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Abstract. We formulate and explore two basic axiomatic systems of type-free subjective
probability. One of them explicates a notion of finitely additive probability. The other explicates
a concept of infinitely additive probability. It is argued that the first of these systems is a suitable
background theory for formally investigating controversial principles about type-free subjective
probability.

§1. Introduction. Subjective rational probability is intensively investigated in
contemporary formal epistemology and confirmation theory. This notion is normally
conceived of, either explicitly or implicitly, in a typed way, i.e., as applying to
propositions that do not contain the concept of subjective rational probability itself. But
formal epistemologists are becoming increasingly interested in type-free (or reflexive)
subjective rational probability.

From a logical point of view, the following urgent question then presents itself:

What are basic logical calculi governing type-free subjective rational probability?

This is the question that we discuss in this article.
Since we want to have natural ways of constructing self-referential sentences at our

disposal (in particular the diagonal lemma), we will formalise subjective probability
as a (two-place) predicate rather than as a sentential operator, as is the more
common practice in confirmation theory and formal epistemology. (See [27] for a
complete system of probabilistic logic for Harsanyi type spaces in which introspective
probabilistic claims are expressed by means of a family of sentential operators, by
which self-referential probabilistic sentences are avoided.) Our predicate expresses a
functional relation between sentences on the one hand, and rational or real numbers
on the other hand. The target notion will be the familiar concept of subjective
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rational probability. This is in contrast with some other recent work on self-referential
probability (such as [3, 18]) in which a semantic concept of probability is targeted.
Moreover, in this article we insist on classical logic governing this subjective probability
predicate: first-order classical logic will be relied on throughout.

It should not, perhaps, be assumed that there is a single correct elementary theory
of type-free subjective rational probability. Maybe we should instead look for basic
calculi that occupy a significant place in a landscape of possible background theories of
type-free subjective probability. Surprisingly, this field is wide open. But this question is
important. In order to obtain solid and general results in formal epistemology, rigorous
axiomatic frameworks in which controversial epistemological rules and principles are
studied, are needed.

We present and discuss two such calculi: one for finitely additive probability, and
one for �-additive probability. We do not claim that these are the only interesting
elementary systems of type-free subjective probability that can be thought of. We
investigate some of the proof-theoretic properties of these systems, motivated by an
analogy with certain type-free truth theories. We will see that the elementary system for
finitely additive probability that we propose can be seen as a minimal system of type-
free subjective probability, whereas the elementary system for �-additive probability
that we propose can be seen as a maximal system of type-free subjective probability.
In a concluding section, we take some first steps in the investigation of controversial
epistemic principles against the background of these basic formal calculi.

In our investigation, we will exploit the analogy between probability and truth:
the property of truth is to some extent similar to, albeit of course not identical to,
the property of having probability 1. Also, subjective probability can be seen as a
quantitative version of the qualitative notion of justified belief. So the theory of reflexive
justified belief also contains lessons for the theory of type-free subjective probability.

Our aim is to develop calculi that are in a sense elementary. In particular, we want
to keep the languages that we work with as simple as possible. The only non-logico-
mathematical symbol will be one for subjective rational probability (Pr). In this sense,
we focus in this article on the pure calculus of type-free subjective probability. Thus
we work in a more austere environment than some recent work in this area, in which
the relation between truth and probability is investigated in a type-free context (such
as [17, 18]). This does not mean that we find these richer frameworks in any way
objectionable. But we believe that having a robust sense of what is possible in an austere
setting is valuable for research into type-free probability in more expressive settings.
Likewise we have of course no objection whatsoever against enriching the language of
type-free subjective probability with empirical predicates, although we will not have
much to say about that in the sequel.

The technical results in this article must be classed as basic. Most of the propositions
and theorems are obtained by adapting arguments in the literature for analogous
arguments for axiomatic theories of related notions, such as truth, justification, and
believability. Our aim here is merely to contribute to the groundwork of the theory of
type-free subjective probability: much work remains to be done.

