Leon Horsten*

Formalizing Church’s Thesis

This paper investigates to what extent Church’s Thesis can
be expressed and investigated within a formal framework. In
particular, we discuss the formalization of Church’s Thesis in
intuitionistic arithmetic and formalizations of Church’s Thesis
in systems of epistemic arithmetic.

1. The Formal Investigation of Church’s Thesis

Church’s Thesis (CT) states that every function on the natural
numbers that is effectively computable, is computable by a Turing
machine. Effectively computable functions are functions computable
by an idealized but human calculator working in a routine or algo-
rithmic fashion, i.e., on the basis of a rule-governed procedure where
no ingenuity is required for its execution.

Church’s Thesis is true. Most philosophers and mathematicians
think that it is not mathematically provable.! The reason that is
usually given is that it is not a purely mathematical proposition. It
is not even expressible in the language of mathematics, for its an-
tecedent contains a notion (“algorithmic computability”) that does
not belong to the language of mathematics.

CT may be amenable to formal investigation provided we find
a suitable interpreted formal language in which it can be expressed,
even if this language contains notions which are not strictly speaking
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purely mathematical.? In a suitable formal context, questions about
CT can be investigated with formal rigor. This paper discusses some
attempts that have been made in this direction.

It is not hard to express CT in a formal language. One could just
take the language of arithmetic, add to it a new predicate intended
to apply to all algorithms, a relation symbol expressing the relation
that holds between an algorithm and the function it computes, and
perhaps some symbols standing for operations on algorithms. But
that does not help much. For it is notoriously hard to formulate
an acceptable criterion of identity for algorithms. In other words,
the interpretation of the resulting formalism appears to be vague.
Perhaps an illuminating set of basic axioms concerning the notion of
algorithm can be formulated in this formal language, but no existing
proposal has been met with widespread approval.

In order to circumvent this difficulty, we shall in this paper settle
for approzimations of CT in formal contexts. We shall look at formal
languages with a relatively clear and not overly complicated intended
interpretation in which CT can be approximatively expressed. The
advantage of this approach is that precise answers to questions con-
cerning CT can sometimes be obtained. But the answer will always
be an answer about the question concerning the approximation of
CT that one is investigating.

‘We shall be concerned with approximations, not with variations.
I.e., we shall not be concerned with analogues of CT. We shall be
concerned with attempts to come close to CT itself in a formal con-
text.

We shall not address the question whether CT can be proved.
We shall be mainly concerned with the question whether CT can be
formally expressed within a rigorous framework. And as such, it will
be considered as a hypothesis (not as an aziom). Rather than being
concerned with whether this hypothesis can be proved, we shall to
a limited extent address the question whether facts of mathematical
and philosophical interest can be derived from it.

2. Church’s Thesis in Intuitionistic Mathematics

It has been claimed that CT can be expressed in the language of
intuitionistic arithmetic, namely roughly as the following scheme:

2Such an approach is be favorably looked upon by [Mendelson this volume].
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VedyA(z,y) — JeVaImIn[T (e, z, m) A U(m,n) A A(z,n)] Icr

Here A ranges over all formulas of the language of first-order intu-
itionistic arithmetic.® Note that a (weak) choice principle is presup-
posed in ICT, for A(z,y) expresses a relation, whereas the Turing
machine e by definition computes a function.

The fact that ICT at least goes some length in the direction of
expressing CT is due to the semantics of the language of intuition-
istic arithmetic. Vz3yA(z,y) intuitionistically means that there is
a method for finding for all = at least one y which can be shown to
stand in the relation A to z. And this seems close to asserting that
an algorithm exists for computing A.

There is disagreement in the intuitionistic literature about
whether the method witnessing the truth of Va3yA(z,y) should be
accompanied by a proof that this method computes A. Some intu-
itionists deny this, saying that the method bears on its sleeves the
task that it carries out. But in any case it has to be evident from
the interpretation of Vz3yA(z,y).

ICT is false if lawless sequences are allowed in the constructive
universe. For these are assumed to be generated by a method (free
choice) but already at the outset it seems unlikely that all manners
of freely generating sequences of natural numbers in the infinite limit
result in a computable function.

