
concerned with exactly which principle of classical propositional logic is used: such 
details need not detain us. Note that on line 3, the derivation of p depends on the 

consistency of q. For if both q and ->q were true, then the first two lines could be true 
while line 3 is false. Incidentally, it is easily verified that the sentence p v (q a ^q) can 
be derived in the weak lower limit logic CLuN from lines 1 and 2. 

2.4 The marking rules of the Reliability Calculus 

The marking rules which we shall now describe are distinctive of the reliability 

strategy.5 

Definition 1 A(p\,... ,pn) abbreviates (p\ a -*p\) v ... v (pn a -^pn), and is called an 

abnormality. The abnormality set of A(p\,... ,pn) is [p\,... ,pn}. 

Sometimes we shall write A( 0 ) instead of A((f)\,... ,0?). We shall not always be 

careful to distinguish an abnormality from its associated abnormality set, but such 

confusions will be innocuous. 

Suppose an abnormality A(p\,... ,pn) is derived unconditionally at a line /. Then 

{/?i,.. .,Pn) is the abnormality set associated with A(p\,... ,pn). As long as no uncon 

ditional abnormality A(q\,... ,q^) is derived on a line k before or after line / such 

that {q\,...,q/?] C {p\,... ,pn], the abnormality A(p\,... ,pn) is said to be a minimal 

abnormality. And if a derived formula on a line m depends on formulas some of 

which belong to an abnormality set associated with a minimal abnormality derived 
on a line /, line number / is inserted as a mark in the sixth entry of line m, indicating 

unreliability of this inference step.6 And markings are never removed. So even if, e.g., 

the abnormality on line / later becomes non-minimal, line m remains marked. 

This brings the marking behavior in ALI close to that of ACLuNl. With our con 

ventions, we strictly speaking depart from Batens' marking conventions: he decrees 

that markings are to be erased once the abnormality responsible for the marking 
becomes non-minimal.7 In our set-up, the markings are not erased. But it is, in such 

a situation, possible to simply again re-derive the sentence on line m on another line 

in a further stage of the proof, in such a way that it is not marked by line /, for it 
no longer is a minimal abnormality. In general, extending a proof leads to revision 

upward in the proof, but only in one sense: markings are possibly added but no mark 

ings are deleted. So the difference between our marking rules and those of ACLuNl is 

inessential. 

We emphasize here (firstly) that minimal abnormalities only cause markings if they 
are derived unconditionally or categorically, i.e., when the fifth entry on the line is 

5 See Batens (1999, p. 457). 
6 

Again we are using 'unreliability' in the informal sense here, as opposed to the technical sense that 

this word has in the literature on adaptive logics. 
7 See Batens (2001, p. 60). 
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empty.8 Secondly, note that adaptive logics are not a system of "belief revision" in the 

sense of G?rdenfors,9 for premises are never retracted (or "marked") in the process 
of adaptive reasoning. And thirdly, we note here that adaptive proofs are allowed to 

be of transfinite length. We will come back to this last point later in the paper. 
Let us extend the example from the previous subsection a bit. We first extend our 

theory F\ to: 

T2 
= 

{p vq,-*q,(q A-g) v (r A-r),r A-r}. 

Now we can continue the adaptive proof of the previous subsection in a way that 

brings the marking rules into play: 

1 pvq Pr 0 0 0 
2 ^q Pr 0 0 0 

3/7 DS 1,2 q 4 
4 (q A -</) V (r A ->r) Pr 0 0 0 
5 rA-r Pr 0 0 0 

6/7 DS 1,2 2 0 

Line 4 causes line 3 to be marked, for it gives reason to doubt that q is reliable. But 
the more specific contradiction on line 5 removes these doubts about q, thus making 
abnormality on line 4 non-minimal. This implies that on line 6 we can derive p again. 

And this time we cannot derive any sentence which causes line 6 to be marked. 

3 Final derivability 

In adaptive proofs, conclusions are usually provisional, in the sense that by extending 
the proof one may come to know that they are unreliable after all. But there is also a 
notion of conclusive or final derivability. This will be the proof-theoretic consequence 
relation of the Reliability Calculus, to which we shall now turn. 

3.1 Final derivability in the Reliability Calculus 

We define the notion of extension of a proof (denoted V rz Q) in the way that one 
would expect. If V is a proof, then Q is an extension of V if and only if Q can be 
obtained by continuing the proof V by adding new lines in accordance with the rules 
of the adaptive logic. This induces a difference with the Batens architecture. For 

Batens, when a line is inserted in a proof V, say between lines / and / +1, the resulting 
proof also counts as an extension of V.10 We will briefly return to this point in the next 
section. 

We define the notion of final derivability for ALI as follows: 

Definition 2 A formula 0 is finally derivable from a set of premises T according to 
the Reliability Calculus if and only if there is a proof V of 0 from Y on a certain line 

/, and this proof cannot be extended to a proof Q in which the sixth entry of line / is 

nonempty. 