§2. Paradox?. We will try to exploit, to some extent, the analogy between having
subjective rational probability 1, on the one hand, and being true, on the other hand.
Since we are interested in type-free probability, the analogy will be with type-free truth.
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AXIOMS FOR TYPE-FREE SUBJECTIVE PROBABILITY 3

Type-free truth is a notion that is known to be prone to paradox: intuitive principles
(the unrestricted Tarski-biconditionals) lead to a contradiction. What about type-free
(subjective) probability?

Two important principles from the literature on axiomatic truth are Factivity and
Necessitation. Factivity is the schematic axiom that says that if A is true, then A;
Necessitation is the following schematic inference rule: From a proof of A, infer that A
is true. From the literature on axiomatic truth, we know that Factivity and Necessitation
together yield a contradiction. This is known as the Kaplan–Montague paradox:1 it is a
mild strengthening of the liar paradox. The literature on type-free truth theories shows
that type-free truth theories divide roughly into two families: Friedman–Sheard-like
(FS-like) theories and Kripke–Feferman-like (KF-like) theories. This can be seen as
a reflection on whether Factivity or the rule of Necessitation ought to be rejected: FS
rejects Factivity, and KF rejects Necessitation.2

For type-free subjective probability, all this means that there is a prima facie reason
for being at the same time worried and cautiously hopeful. The basic axioms for
subjective rational probability are Kolmogorov’s axioms3 for being a finitely additive
probability function. One of Kolmogorov’s principles says that necessary truths should
be given probability 1. We want to keep our language as simple as possible, so we do
not have a notion of necessity represented in it. Therefore we cannot directly express
this principle. But the Necessitation rule for subjective probability 1, i.e.,

� ϕ
� Pr(φ) = 1

,

appears to be a passable approxiomation to (and indeed weakening of) it.4 Since
not only the purely mathematical principles about the rational numbers or the real
numbers, but presumably also the normative principles that govern subjective rational
probability are necessary, this rule should hold for all ϕ, including those that include
occurrences of Pr.

Thus we have half of what is needed to generate a contradiction, i.e., we have reason
to be worried. On the other hand, while Factivity seems eminently plausible for truth,
it is not clearly a reasonable constraint on probability 1. The only principle concerning
subjective probability, considered in the literature, that entails it, is the Principle of
Regularity, which says that only necessary truths should be given subjective probability
1. The principle of Regularity is widely rejected as a constraint on rational subjective
probability.5 Indeed there is prima facie reason to be suspicious about this principle: for
instance, it seems natural to assign probability 1 to propositions that express elementary
observational results, which are obviously contingent. In any case, we now already see
that the situation is dire for calculi of type-free subjective probability that do include

1 See [15].
2 See, for instance, [14, chaps. 14 and 15]. In this article we assume familiarity with FS, not

with KF.
3 See [16].
4 In the interest of readability, we will be somewhat sloppy with notation, especially regarding

coding, in this article.
5 See, for instance, [12].
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Regularity (such as certain non-Archimedean theories of probability)6, for then, if we
accept Necessitation, the Kaplan–Montague argument goes through.

In the light of these considerations, we reject Factivity and endorse Necessitation.
We then cannot fully carry out the Kaplan–Montague argument for probability 1, and
can at least hope to avoid contradiction. By rejecting Factivity, we position ourselves in
an FS-like, rather than in a KF-like environment. Not only is Factivity to be rejected,
but there seems also no reason to trust its weaker cousin Converse Necessitation. Even
a proof that a given statement has probability 1 does not give us a compelling reason
that statement is true.

When the truth predicate in FS is interpreted as a concept of probability rather than
as truth, the resulting principles are close to a type-free version of the Kolmogorov
axioms. Our strategy will therefore be to get as close as consistently possible to
the Kolmogorov axioms in a type-free predicate setting, and against a reasonable
mathematical background.