Even if lawless or choice sequences are not allowed in the con-
structive universe, ICT looks suspect. For it asserts that there is a
uniform method for transforming a method for finding for all z an
y which can be shown to stand in the relation A to z into a Turing
machine which does the‘same thing. It is not clear what this uni-
form method looks like, unless one thinks of methods as almost by
definition something like Turing machines.

So most intuitionists believe that ICT has been shown to be
false. But this is at first sight puzzling. On the one hand we have
intuitionists claiming that they have refuted CT. On the other hand
in virtually all of the contemporary literature outside intuitionism
CT is regarded as true.

This puzzle disappears once it is noted that ICT does not really
express CT. For one thing, a free choice process is not an algorithm
in the sense explained in the first section of this paper. But even if we

3We are assuming that the reader is familiar with Kleene’s T-predicate and
U-function.



256 LEON HORSTEN

confine ourselves to the “lawlike” intuitionistic universe, ICT does
not express CT. Firstly, the implication in ICT is constructive: it
expresses a uniform transformation procedure. But the implication
in CT is classical: it does not imply the existence of such a trans-
formation procedure. And secondly, the consequent of ICT requires
that for some e we have a proof that e computes A. But CT does
not require this: it merely requires that some e in fact computes A.

But still, if we confine ourselves to the lawlike universe, ICT
is a fair approximation of CT. It gives us reliable implications of
CT, provided we read them carefully. For instance, in the context
of intuitionistic arithmetic ICT implies a violation of a variant of
the law of excluded third. This doeés not mean that the universal
version of the classical law of excluded third is false, but only that
an effective version of it is incorrect. If CT is correct, then for some
properties ¢(z), there is no uniform method for finding out for an
arbitrary number whether it has ¢ or not.

Intuitionism provides a useful setting for thinking about aspects
of CT. Shapiro discussed the phenomenon that CT is often used
to prove theorems that can be stated in the language of (classical)
Peano Arithmetic (PA), i.e., to prove statements in which the notion
of algorithm does not occur [Shapiro 1983, p. 215]:

In recursive function theory, there has developed an ‘infor-
mal’ method of argument, often called ‘argument by Church’s
thesis’ that employs the [...] inference from computability to
recursiveness. Typically, the object is to demonstrate the ex-
istence of a recursive function which has a given property P.
Using this method, a mathematician first gives a procedure of
calculation ‘informally’ (that is, outside of any particular for-
mulation of algorithms) and then infers that the function com-
puted by this procedure is recursive because it is computable.
The mathematician then establishes that the function has the
property P.

The question then arises whether such uses of CT are essential: can
every theorem statable in the language of PA, say, that is proved
using CT, also be proved without using CT? Generally it is assumed
that the answer to this conservativity question is ‘yes’ but in the
same breath it is added that since CT is an ‘informal’ principle, this
cannot be formally proved.
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In the intuitionistic setting, a precise answer can be given to
one way of making this question precise. Let us restrict the discus-
sion to the lawlike universe. Then a proof of a sentence of the form
VzIyA(z,y) consists (again modulo a choice principle) in a proof that
A(z,y) is algorithmically computable. So in this setting, it seems
that ICT can be meaningfully used to prove that certain functions
are Turing-computable. Now the question arises whether modulo
the double negation translation, intuitionistic arithmetic (HA, for
Heyting Arithmetic) plus ICT is conservative over PA. The answer
is affirmative. If we let § be the double negation translation from
the language of intuitionistic arithmetic to the language of classical
arithmetic, then we have:*

Theorem 1. For every sentence ¢ of the language of classical arith-
metic, if 6(¢) is provable in HA + ICT, then ¢ is provable in PA.

This theorem is a direct consequence of the fact that (1) realizabil-
ity is conservative over almost-negative formulas and the double-
negation translation translation transforms formulas into almost-
negative formulas; (2) realizability makes ICT true.

This conservativity phenomenon can be seen as a weak form of
evidence for the thesis that CT is conservative over classical mathe-
matics.

3. Church’s Thesis in Epistemic Mathematics

The S4 laws of modal logic describe the propositional logic of
the notion of reflexive provability. The reflexive notion of absolute
provability should be carefully distinguished from the notion of prov-
ability in a formal system. As is well-known, the propositional logic
of provability in a formal system is captured by the Goédel-Lob sys-
tem GL of modal logic. The reflexivity axiom OA — A is invalid on
this interpretation, whereas it is valid on the interpretation of O as
reflexive provability.