8 See Batens (2001, p. 50-51). 
9 See G?rdenfors (1988). 
10 See Batens (1999, p. 466, fn 20), which is situated in the context of the system ACLuN2. 
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This differs from the concept of final derivability that is formulated by Batens 

(1999, p. 458-459, 466; 2001, p. 61). For Batens, a formula 0 is finally derivable if and 

only if there is a derivation of 0, and every extension of this proof in which 0 is marked 
can be extended to one in which it occurs unmarked. But this definition is not even 

open to us, since we do not allow marks to be erased. However Propositions 4 and 5 

below will show that the two notions of final derivability coincide extensionally. 
Note that for a formula to be finally derived on a line in an adaptive proof, it is not 

necessary that it has an empty dependency set, i.e., it is not necessary that the fourth 

entry of the line on which it is derived is empty. 
This concludes the description of the system ALL 

3.2 Comparison with Baten's infinite proofs 

We allow proofs in ALI to be of infinite or even transfinite length. In Batens' reliabil 

ity system ACLuNl (and in ACLuN2) adaptive proofs have order type at most co.n 
There are cases, in Batens' way of setting things up, in which extensions of infinite 

proofs need to be considered.12 But in such cases, the extension is constructed by 
inserting a new line in the infinite proof (and renumbering), not by appending it.13 

And this of course generates a new proof of order type co. 

Our notion of transfinite proofs seems to be more closely associated with Batens' 
notion of stages of a proof: 

There is a 'deeper' account of the notion of proof. On this account, a stage of a 

proof is a sequence S of lines and a proof is a sequence or chain ? of stages. In 
all cases that interest us here, proofs start from stage zero, which is the empty 
sequence... [A] stage is obtained by extending the previous stage, but possibly 

with the marks [i.e., numbers] of its lines changed, with exactly one line. (Batens, 
2001, p. 62) 

These chains can be of transfinite ordinal type, even though the proofs of which the 
chain is composed are at most of order type co. Our suggestion is that the transfinite 
nature of the generation procedure of a proof be reflected in the ordinal type of the 

length of the proof. This is not to say that there is anything wrong with Batens' way 
of setting things up. We merely reformulate Batens' notion of adaptive proof in this 

way for diagnostic purposes. 

Despite the superficial differences mentioned above, Batens' notion of final deriv 

ability from a set of premises extensionally coincides with our notion of final transfinite 

derivability, i.e., final derivability in ALI, as we shall now show. 

When we speak about B-proofs, we mean proofs according to the definitions of 

Batens. When we mean proofs in our sense, we will just speak about proofs. 
Let us start by listing the definitions that agree with Baten's approach: 

Definition 3 A B-proof V of xfr from F can be seen a sequence of length < co in 
which \?s occurs on a line in accordance with the requirements for being an ALl-proof 
except for the marking rule: in a B-proof, a mark / is associated with a line k if and 

only if at line / a categorical abnormality appears which is minimal, in the sense that 
no abnormality occurs anywhere in V which is more specific. 

11 See Batens (2001, p. 62). 
12 See Batens (1999, p. 466). 
13 See Batens (2001, p. 62, fn 33). 
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So if at some line / + / a more specific abnormality appears but not before that, 
then there is no mark on line k in the B -proof, whereas there would be a mark in an 

ALl-proof. 

Definition 4 A B-extension V' of a B-proof V is a B-proof that results from appending 
or inserting lines to/into V. 

Inserting lines may necessitate us to renumber lines and marking labels, and remove 

and add marking labels, which is somewhat awkward. 

Definition 5 A formula 0 is finally B-derivable from Y if and only if there is a B-proof 
V of 0 from r where 0 occurs unmarked on a line / such that every B-extension V' 
of V in which this occurrence of 0 is marked can be further B-extended so that it 

becomes unmarked again. 

Batens' notion of final consequence can be brought closer to ours: 

Proposition 3 A sentence 0 is finally B-derivable from Y if and only if there is a 

B-proof V of 0 from Y in which 0 occurs unmarked and which cannot become 

marked by B-extending V. 

Proof The right-to-left direction is immediate. For the left-to-right direction, let a 

B-proof be given that is a witness of the truth of the B-derivability of 0. Derive all 

categorical abnormalities and insert and / or append them to V. Call the resulting 
proof V'. This is the proof that we are looking for: it will contain 0 unmarked and 
cannot be extended in such a way that it becomes marked. D 

In virtue of this proposition, let us call a witness of final B-deriv'ability of\?r from Y 
a final B-proof of 0: so this is a proof in which 0 occurs unmarked and which cannot 

be extended so that it becomes marked. 

Proposition 4 Every final B-proof of \/r from Y can be transformed into a final 
ALl-proof. 

Proof Let there be given a final B-proof of 0 from Y of length a. It must be an 

ALl-proof except that some sentences may be unduly unmarked. So we add the 

appropriate marks in accordance with the marking rule of ALL It is possible that 
this results in the occurrences of 0 in the proof becoming marked. But then we can 

re-derive 0 after line a in such a way that it is unmarked and cannot be marked by 
extending. (Note that this may require us to introduce transfinite lines, but this is 
allowed by ALL) D 

Proposition 5 Every final ALl-proof of 0 from Y can be transformed into a final 
B-proof of 0 from Y. 