§3. Finite and �-additive type-free probability. In this section, we present an
elementary formal theory of finite type-free subjective probability, and an elementary
formal theory of �-additive type-free subjective probability. Moreover, we discuss some
elementary properties of these two systems.

3.1. Languages and background theories. We will define a basic theory of type-free
finitely additive probability and a basic theory of �-additive probability. For finitely
additive probability we do not need to take limits, so a background theory of the
rational numbers suffices. For �-additive probability we do need to take limits, so a
background theory of the real numbers is needed.

The natural numbers in each case form a significant sub-collection of the domain
of discourse. So we assume that each of the two languages contains a predicate N that
expresses being a natural number.

3.1.1. Q andLQ . LetQ– be some standard classical theory of the rational numbers,
formulated in the languageLQ– , such that it contains the Peano Axioms restricted to N.
The language LQ is defined as LQ– ∪ {Pr}, where Pr is a two-place predicate such that
Pr(x, y) expresses that the rational subjective probability of x is y. We will sometimes
write Pr(x) = y instead.

We assume that, in the finitely additive probability theory that we will define, the
logical and nonlogical schemes of Q– are extended to the language including Pr. This
gives rise to the theory Q.

3.1.2. R and LR. Let R– be some standard classical theory of the real numbers,
formulated in a language LR– , and let LR be defined as LR– ∪ {Pr}. Again we assume
that, in the probability theories that we will define, the logical and nonlogical schemes
of R– are extended to the language including Pr. This gives rise to the theory R.

3.1.3. Coding. For the language LQ, coding works in the usual way. But there are
uncountably many real numbers. To deal with this, we proceed roughly as in [11].
Within R– we can describe the language L∞

R , which contains LR, but also contains

6 See, for instance, [1].
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constant symbols cx for each element x ∈ R. This formalisation of L∞
R in LR provides

us with a coding of the expressions of L∞
R . For an L∞

R -expression e we denote its
code by �e�. We specially denote the code of cx for x ∈ R by ẋ. This formalisation
also comes with a coding of various syntactic relations and operations on x ∈ R.7 As
mentioned in Section 1, throughout the article we will often be sloppy in our notation.

3.2. Finitely additive type-free probability. We first turn to the principles of the basic
theory of finitely additive type-free probability, which we call “Reflexive Kolmogorov
Finite” (RKf). They are expressed in LQ, which is LQ– ∪ {Pr}. Let Tmc be the set of
constant terms and let t◦ be the value of term t (both notions can be expressed in LQ).
The axioms are as follows:

Kf1– Q.
Kf2– Pr is a function.
Kf3– Pr(x, y) → (x ∈ LQ ∧ 0 ≤ y ≤ 1).
Kf4– ∀t ∈ Tmc

(
Pr(ϕ(t)) = 1 ≡ ϕ(t◦)

)
, for all ϕ ∈ LQ– .

Kf5– Pr(x),Pr(y) ≤ Pr(x ∨ y).
Kf6– Pr(x∨̇y) = Pr(x) + Pr(y) – Pr(x∧̇y).
Kf7– Pr(¬̇x) = 1 – Pr(x).
Kf8–

� φ
� Pr(φ, 1)

.

In these axioms, the free variables are assumed to be universally quantified over. Kf4
is an axiom schema; concrete axioms are obtained from Kf4 by substituting formulas
of LQ– for the schematic letter ϕ.

A comparison with [16] shows that all principles of RKf except Kf4, Kf5, and
Kf8 are Kolmogorov axioms. But Kf4 and Kf8 together aim to approximate the
remaining Kolmogorov axiom, viz., the axiom that says that necessary truths have
probability 1. In particular, rule Kf8 is justified because a proof of a statement φ
from the (necessary) pure principles of type-free subjective probability entails that φ
is necessary, and therefore should get probability 1. In Leitgeb’s systems of type-free
probability, a slightly different necessity principle is adopted, namely,

BewS(x) → Pr(x, 1),

where S is the background system without the principles of subjective probability [18,
sec. 3]. This Necessitation principle is of course sound, but it is obviously weaker than
Kf8 in specific ways.