The formal language of epistemic arithmetic then contains a sen-
tential operator whose interpretation is the reflexive notion of prov-
ability. Aside from that, the language of epistemic arithmetic con-
tains a constant 0 referring to the number 0, the function symbols

“Thanks to Anne Troelstra for pointing this out to me.
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s (successor) and + and X, and names for all primitive recursive
functions.

S4PA, Peano Arithmetic (with the defining equations for the
primitive recursive functions) plus the S4 axioms formulated in the
language of arithmetic extended with the operator O, describes the
notion of reflexive provability in an arithmetical context. Actually,
it seems that reflexive provability should be formalized as a predicate
rather than as an operator. For we would like to be able to express
things such as:

“Some sentences are reflexively provable.”

But this would seriously complicate the formalism. For we would
have to take care to avoid the Kaplan—Montague paradox concern-
ing absolute knowability [Montague 1963]. However, the effect of
quantifying over sentences can also be achieved by adding a truth
predicate to the language, governed by suitably restricted Tarski-
biconditionals, for example. Anyway, here we keep matters simple
and express reflexive provability by a sentential operator.

S4PA is known as a system of intensional or epistemic math-
ematics [Shapiro 1985b], but strictly speaking this is a misnomer.
For the notion of reflexive provability is not a purely mathematical
notion, although it is of course related to mathematics. The notion
of reflexive provability is just as much a philosophical notion as the
notion of truth is. 1t must be admitted that the notion of reflexive
provability is less well understood than the notion of truth is: we
shall have to return to this later.

Via Gédel’s modal translation, which closely follows Heyting’s
proof semantics for the intuitionistic logical operations, S4PA is re-
lated to intuitionistic arithmetic by a faithfulness theorem [Goodman
1984], [Flagg and Friedman 1986]. But S4PA is nevertheless a clas-
sical theory. So aside from being able to express intuitionistic state-
ments via the Godel translation, it can express classical propositions
as well as propositions which are in part constructive and in part
nonconstructive. This opens the possibility of improving on ICT
as an approximation of CT by removing the effectiveness from the
implication and from its consequent.

Several proposals have been made for expressing CT in epistemic
arithmetic, but here we shall look at the following:

OVzdyOA(z,y) — IeVeImIn(T (e, z,m) A U(m,n) A A(z,n)) ECT
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Here A ranges over all formulas of the language of classical first-order
arithmetic plus the reflexive proof operator. As in the case of ICT,
here too an epistemic choice principle is presupposed.

The implication in ECT is classical. Therefore the first reason
why ICT did not quite express CT does not apply here. Secondly,
the whole consequent of ECT is nonconstructive. So also the second
reason why ICT did not really express CT is not applicable here.

The crucial part of ECT is its antecedent: OVzdyOA(x,y). It
contains no direct mention of the notion of algorithm. But it is
equivalent to expressing that a suitable algorithm exists provided
that the following thesis holds:

Thesis 1. A proof witnessing the truth of OVzIyDA(z,y) for a
given formula A must involve displaying an algorithm for computing

A.

This thesis is related to the intuitionist claim that there is a close
relation between a method for computing a function and a (construc-
tive) proof that the function exists.

It is difficult to see how ECT could be proved in epistemic math-
ematics from more fundamental principles. But in addition, ECT
should probably not be adopted as an extra axiom. ECT is “nec-
essarily” a hypothesis. For otherwise, the Necessitation rule can be
applied to ECT. This would mean that there is a proof that for any
algorithm computing a function, there is a Turing machine which
computes that function. And as in the case of ICT, it would seem
that this proof would have to involve a uniform transformation pro-
cedure for converting algorithms into Turing machines. And short
of coming close to identifying algorithms with Turing machines by
definition, it is hard to see what this transformation procedure could
look like.