Proof Let the final ALl-proof V be given. First we derive all categorical 
disjunctions of abnormalities in co steps. Then we interleave this derivation with the 

proof V, removing marks where this needs to be done. The result will be a final B-proof 
of 0. D 

For consistent theories, no disjunctions of abnormalities can ever be derived. Hence 
in such situations retraction of derived sentences (i.e., marking) is never necessary. 

Therefore for consistent theories, theorems can always be considered to be finally 
established after a finite number of stages. For some inconsistent (but recursive) 
theories, only an infinite derivation can witness that a sentence is finally derived. 
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3.3 An example 

Batens asserts that in the definition of the notion of final ACLuNl-consequence, there 
is no need to refer to infinite proofs.14 But this is not so. We will construct an example 
of a sentence which becomes finally derivable only at stage co. 

Definition 6 The derivability ordinal for a theory T of a sentence 0 is the minimal 

ordinal stage (line) on which 0 can be finally derived from T. 

Consider the recursive theory 1^3: 

F3 
= 

{pvq, -iq, ((q A -q) V (n A -r,)), ((q A -</) V (n A --r/)) -> (n A ->n)}ie?). 

The shortest proof from T3 in which p is finally derived is of the following type: 

1 pvq Pr 0 00 
2 - 

? Pr 0 0 0 

3/7 DS 1,2 q 4 
4 (g A -ig) v (rx A -ti) Pr 0 0 0 
5 (((7 A -.<?) v (ri A -ti)) -> (ri A -rx) Pr 0 0 0 
6 riA-iri MP 4,5 0 0 

k p DS 1,2 (7 fc + 1 
A: + 1 (q A-^q)v (r? A -r,-) Pr 0 0 0 
A: + 2 ((<? A -4) v (r/ A -t/)) -* fa A -t/) Pr 0 0 0 

A:+ 3 r?A-r/ MP k + l,k + 2 0 0 

co p DS 1,2 (7 0 

Note that it is impossible to derive/? from r finally at any finite stage: at finite stages 
there are always minimal abnormalities with which the line on which p is derived can 

be marked. But at stage co, all abnormalities have become non-minimal. So line co is 
unmarked and cannot be marked by extending the proof. We conclude from this that 

p is finally derived only at line co. 

Our example highlights a way in which the notion of final derivability in adaptive 

logics differs essentially from the notion of derivability in standard logical systems. For 
standard logical systems, it is clear that the derivability ordinal of a final consequence 

of a theory is always smaller than co, whereas we now see that even for recursive theo 

ries the derivability ordinals can be transfinite in the case of adaptive logics. However, 
the derivability ordinals of theories are never highly transfinite: 

Proposition 6 For all r, 0, if <p can be finally derived from r, it can be so in a proof 

of length < co. 

Proof Consider any formula 0 which is derivable from V, possibly only conditionally. 

Begin by deriving, at finite stages, all categorical disjunctions of abnormalities, and 
make sure that 0 is derived at stage co. Then 0 is unmarked at line co if and only if it is 

finally derivable. D 

14 See Batens (2004, p. 479). 
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3.4 The Minimal Abnormality Calculus 

Until now, we have investigated ACluNl, or the reliability calculus, in a reformulated 

version. But Batens has formulated a second strategy of adaptive reasoning, resulting 
in a second notion of final consequence. This second strategy is more complicated, 
and it is called ACluN2, or the Minimal Abnormality Calculus. 

An example will convey the idea of the Minimal Abnormality Calculus. Consider 

the following theory: 

r? = 
[A(p, q, r),p A q A r, -77 v -*q v s, -*q v -*r v s, ->r v ->p v s} 

Consider the following derivation, and consider it from the point of view of the 

rules of adaptive logic that we have applied so far: 

1. A(p,q,r) 0 0 

k. s p,q 1 
/. s q,r 1 

m. s r,p 1 

A(p, q, r) is a minimal abnormality, so it causes lines k, l, m to be marked. So according 
to the adaptive logic that we have studied so far ("reliability strategy") s is not finally 

derivable from Ta. 

A(p, q, r) requires that at a minimum, one of p, q, r is involved in an inconsistency. 
But take any minimally inconsistent situation. Suppose, for instance, that p "behaves 

inconsistently", but q, r behave consistently. On line /, s is derived without relying on 

the unreliable p. Similarly if q is the inconsistent one (then line m does it) and if r is 

the inconsistent one (then line k does it). So one would say that in all minimally incon 

sistent situations, s holds. So if the final consequences are to describe these minimally 
inconsistent situations, then s ought to be finally derivable. 

This motivation leads to a new proof system, associated with which is a new con 

cept of final derivability. We shall express this new concept of final derivability without 

getting into the details of "provisional derivability", i.e., without explaining the new 

rules for writing down a line in a proof (which are rather unwieldy15). 

Definition 7 Given a set S of finite sets S? of proposition letters, a c -minimal set which 

contains at least one proposition letter from each S? is called a selection set. 