Type-free systems can never be fully compositional, since type-freeness precludes
an ordinary notion of rank of formulas. Nonetheless, FS has been touted as a
highly compositional axiomatic theory of truth.8 The system RKf is also highly
compositional, but slightly less so than FS, for the axiom Kf6 does not explain the truth
conditions of probabilities of disjunctions in terms of truth conditions of formulae of
lower rank. Axiom Kf5 has been included in order to compensate (to some degree) for
this deficiency.

7 An alternative way of proceeding for the language of the real numbers is to work with
a probability-satisfaction predicate Pr(x, y, z), which expresses that the probability of x
holding of y is z.

8 See [13].
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As mentioned in Section 1, LQ can be extended by empirical vocabulary. Empirical
truths can unproblematically be added to RKf as extra premises. But we do not
automatically want to assign all empirical truths probability 1. So we do not simply
want to add empirical truths as new axioms, for then they would fall in the scope of
Kf8.

RKf is at least minimally capable:

Proposition 1. RKf � ∀φ,�
(

Pr(φ → �, 1) → Pr(�) ≥ Pr(φ)
)
.

Proof. Straightforward calculation in RKf.

It follows in particular that if Pr(φ → �) = 1 and Pr(φ) = 1, then Pr(�) = 1. In
view of this, we may ask an analogue of a question from provability logic:

Question 1. What is the propositional modal logic of probability 1, conceived as a
modality?

From the previous proposition and Rule Kf8 it follows that it is a normal
propositional modal logic.

Rule Kf8 can be interpreted as saying that RKf is pointwise self-recommending.
Since probability 1 does not entail truth, one might hope that even global self-
recommendation does not contradict Gödel’s incompleteness theorems, even though
it looks like a (global) reflection principle. However, this is not the case:

Proposition 2. There is no consistent system S ⊃ RKf for which

S � ∀x : BewS(x) → Pr(x) = 1.

Proof. Assume S � ∀x : BewS(x) → Pr(x) = 1 and S is consistent. Take, by
diagonalisation, a formula ϕ such that

S � ϕ ↔ ¬(BewS(ϕ) → Pr(ϕ) = 1).

We reason in S, and supposeϕ. Then¬(BewS(ϕ) → Pr(ϕ) = 1),which contradicts our
assumption. So we have S � ¬ϕ. By Kf8, then S � Pr(¬ϕ) = 1, i.e., S � Pr(ϕ) = 0.
So S � ¬BewS(ϕ), by our assumption. So by the second incompleteness theorem, S is
inconsistent.

Observe that our proof of the first part of this proposition shows that also
the “local” version of the principle ∀x : BewS(x) → Pr(x) = 1, i.e., the scheme
BewS(ϕ) → Pr(ϕ) = 1, is inconsistent.

For reasonable S, the principle ∀x : BewS(x) → Pr(x) = 1 should be true, so we
should be able consistently add it to S. Moreover, this principle looks similar to
the uniform reflection principle for S. Indeed, we suggest that principles such as these
are regarded as a kind of proof theoretic reflection principles.

All this suggests the following question, which, as far as we know, is open:

Question 2. Let conditional probability be defined in the usual way by the ratio
formula. Is there a consistent system S ⊃ RKf for which

S � ∀x : Pr(BewS(x) �= 0) → Pr(x | BewS(x)) = 1?

Here the antecedent is of course inserted only so as to ensure that the consequent is
well defined.

Let us now to turn to the question which principles we can consistently add to RKf.
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It is easy to see that adding probability iteration principles to RKf quickly leads to
inconsistency.9 This means that despite its minimality, the principles of RKf already
highly constrain the class of possible extensions. As a simple example, just to see how
these arguments go, consider the probabilistic analogue of the S4 principle of modal
logic, which we call Pr4 :10

Pr(φ, 1) → Pr(Pr(φ, 1), 1).