ECT is consistent with epistemic mathematics [Flagg 1985]. In
S4PA, one can prove that functions are effectively computable by
proving sentences of the form OVz3yOA(z, y). So again the question
can be asked whether ECT allows us to prove purely arithmetical
theorems that we could not prove without ECT. When ECT is taken
as a hypothesis, the situation is the same as for ICT. When taken as
a hypothesis, ECT is arithmetically conservative over PA [Halbach
and Horsten 2000]. In other words, in epistemic mathematics, the
informal notion of algorithmic computability, when it is governed by
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ECT, does not give us new mathematical theorems. This is again a
weak sort of evidence that CT is conservative over arithmetic.

What if we do adopt ECT as an axiom? The question whether
S4PA + ECT is arithmetically conservative over Peano arithmetic
is still open, as far as I know, although it may well be the case
that methods developed by Timothy Carlson can be used to show
that S4PA + ECT is indeed conservative over PA [Carlson 1999],
[Carlson 2000]. So the notion of algorithm is, at least insofar as we
now know, unlike the notion of truth. For it is well-known that truth
is nonconservative.

Other proof-theoretical questions can be thought of that have
philosophical significance. It was noted in the beginning of this sec-
tion that HA is faithfully embedded in first-order epistemic arith-
metic via Gédel’s modal translation from the language of intuition-
istic arithmetic to the language of epistemic arithmetic. If one adds
ECT to epistemic arithmetic, ICT (under Gédel’s translation) does
not directly follow from it. So one may wonder whether any new
intuitionistic statements become provable from ECT (under Gédel’s
modal translation). This again appears to be question that is still
open.

One marked weakness of the whole program of epistemic arith-
metic is that the notion of reflexive provability is not very well un-
derstood at all. Some suspect that the notion is inherently vague.
In any case, our theory of it is very restricted at the moment.’

A long time ago, Myhill encouraged researchers to take an ax-
iomatic approach to absolute provability [Myhill 1960, p. 468]. In
that respect, Kreisel was pessimistic [Kreisel 1983, pp. 86-87]:

Truth and general provability; at least so far, a distinction
without much difference [...] nothing is formulated about gen-
eral provability that does not also hold for truth [...] In fact, it
seems open whether anything can be said about general prov-
ability in the language considered that does not also hold for
truth.

But even in the light of our feeble grasp on the notion of abso-
lute provability, the situation is not that grim. One cannot say that
we have at present no (axiomatic) understanding of the notion of
the notion of reflexive provability at all. First, the logical principles

51 discuss this problem in some detail in [Horsten 2005b)].
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concerning absolute provability are probably not as strong those for
truth. It would seem implausible that the Tarski-biconditionals hold
for the notion of absolute (classical) provability. Secondly, ECT' is a
candidate for precisely the sort of principle that Kreisel was calling
for. For ECT might well be true; but if in ECT the concept of prov-
ability is replaced by that of (classical) truth, the resulting principle
is provably incorrect.

In sum, taking the notion of reflexive provability as primitive is
not quite on a par with taking the notion of algorithm as primi-
tive. For in contrast with the notion of algorithm, we do appear to
have an elegant theory which yields the basic logical properties of
reflexive provability. And even if the content of the notion of algo-
rithm cannot be fully reduced to the reflexive notion of provability, if
OVz3yDA(z, y) turns out to be true if and only if A is algorithmically
computable, then this will have consequences that are interesting in
their own right.

4. Intensional Aspects of Church’s Thesis

Shapiro believes that CT cannot be directly captured in terms of
the absolute provability operator. CT concerns the notion of com-
putability: a function is computable if there is an algorithm that
computes it. So computable is objective in the sense that it “does
not involve reference to a knowing subject” and extensional [Shapiro
1985b, p. 41]. But closely related to the notion of computability
there is a pragmatic notion, which Shapiro calls calculability (or “ef-
fectiveness”, in the terminology of [Shapiro 1980]). Calculability is
a property of presentations of algorithms: a function presentation I
is calculable if there is an algorithm P such that it can be established
that F represents P [Shapiro 1985b, p. 43]. Shapiro suggests that
Epistemic Arithmetic can be used to shed light on this latter no-
tion: the antecedent of CT expresses the calculability of a function
presentation.