So suppose one has a set of abnormalities. Then one can consider a selection set 

over this set of abnormalities: such a selection set will select at least one formula 0/ 
from each abnormality ^4(0i,02,... ,0?,.. .,0)0 in the set, and this selection set will 

be minimal in the partial ordering induced by ?. 
Now we are ready to express the concept of final derivability for minimal abnor 

mality. We call the resulting Minimal Abnormality Calculus AL2: 

Definition 8 A formula 0 is finally derivable from a theory Y according to the minimal 

abnormality calculus if and only if for every selection set ^ over the set of all minimal 

abnormalities that can be derived categorically from Y, there exists a derivation of 0 
on a condition 0i,02,...,0& such that *I> n {0i,02,...,<pk) 

= 0 

15 Batens acknowledges this. See, e.g., Batens (2001, p. 60). 
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In other words, the idea is that 0 is finally derivable if no matter which minimal way 
the model is inconsistent, 0 comes out true. So, when applied to the example above, 
s will in this new sense be finally derivable from T4 even though there is no way that 
the derivation can be extended so that s occurs unmarked. 

As with our discussion of the reliability strategy, our definition of final derivability 
for minimal abnormality is not exactly the same as it is given by Batens' definition 

which can be found, e.g., in Batens (2001, p. 60-61). But our definition is equivalent 
to Baten's definition. To verify this is tedious but straightforward.16 

4 The complexity of final derivability 

We now turn to the question of the complexity of the final consequence relations for 

the calculi ALI and AL2. 

Evidently, the question whether a sentence is finally derivable in the calculi ALI 

and AL2 from a given finite premise set is always decidable.17 (We shall see however 

that this is false for predicate versions of these calculi.) But, as we have seen, Batens' 

calculi are also intended for infinite premise sets. And that is just as well, for many 
of our most fundamental real-world theories (Peano Arithmetic, Tarski's theory of 

truth,...) are not finitely axiomatizable. So let us concentrate on infinite premise sets. 

For the Reliability Calculus, Batens formulates a conjecture concerning the decid 

ability of the relation of final consequence in a propositional context:18 

[...] there is also a decision method for finite (and most plausibly also for infi 

nite) T in the propositional fragment of [ACLuNl] [...] (Batens, 1995, p. 316, 
our emphasis) 

Obviously not every infinite set of sentences will do here. What is meant, is a set 

of premises that expresses a theory. Classically, a theory can be seen as the class of 

propositions that can be derived (using the laws of classical logic) from a recursive 

set of axioms. So a theory can be taken to be recursively enumerable set of sentences. 

But in adaptive logic, the derivability relation is more complicated. So we should 

focus on the axioms and insist that a theory is a (possibly infinite but) recursive set 

of sentences. So Batens may be taken to conjecture here that the final derivability 
relation of ACLuNl between recursive sets of premises and formulas is decidable. 

But already the collections of classical propositional consequences of an infinite but 
recursive set of propositional formulas can form a complete 5^ set.19 The argument 

showing this can serve as a warm-up for the technical results that will be proved in the 

following sections. Let C be a complete X^ 
set: say it is the set of all natural numbers 

y such that 3xP(x,y), with P a recursive two-place predicate. Now consider the theory 
T5 which consists of an infinite sequence of proposition letters sx? where x and y range 
over all natural numbers, plus an infinite sequence of propositional axioms of the form 

sx,y 
- 

Py for all x and y such that P(x, y). Clearly r$ forms a recursive set of formulas. 

And it is easy to see that for every natural number y, py follows propositionally from 

16 Thanks to Kristof De Clercq for checking this for us. 

17 This was first proved in Batens (1995). 
18 See also Batens (2004, p. 480; 2005a, p. 85, footnote 5). 
19 Thanks to a referee for drawing our attention to this fact. 
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1^5 if and only if y g C. So the collection of classical propositional consequences of V$ 
indeed is a complete E^ 

set. 

Given this fact, it is clear that Batens' conjecture must fail. The theory Ts is con 
sistent. Therefore its final ACLuNl-consequences are just its classical propositional 
consequences. So the collection of final consequences according to the Reliability 
Calculus of Fs already form a counterexample to the conjecture. 

Then the question arises how badly Batens' conjecture fails. At the outset, it is not 
obvious that the final consequence set of a recursive set of premises can at worst be 

complete EJ\ Steffo Weber, for instance, has shown that for some propositional non 

monotonic logics, the consequence set of a recursive set of premises 
can be 

E^-hard 

(Weber, 2000, p. 311). 
In fact, we shall demonstrate that the collection of final consequences of a recur 

sive propositional theory can be rather computationally complex. First, we establish 

upper bounds by looking at final derivability according to the Reliability and the Min 
imal Abnormality Calculus. Then we shall show that these bounds are best possible 

by showing that membership in S3 -complete sets can be derived from certain final 

derivability sets (using either calculus). 

4.1 The reliability strategy: upper bounds 

In the following, we shall make use of the concept of a universal derivation from a 
recursive collection of propositional premises: 

Definition 9 The universal derivation UD(F) from T is a list of lines of length co such 
that for every 0, \?r\y..., ifrn, if 0 is classically derivable from F on the condition that 

0?,..., 0"? behave consistently, there is a line in UD(F) witnessing this, i.e., there is a 

line in UD(F) on which 0 is derived on the condition {\f/i,... ,^/n}. 

UD(F) can be taken to be given canonically in F. Since r shall be assumed to be a 
recursive set of premises, UD(F) will be a recursively enumerable list of lines. 

Theorem 1 The notion of final consequence according to the reliability strategy is a E3 
concept. 