Proposition 3. RKf + Pr4 is inconsistent.

Proof. Take a probabilistic liar sentence � such that RKf � �↔ ¬Pr(�, 1). (Such
a � of course exists by the diagonal lemma.) Arguing in RKf, Necessitation of the
left-to-right direction yields Pr(Pr(�, 1) → ¬�, 1). Distributing Pr over the conditional
gives us

Pr(Pr(�, 1), 1) → Pr(¬�, 1).

An instance of Pr4 is Pr(�, 1) → Pr(Pr(�, 1), 1). Putting these together gives us
Pr(�, 1) → Pr(¬�, 1), i.e., ¬Pr(�, 1). Using the right-to-left direction of the instance of
the diagonal lemma, we then have �, and by Necessitation Pr(�, 1), which contradicts
our earlier result.

Note that Proposition 3 does not entail that there can be no models of RKf that
make Pr(φ, 1) → Pr(Pr(φ, 1), 1) true for all ϕ (or/and its converse). In our proof, we
have applied rule Kf8 to a sentence obtained from Pr4. This is only permitted if Pr4 is
taken as an extra axiom.

In a similar way, it can be shown that a form of negative introspection, and also its
converse, cannot consistently be added to RKf:

Proposition 4.

1. The principle Pr(x) < 1 → Pr(Pr(x) < 1) = 1 cannot consistently be added to
RKf.

2. The principle Pr(Pr(x) < 1) = 1 → Pr(x) < 1 cannot consistently be added to
RKf.

Proof. The simple proofs of 1 and 2 are exactly like the proofs of Theorem 3e and
Theorem 3f, respectively, in [21]. We present the proof of 2 for illustration. In what
follows we work in RKf together with the assumption that (1) Pr(Pr(x) < 1) = 1 →
Pr(x) < 1.

Take a liar sentence � such that (2) �↔ Pr(�) < 1. Applying Necessitation, we
obtain: (3) Pr(�→ Pr(�) < 1) = 1 and by Proposition 1 we have

(4) Pr(�) = 1 → Pr(Pr(�) < 1)) = 1.

Now we claim �. Assuming ¬� for the indirect proof, we get: Pr(�) = 1. Hence
by (4), Pr(Pr(�) < 1)) = 1, therefore by (1) Pr(�) < 1 - a contradiction.

In effect, we established �, hence by Necessitation Pr(�) = 1. However, by (2) we
have also Pr(�) < 1, which is a contradiction.

From the point of view of type-free truth theory, the iteration principles that are
the subject of Propositions 3 and 4 are typical analogues of principles that belongs

9 See [5].
10 Weisberg calls this condition Luminosity [25, p. 184].

https://doi.org/10.1017/S1755020323000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000047
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to the KF-family and are incompatible with FS. It is, as far as we can tell, an open
and interesting question what reasonable analogues of KF for type-free subjective
probability would look like.

Propositions 2–4 show that despite the fact that RKf is a basic system of type-free
subjective probability, it is nonetheless fairly restrictive. In particular, it is not very
tolerant of introspection principles. In this sense, our findings so far are in harmony
with the anti-luminosity position that Williamson argues for on other grounds [26,
chap. 4].

It is, however, consistent to add to RKf the converse of Pr4, which we call CPr4,
and which is called Transparency by Weisberg [25, p. 190]:11

Proposition 5. RKf + CPr4 is consistent.

Proof. This follows from the proof of Theorem 5 in [7] (see also [6]). The point is that
the theory RKf + CPr4 + “for every x, Pr(x) is either 1 or 0 or 1/2” is interpretable in
the theory of the model (Q,B�), withB� characterized as in Definition 6 of [7] (cf. also
Definition 13.4.5 of [6]). The interpretation is obtained by translating “Pr(x) = y” as
“
(
y = 1 ∧ B(x)

)
∨

(
y = 0 ∧ B(¬x)

)
∨

(
y = 1/2 ∧ ¬B(x) ∧ ¬B(¬x)

)
.” In particular,

the truth of the interpretation of Cpr4 follows from the fact that the model (Q,B�)
makes true the reflection axiom (A3) from Definition 4 of [7].