The claim that the notion of computability does not involve ref-
erence to a knowing subject strikes me as untrue. For the notion
of computability is explicated in terms of the notion of algorithm.
And this latter notion does involve reference to a knowing subject,
as is evident from Turing’s analysis [Turing 1936].5 Turing explains

5Turing’s analysis is carefully described and discussed in [Soare 1996].
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the notion of algorithm in terms of the notion of a computor, which
is a human being who calculates following a routing procedure.” It
is true that human calculation (which is involved in CT) is not the
same as human provability (which is involved in ECT). But Thesis
1 is supposed to connect the two notions.

Computability is indeed extensional: if two function presenta-
tions denote the same function, then one is algorithmically com-
putable if the other is. We have no reason to think that the an-
tecedent of ECT is extensional. It is not hard to think of two func-
tional expressions which may denote the same function but for which
one satisfies the antecedent of ECT while the other does not.

But calculability is at least epistemically more basic than com-
putability. For to determine that a function is computable, we have
to determine that there is a function presentation which is calcula-
ble, i.e., an algorithm [Shapiro 1980, p. 219]. In fact, calculability
seems also to be ontologically more basic than computability. For
the notion of computability is obtained by an act of abstraction from
the notion of calculability.

There is an ambiguity at the heart of the notion of algorithm. On
the one hand it is usually said that an algorithm is just a procedure
for transforming numbers into other numbers. On the other hand,
an algorithm is usually intended to compute a function given under a
specific presentation. As such, an algorithm is more than a transfor-
mation procedure. Nicolas Goodman put it thus: “The specification
of the algorithm is complete only if it includes a statement of the
problem it is intended to solve” [Goodman 1987, p. 483]. This seems
not quite right: it is rather a transformation procedure plus a proof
that this procedure computes a function presented in a specific way.
But it is not completely clear that even this is what is meant in the
vulgar usage by the term ‘algorithm’. For it might also be thought
that it should be evident from the specification of the algorithm it-
self which problem it is intended to solve. The indeterminacy here
mirrors the ambiguity of the meaning of implication in intuitionism,
which was discussed in section 2.

However this may be, this phenomenon explains the puzzlement
that students experience upon first being told that the total function

"This is emphasized in [Wittgenstein 1980, p. 1096].
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f, defined as

f(z) = 1if Goldbach’s conjecture is true;
f(z) = 0 otherwise

is algorithmically computable (either the constant 0 function or the
constant 1 function computes it). One has the feeling that, e.g.,
the constant 1 function is not really an algorithm for computing
the function presented above unless it is accompanied by a proof
that the algorithm computes the function in question. After all, a
transformation procedure involves also a function presentation. The
transformation procedure is an algorithm for computing a function
presented in a specific way only if the graph of the transformation
procedure is provably the graph of the function in the intensional
sense of the word.

What has happened is that the contemporary textbook use of the
term ‘algorithm’ is abstracted from the intensional use of the term
algorithm just described. Mathematics is, at least officially, exten-
sional: it abstracts from the ways in which mathematical objects are
presented. The notion of algorithm is not a fully domesticated no-
tion: it remains “informal”. But it has become a half-domesticated
notion: it has been reduced to an extensional notion.

But the extensional meaning of the contemporary use of the
term ‘algorithm’ can be expressed in terms of the reflexive notion
of provability—or at least it can be thus approximated. The idea is
that a function is computable if it has a calculable presentation. In
other words, we come closer to expressing CT if we say:

If a function has a calculable presentation, then it is Turing-
computable.

In this sense, one might attempt some sort of reduction of the concept
of computability to the concept of calculability. One advantage of
this formulation is that the converse of it, is obviously valid. And
this is as it should be, for it is generally held that the converse of CT
is obviously valid [Black 2000], {Mendelson this volume]. It is not in
the least obvious that the converse of ECT is valid!

But the above attempt to paraphrase CT quantifies over func-
tion presentations. So we have to move to a second-order epistemic
framework. Let S4PA2 be exactly like S4PA, except that the lan-
guage of the theory contains second-order predicate variables, and
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the background arithmetical theory is second-order (classical) arith-
metic.

In the framework of S4P A2, the paraphrase of CT in terms of
calculability can be expressed:

VX : [X expresses a function A

Y Vavy(X (z,y) « Y(z,y)) A OVzIyOY (2,y)| ECT2
— (X expresses a recursive function.)