Proof Let a set of premises F be given. So, if F is a recursive set of sentences, then 
the question whether UD(F) contains a line with number k on which 0 is derived on 
condition 0~i,..., \?/n is decidable. Then the question whether a sentence 0 is finally 
derivable can be expressed in terms of a search in UD(F). Somewhat more specifically, 
cp is finally derivable if and only if: 

3ncpi,...,(pk 

[( line /? e UD(F) is of the form q> {0i,..., (pk}) 
aV/( if line; of UD(F) is the abnormality a then [(a is not unconditional) 
or (if a contains one of the 0i,..., 0^ 

? 

3m(lm e UD(F) is an unconditional abnormality showing that 
a is non-minimal) )])] . 

As "/? e UD(F)" is X?o, the result follows. D 
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4.2 The minimal abnormality strategy: upper bounds 

Computing the complexity of the final derivability relation for Minmal Abnormality 
is more complicated. We first show that the notion of being a final minimal abnor 

mality consequence can be expressed as a 
S3 operator. Then we show that the set of 

final minimal abnormality consequences of a decidable propositional theory can be 
a complete ?3 

set. To conclude, we show that in a predicate logical setting, this can 

already happen from a finite set of premises. 
Let S be a family of non-empty finite sets of propositional atoms. Recall that a 

selection set ^ is a choice set for S which is ? -minimal amongst all possible such 
choice sets. As before, UD(Y) is the universal derivation of any line that is derivable 
from the axioms Y. 

Definition 10 If 0 is derived on a line of UD(Y), conditional on 0i,.. .0^, then we 

write 0 {0i,... cpk}. 

If 0 is derived unconditionally from Y, i.e., conditional on the empty set, then we 

say that 0 is categorically derived, and write Y \~cluN 0 
In the light of what was said before, we can reformulate the notion of final deriv 

ability on the minimal abnormality strategy. 

Definition 11 Sr = {{0i,.. 4k) I r \~cluN M4>i,-- 4k)} 

Definition 12 We denote the fact that 0 is finally derivable from T as T \~ali 0, 
where: 

F \~AL2 0 O V selection set ^ over 5p3 derivation from Y of 0 {0i,.. .0/} 

with^ n {0i,...0/} = 0 

<S> V selection set *I> over Sp3 line of UD(Y) of the form 0 {0i,.. .0/} 

within {0i,...0/} = 0 

Now we shall first show that the relation of final derivability is 
nj. 

Then we shall 

reduce this relation to being even S3. 
We shall from now on assume that Y is recursive, i.e., that the premise set is 

decidable. 

Proposition 7 "t e Sr 
" 

e 
Sj 

Proof t e Sr if and only if there exist formulas 0i,..., (pk such that t = {0i,.. 4k) 

and there exists a finite list of lines from UD(Y) witnessing Y \- A( 0 ). This is a Si 
search through UD(Y). 

Definition 13 We write A( 0 ) e CD A ("A is a categorical derived abnormality") if 

A($)eSr. 

So we have shown that "A($) e CDA" is S?. 

Definition 14 We say that A(p) e MIN (CDA) if for all q e ~p it is the case that 

A($\{q})?CDA 

Then we immediately see that: 
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Propositions "A($) e MIN (CDA)" e 
nj 

Definition 15 Let C<?> be the family of conditional sets on lines in which 0 is derived 

in UD(F). 

Then we immediately see that: 

Proposition 9 "C e C<?," e E? 

Therefore: 

Proposition 10 "ty is a choice set for S" is 
nj 

in S and ty. 

Proposition 11 "V is a selection set for S" is Fl? in S and *I>. 

Proof ^ is a selection set for S if and only if ̂  is a choice set for S and all proper 
subsets of ^ are not choice sets for S. This last conjunct is equivalent to Vt W(3s e 

S(V\{t}ns = 0)) 

Putting all these facts together, we see that: 

Proposition 12 'T \-AL2 <t>" n1 

Proof F \~al2 0 if and only if: 

WVS[S = Sr a V a selection set for S -> 

3C(" <p occurs on a line of UD(F) conditional on C and W DC = 0")] 

D 

Now we shall reduce this to E3. The following is an important observation: 

Proposition 13 Ifty is a choice set for Sr, then: 

V is a selection set for Sr O V c 
(J 

MIN (CDA) 

Proof Let ^ be a choice set. It suffices to prove that if it is also a selection 
set for Sr, then the right hand side holds. Then *I> n \JMIN(CDA) is a selection 
set over MIN (CDA). But that is sufficient for ^ n |J MIN(CDA) to be a selection set 
over SV. 

We now define a finitely branching tree, T, of sequences of propositional atoms. 
The propositional atoms in the sequence are intended as initial segments of a putative 
selection set *I> over MIN(CDA), which will, if defined, demonstrate that F \/al2 <$> 
For this to be the case we must have VC e C<?>, C n ^ ^ 0. 

Note, incidentally, that if for some C e C<p, C n |JMZW(CZ>A) 
= 0, then any 

selection set for Sr is, by our last proposition, disjoint from C. Hence in this case 
F \~AL2 0 

We define 0 = (0o,... ,0/) T by induction on /. We first fix an enumeration 

Co,... ,Cfc, - of C0. 