3.3. �-additive type-free probability. Basically, our theory of �-additive type-free
probability, which we will call “Reflexive Kolmogorov Sigma” (RK�) is like RKf,
except that an axiom of �-additivity is added. Its principles are:

K�1 R.
K�2 Pr is a function.
K�3 Pr(x, y) → (x ∈ LR ∧ 0 ≤ y ≤ 1).
K�4 ∀t ∈ Tmc

(
Pr(ϕ(t)) = 1 ≡ ϕ

)
, for all ϕ ∈ LR– .

K�5 Pr(x),Pr(y) ≤ Pr(x ∨ y).
K�6 Pr(x∨̇y) = Pr(x) + Pr(y) – Pr(x∧̇y).
K�7

� φ
� Pr(φ, 1)

.

K�8 Pr(∃̇x ∈ N : y(ẋ)) = lim
n→∞

Pr(y(0) ∨ ··· ∨ y(n)).

In axiom K�4, we use the fact that “internally” we have names for all real numbers.
This will play a role in some of the theorems in Section 4.

As before, K�6 is a non-compositional axiom. Axiom K�5 is introduced to
compensate for this deficiency.

§4. Connection with the Friedman–Sheard system for type-free truth. We will relate
RKf and RK� to the Friedman–Sheard theory FS of type-free truth, which we assume
the readers to be familiar with.12 But FS is formulated “over” N, whilst RKf is
formulated “over” Q, and RK� is formulated “over” R. So when we speak about

11 Weisberg observes that Luminosity implies Transparency [25, p. 196, footnote 6].
12 FS was first introduced in [10]. The locus classicus for the proof-theoretic investigation of

FS is [13].
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FS from now on, we will assume it to be formulated “over” Q or “over” R: the context
will make clear which is meant. We will not go into the boring but routine details of
how to formulate FS “over” Q or “over” R.

Theorem 1. RK� is consistent, �-inconsistent, but sound for its mathematical sub-
language.

Proof. See [19].

The proofs of these properties are more or less “borrowed” from the meta-
mathematics of FS. For instance, the proof of the �-inconsistency of RK� is a
straightforward adaptation of McGee’s argument that shows that FS is �-inconsistent
(see [13]). Alternatively, �-inconsistency follows from interpretability of FS in RK�
(see Theorem 2). As in the case of FS, the consistency of RK� can be established by
providing natural models for subsystems of RK� with limited number of applications
of the Necessitation rule K�7.

This should not surprise us. The system FS is known as “the most compositional
type-free theory of truth.” The systems RKf and RK� are also to a high degree
compositional, and include the Necessitation rule.13

Theorem 1 shows that RK� cannot serve as an acceptable background frame-
work for formally investigating debatable principles concerning type-free subjective
probability.14 Despite its mathematical soundness, its �-inconsistency is, in our
opinion, almost as bad as full inconsistency.

The theory RKf can be trusted: all its theorems can be interpreted as true under
the standard interpretation (see Corollary 2). Since, as we have seen in Section 3.2,
no simple introspection principles (with the exception of CPr4) can be consistently
added as axioms to RKf, they do not form a part of the minimal theory of subjective
probability. On the other hand, the theory RK� is not to be be trusted, as it cannot
be interpreted as true under the standard interpretation. In this context, we remind
the reader that there is a long history of scepticism towards �-additivity as a principle
governing subjective probability [8, 9].15

The connection between RK� and FS goes even further than what Theorem 1
describes:

Theorem 2. FS is relatively interpretable in RK�.

Proof. (Sketch.)
Let an intermediary system RK�+ be defined as RK� +

∀x, y : Pr(x, y) → (y = 0 ∨ y = 1).