This formalization comes closer to capturing the content of CT. In
contrast to ECT, the converse of ECT2 is clearly true. And this
is as it should be, for as was noted above, the converse of CT is
clearly true. Moreover, in contrast to the antecedent of ECT, the
antecedent of ECT?2 is clearly extensional. Therefore ECT2 respects
Shapiro’s stricture that was discussed in the the beginning of this
section. ECT2 shows how computability as an extensional notion is
abstracted from what Shapiro calls the intensional notion of calcu-
lability.

5. More on the Epistemic Framework

Quine has famously insisted that any regimented theory worthy
of the name should have a clear interpretation. Let us apply this to
the epistemic background theories of the previous two sections: first-
and second-order epistemic arithmetic.

The epistemic framework is an intensional logic. Quine has al-
ways felt that intensional logics do not have a clear interpretation.
In section 3 it was conceded that the notion of reflexive provability is
not as clear as one would wish it to be. But Quine held that there is
a specific problem with intensional logic: quantifying into intensional
contexts is genuinely problematic [Quine 1955].

Against this, T maintain that in a formal context, quantification
into epistemic contexts is unproblematic and uncomplicated as long
as every object in the domain of discourse can only be referred to by
transparent terms. And this is the case for the languages of first- and
second-order epistemic arithmetic that we have employed. Here is a
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sketch of the intended interpretation of quantification in epistemic
arithmetic.®

Let us first consider first-order quantification. Terms of the lan-
guage of S4PA must be built from individual variables, 0, s, +, X
and primitive recursive function symbols. Given an assignment of
numbers to the free variables, identity of denotation between two
terms s and ¢ is always decidable. So the Kripkean identity and
substitution principles '

s=t—0O(s=1)

s=t— (¢p(z\s) — ¢x\t)) for all formulas ¢

are valid. Therefore we can read quantified statements in a
“Godelian”, substitutional manner. A statement 3z0¢(z) can for
all intents and purposes be read as: “there is a natural number such
that when its standard Peano-numeral replaces the variable z in
$(x), a provable sentence results.” The reason is that modulo prov-
able equivalence, every natural number is nameable in the language
by a unique term.

The situation becomes more complicated only when not every
object in the domain of discourse has a name (such as in the case of
the real numbers) or when we allow different terms that in fact refer
to the same number, but not provably 50.2 But this was avoided in
the epistemic frameworks that we have relied on. The opaqueness
was restricted to the predicate expressions and was not allowed to
spread to the terms.

Substitution of predicates in intensional contexts is governed by
the transitivity axiom of S4. So we do not have in S4PA?2 the
substitution principle

VXYY :Vz(Xz o YI) - ((X) « 2(Y)),
but we do have the weaker:

VXVY : OV (Xz « Yz) — (2(X) « 2(Y)).

8] have spelled out the intended semantics of first- and second-order languages
of epistemic arithmetic in more detail in [Horsten 1998, section 4.2.] and in
[Horsten 2005a, section 2].

9This latter situation may arise, for instance, when we include a description
operator in the formal language.
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Still, we have to be clear what an expression of the form
3X0OP(X) is supposed to mean. I suggest that we take the intended
interpretation to be: “there is a set of natural numbers S and a
presentation Pg of S such that when the second-order variable X is
replaced in ® by Pg, a provable sentence results.” It is important
to be as liberal as possible with respect to admissible presentations
of sets [Horsten 1998, p. 17, and footnote 30, p. 24]. Even a set
itself is allowed to count as its own presentation. This ensures that
the quantifier VX in VX®(X) has all sets of natural numbers in its
range—even those that for all we know have no humanly conceivable
presentation. Only certain kinds of presentations (notably presenta-
tions expressible in human languages) can figure in reflexive proofs.
For this reason, a sentence such as VXOVy(Xy < Xy) is not valid.
For of sets of numbers that have no humanly expressible and usable
presentation it is impossible to prove anything.

In this way both the absolute generality of second-order quantifi-
cation and the impossibility of full-fledged de re knowledge of sets of
objects can be respected. In sum, the interpretation of quantifying
in epistemic contexts is straightforward and unproblematic for the
epistemic theories that we have considered.
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