Definition 16 If / = 0, then (0O) g T if and only if 0O e C0 n U MIN(CDA) 
If/ = ? + land 0 = (cpo,... ,cpk) e T, then (0O,... ,0?,0fc+i) e Tif 

0^+1 C*+i A (3/ < ?(0?+i 
= 0/) or 

3A g MIN(CDA)[cpk+1 eAA {0O,... ,0^} HA = 0 Ap*+i g Ck+{\). 
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Proposition 14 "(0O,... ,0*) e T" g S?? 

Proof 

(00, ...,0*) eT^ 

3g[g is a function a dorn (g) = & + 1aV/<& + l(g(l) g MIN (CDA)) a 

V/ < k +1(0/ G Q A (3; < /(0/ = 
0;) v (0 g g(l) A {0o,... ,0/_i} Dg(l) = 0)))] 

The first line of the existentially quantified formula has complexity nJ due to "g(l) e 

MIN(CDAy\ The rest is bounded S?, so 
Sx?. 

D 

As 
\Jj<k Cj is finite there are at most finitely many possibilities to extend (0o,..., 0?). 

Hence the tree T is finitely branching. 

Proposition 15 Suppose (0o,..., 0&) g T is maximal. Then there is no selection set ^ 

such that (i) {0o,..., 0?} ? ty and (ii) ̂  n Ck+i ^ 0. 

Proof This is just what maximality means: for any 0 g C?+i we must have 

0 i (J Ci A VA g MIN(CDA)[(?) G^^0n^^0] 
?<fc 

Hence no such 0 can be in *I> without contradicting the minimality of *I>. D 

Lemma 1 Y \/al2 <P OT contains an infinite branch. 

Proof (<?=) Let (0o,...) be an infinite branch through T. Then any selection set 

V 2 [<Pi}i co satisfies Vi(Q n ^ ^ 0). Hence r \/al2 0 

(=^) Suppose T has no infinite branch. Then T is finite. Suppose the maximal length 
of any sequence in T is ko + 1 < &>. Then for any selection set *I> there is a maximal 

A: = k(ty) < k so that for some choice of 0/ g C? (/ < k) we have (i) (0o,..., <pk) ̂ T; 

(ii){0o,...,0*}c*. 
Fix a selection set ^ with /: = fc(*?O defined as above, with witnessing 0o,... ,0^ 

satisfying (i) and (ii). D 

Claim *I> n Ck+\ 
= 0. 

Proof Suppose first that (0o,...,0fc) is not maximal in T. Let 0 g Q+i. 
If (0o,..., 0fc, 0) G T then by definition of &{0o,..., 0jt, 0} g ^; thus 0 ^ *I>. However 

if (0o,..., 0*, 0) g T then 0 ? {0O,..., <Pk) and 

VA g MIN(CDA)(x?f eA ? A n {0O, ... ,0?} # 0). 

So if there does exist A g MIN(CDA) with 0 g A, we have that ^ n A\{0} / 0, 
/.e. 0 ^ ^ (by the minimality of the selection set ^). Either way ^ D C^+i = 0. 

Lastly, if (0o,..., 0A:) is maximal in T, the Claim follows from (ii) of the last Lemma. 

QED (Claim) 
As *I> was an arbitrary selection set, the claim shows that r \~al2 0 

To say that T has an infinite branch, it suffices, again by K?nig's lemma, to say that 

T is itself infinite: V>z3 0 g T(l( 0 ) > ?). By a previous proposition, 0 g T is S??. 

This is thus n^. Doing this uniformly over all 0 then yields our desired result: 

Theorem 2 For recursive Y, {0 | Y \~al2 0} is S3. 
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4.3 Lower bounds 

We now show that this classification cannot be improved to anything simpler. 

Theorem 3 The final consequences according to either the reliability strategy, or the 
minimal abnormality strategy, of a recursive theory can form a complete E3 

set. 

Proof Let C be a complete E? set, say 

C(n) 
= 

3wVv3uP(w,v,u,n) 

with P recursive. 

Let T comprise the following axioms: 

For all w, v, u, n: 
s*lwu,A(qlv, C),Pn 

v 
C> ""C 

For all w, v, u, n such that P(w, v, u, n) holds: s^wu 
-? 

A(q^v) 

Clearly T is a recursive set of axioms in the given propositional letters. D 

Claim 1 pn is finally derivable according to the reliability strategy if and only if C(n) 
holds. 

Proof (=>) If C(n) holds, then 3wo\fv3uP(wo, v, u, n). Thus there is a w$ such that for 
all 

v,A(q^oV) is derived by virtue of the last axiom group, and so determines a minimal 

abnormality set. But then 
A(q^QV, r^0) is not minimal, sopn is finally derivable. 

(<=) If -C(tt) holds, then 

Vw3v(w)Vu-iP(w, v(w), u, n). 

So for all w, >4(g^ v(H;),r^) determines a minimal abnormality set in the universal 
derivation, as A(q^ v(w)) 

is not derived. So pn is never derived on any unmarked line. 
Hence pn is not finally derived. D 

Claim 2 pn is finally derivable according to the minimal abnormality strategy if and 
only if C(n) holds. 

Proof (=$>) With the notation of the previous claim, if C(n) holds, A(q^()V) is a 
minimal abnormality set, whereas 

A(q1QV, rj?, ) is not minimal. 
So any selection set W must contain 

q?0>v 
for any v. Therefore rJJ, does not belong 

to the selection set. However in the universal derivation from F we have a line with 
pn depending on 

rJJ,0 only. Hence pn is derived, conditional on r? , which is not in any 
selection set. Hence pn is finally derived. 

(<=) Again if --C(ax) holds, then using the same notation, for all w, A(qnw ,)? r?) is 
a minimal abnormality set in the universal derivation, &sA(qnw v(w)) 

is not derived. Let 
^ be a selection set that for all w chooses r? from this set. Thus on every line of the 
universal derivation containing pn depending solely on 

rJJ,, *I> hits the only condition. 
It is thus a selection set witnessing that pn is not finally derivable. D 

Batens recognizes that there is no positive test for final derivability from finite sets 
of premises in predicate logical versions of inconsistency-adaptive logic.20 But with 
the techniques developed in this paper, precise complexity results can be obtained. 

For predicate logical derivability using the minimal abnormality strategy, it can be 
shown that a finite set of axioms can already have a complete E3 final consequence 
set. 

20 For this reason, he has drawn up 'criteria' for final derivability. See Batens (2005b). 
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Let Q be the set of axioms of Robinson arithmetic (or any other finite set of axioms 
of a theory in which recursive functions can be represented). Thus, if P(vq, v\, V2, V3) 
is recursive we have for some formula 0/>: 

if P(v, w, u, n) then 0p(v, w, u, n) is derivable from Q; 
if ->P(v, w, u, n) then --0p(v, w, u, n) is derivable from Q; 

Let P be chosen so that 

C(n) 
= 

3wVw3uP(w,v,u,n) 

be a complete S3 set. Add three predicate symbols S(vo),/?(vo,vi),?(vo,vi,V2) to 
the language of Q. With P recursive, choose 0/? as above. Now add to Q the following 
four axioms: 

Vriiw^R(n, w); 
m VnVw(S(n)vR(n,w)); 

VwVvVwVn((?(n, w, v) A ->Q(n, w, v)) v (R(n, w) A -*R(n, w))); 
<t>P -> (Qin, w, v) A ^Q(n, w, v)). 

Then the argument of the propositional case minimal abnormality derivability can be 
re-run in this finite extension of Q. (By considering recursive partitions of the natural 

numbers, one can do this in a finite extension of Q that adds just a single monadic 

predicate symbol.) 
In propositional inconsistency-adaptive logic, the abnormalities are all of a partic 

ularly simple form. But in other adaptive logics, the abnormalities are more compli 
cated. The result may be that some of the corresponding final derivability relations 

may be even more computationally intractable than those for the reliability calculus 
and the minimal abnormality calculus. 

5 Philosophical reflections on infinite proofs and final derivability 

Batens asserts that in the definition the notion of final ACLuNl-consequence, there 
is no need to refer to infinite proofs. 

21 For final ACLuN2-consequence, Batens rec 

ognizes that even in the propositional case, final derivability of a formula can in some 

instances only be witnessed by infinite proofs.22 We have seen that this description of 
the situation is not quite correct. Even for the propositional fragment of ACLuNl, 

final derivability can in some instances only be established at a transfinite stage. 
But this is philosophically worrisome. When Zermelo in 1932 formulated a logical 

system in which infinite proofs were allowed, his proposal was met with scepticism. A 

typical reaction was that of Church (Sinaceur, 2000, p. 33-34): 

[W]hile such systems might have considerable interest of one kind or another, 

they could not properly be considered logics, insofar as logics explicate the con 

cept of proof For what we mean by a proof is something which carries finality 
of conviction to any one who admits the assumptions (axioms and rules) on 

which the proof is based; and this requires that there be an effective (Unitary, 
recursive) syntactical test of the validity of proposed proofs. 

21 Batens (2004, p. 479). 
22 Batens gives a propositional example on Batens (1999, p. 466). 
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This comment applies equally to propositional inconsistency-adaptive logic: their final 

proofs do not carry finality of conviction. 
Batens thinks that these infinite proofs do not play a fundamental role in adaptive 

logic: 

However, there are some some weird cases where we have to consider infinite 

proofs... (Batens, 1999, p. 62, fn 33) 

But we have seen that the notion of final consequence is fundamentally transfinite in 

nature, in the sense that many a (propositional) theory is such that sentences can be 
found such that the fact that they are a final consequence of the theory depends on 

the existence of certain infinitely long proofs. 
Undecidability runs much deeper in adaptive logic than its proponents have real 

ized. Taking the set of final consequences from a recursive propositional theory is 

already a complicated operation: the set of final consequences of a propositional 
recursive theory need not be recursively axiomatizable. For the Reliability Calculus 

(pace Batens' assertions on the matter), the final consequence set can be S3 complete, 
as it is for the Minimal Abnormality Calculus. To try and get some perspective on these 

results, we can paraphrase, and say that were the final derivability consequences of 
the propositional Reliability Calculus really decidable we should have then a finitary 
algorithm, so a pencil and paper method, for determining in a finite time, given e e N, 
not just the classical Halting Problem for e, but moreover whether e codes a Turing 

machine that halts on all but finitely many inputs. 
23 

So it is not an exaggeration to say that there exist no complete proof procedures for 

propositional adaptive logic, at least not if "proof" is understood in the usual (finitary) 
sense of the word. 

Truth is complicated.24 Derivability should be a comparatively simple relation. But 
even the propositional adaptive derivability relation is not simple. So we have a situ 
ation that is similar to the one in relevant logic. When it was shown that some of the 

most basic systems of propositional relevant logic are undecidable,25 this was taken by 
some as evidence against the claim that relevant implication expresses the common 

sense notion of propositional implication, for it seems improbable that our common 
sense notion of propositional implication is so complicated. Concerning adaptive 
logic, one can also wonder whether such a 

complicated operation really is what we 

carry out when we propositionally reason from inconsistent theories. Nevertheless it 
is claimed that adaptive logic explicates how people actually reason from inconsistent 

premises: 

The dynamic proofs not only provide the [adaptive] logics with a proof the 

ory. With their conditions and marking definitions, they explicate the actual 

reasoning in terms of such consequence relations. This is extremely important 
because they thus provide a clear and transparent conceptual analysis for forms 

of reasoning that were often qualified as mere tinkering or even as logically 
flawed. (Batens, 2004, p. 480^181) 

23 Here we are saying no more than the well known fact that {e\We is co-finite}, is an example of 
In 

complete sets (where We denotes the domain of the e'th Turing machine) See Rogers (1968, Chap. 14 
Theorem XVI). 
24 

See Burgess (1986). 
25 See Urquhart (1984). 
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Actually the situation is worse than in the case of relevance logic. For relevance 

logic intends to describe an intuitive conditional operator which was recognized to be 
more complex than the most elementary propositional logical connectives. But the 
clauses governing the implication symbol 

- of inconsistency-adaptive logic are just 
the ordinary classical truth-table clauses. 

Adopting a learning-theoretic perspective,26 it can be seen that our computational 
complexity results have implications for convergence to the truth in the infinite limit. 

Suppose we are confronted with the problem whether for a given set of natural num 
bers A, x is an element of A. A machine is said to converge to the truth in the infinite 
limit for this problem if when an input x is given, it prints out a sequence of "yesses" 
and "noes" in response and from some 

point 
on prints only the correct answer, though 

there may be, in general, no effective way of determining when it has begun to print 
only the correct answer. Such an algorithm exists if and only if A is a A? set. A machine 
exists which eventually stabilizes on the correct answer for a set A for all x which in 
fact belong to A only if A is E??; a machine exists which eventually stabilizes on the 

correct answer for all x which do not belong to A only if A is ni,.27 The results of this 

paper entail that there exists no algorithm which converges to the truth in the infinite 
limit for final derivability from a recursive set of propositional premises. Moreover, 
there can be no algorithm for converging to the truth in the limit for those sentences 

which in fact are finally derivable from a given recursive set of premises nor can there 
be such for those sentences which are not finally derivable from the given premise sets. 

The adaptive logicians say that we must be willing to work with and in inconsistent 

theories, at least provisionally. And in doing so, we try to minimize and localize incon 

sistency. At first sight, minimizing the effects of inconsistency looks like a semantical 

operation. For it seems to amount to an instruction to concentrate on models which 

make true a "minimal" set of inconsistent statements. Adaptive Logicians claim as 

an advantage of their approach that they have proof systems that produce finite pro 
visional proofs that approximate the final adaptive consequences of an inconsistent 

theory: 

What if no criterion enables one to conclude from a proof whether some formula 
is or is not finally derivable from the premise set? [...] Roughly, the answers go as 

follows. First, there is a characteristic semantics for derivability at a stage. Next, 
it can be shown that, as a dynamic proof proceeds, the insight in the premises 

provided by the proof never decrease and may increase. In other words, deriv 

ability at a stage provides an estimate for final derivability, and, as the proof 
proceeds, this estimate may become better, and never becomes worse. (Batens, 

2001, p. 63) 
28 

The claim that as an adaptive proof proceeds it gives an ever better estimate of final 

derivability, is taken to be supported by the fact that the class of models of a given 
adaptive proof is always a superset of the class of models of an extension of that 

proof.29 But the results of this paper indicate that not too much should be made of 
this fact. This is seen as follows: the collection of adaptive provisional consequences 

(as the "estimate" set of formulae derivable at a particular stage) always forms a 

26 See Kelly (1996). 
27 See Putnam (1965). 
28 See also Batens (2004, p. 480). 
29 See Batens (2004, p. 480) and Batens (1995, p. 301). 
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recursively enumerable collection of sentences. But the final consequences may, as we 

have seen, form a set which is much more complex than any recursively enumerable 

set. In such cases as have been considered in this paper, provisional consequences (i.e. 
those derived at a a stage) form a very poor approximation of the final consequence 
set. As we have seen, provisional consequence sets in general do become worse as well 

as better: there are proofs of finally derivable propositions that must infinitely often 

change their mind about the derivability of those propositions. Thus "derivability at 
a stage" provably does not form a good, monotone, method of estimation. 
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