13 It is known that given the presence of Necessitation, the Co-Necessitation rule does not make
a proof theoretic difference for FS [13, p. 322].

14 Assuming, as we do, that probabilities are assigned to all sentences of our object language. An
interesting question for future work would be to explore to what extent this limitative result
could be avoided by restricting the assignment of probabilities to “grounded” sentences,
thereby excluding self-referential probabilistic sentences by treating them much like non-
measurable sets in measure theory. (We are grateful to an anonymous reviewer for pointing
out this connection.)

15 In [20] it is argued that even for frequency interpretations of probability, �-additivity is
suspect.
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Consider the translation � which is the homophonic translation for atomic mathe-
matical formulae, commutes with the logical operators but restricts the quantifiers to
the natural numbers, and has the following recursive clause for the truth predicate T:

�(Tx) ≡ Pr(�(x), 1).

Then� is an interpretation ofFS in RK�+.16 In particular, for interpreting the right to left
implication in the FS axiom “∀ϕ,�

(
T (ϕ ∨ �) ≡ T (ϕ) ∨ T (�)

)
” axiom K�5 is used.

But RK�+ can be interpreted in RK� as follows. Let 	 be the translation which is the
homophonic translation for atomic mathematical formulae, commutes with the logical
operators, and has the following recursive clause for Pr:

	(Pr(x, y)) ≡ Pr(	(x), y) ∧ (y = 0 ∨ y = 1).

Then 	 interprets RK�+ into RK�.
Stringing these two facts together gives us an interpretation of FS in RK�.

Corollary 1. RK� is at least as strong as the first-order part of Ramified Analysis
up to level �.

Proof. This follows directly from Theorem 2 and the fact that the arithmetical
strength of FS is exactly the first-order fragment of Ramified Analysis up to level �
[13, sec. 5].

So if RK� is to be believed—but it isn’t!—then just like the notion of set, and
the notion of truth, the notion of (type-free) subjective probability has (some)
mathematical power.

On the other hand, the notion of probability captured by RKf does not have
mathematical power.

Definition 1. Let FS– be like FS but without the quantifier commutation axiom
∀y : ∃xTy(x) ↔ T∃x : y(x). Instead, FS– contains the axiom schema “∀t ∈
Tmc

(
Pr(ϕ(t)) = 1 ≡ ϕ(t◦)

)
” for all formulas ϕ of the base language (without the

probability predicate).

The thought is that by moving from FS to FS–, we remove the mathematical “sting”
from it, and that moreover RKf can be interpreted in the conservative system FS–.

Conservativity of FS– can be established by interpreting it the theory RT of iterated
truth, which is conservative over its base theory containing PA. Let L0 be the base
language; let Ln+1 be Ln enriched with the new truth predicate Tn. (In effect, Ln+1

contains the truth predicates T0, ... , Tn.) A theory RTn in the language Ln is defined
in the following way.

Definition 2. RT0 is PA. Apart from the axioms of PA, RTn+1 contains the following
axioms, for every i ≤ n:

• ∀t ∈ Tmc
(
Ti (ϕ(t)) ≡ ϕ(t◦)

)
for each ϕ ∈ L0.

• ∀ϕ ∈ Li
(
Ti (¬ϕ) ≡ ¬Ti (ϕ)

)
.

16 FS is standardly presented as containing not just Necessitation but also the Co-Necessitation
rule CONEC (fromT (ϕ), inferϕ). However, when discussing arithmetical strength, CONEC
can be ignored, since it is known that every arithmetical sentence provable inFS can be proved
without CONEC. See [13, sec. 5].
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• ∀ϕ,� ∈ Li
(
Ti (ϕ ∨ �) ≡ Ti (ϕ) ∨ Ti (�)

)
.

• Full induction for formulas of Ln+1.

In addition, RTn+1 has the following Necessitation rules for every i ≤ n and for every
ϕ ∈ Li :

� φ
� Ti(φ)

.

Lemma 1. For every n, RTn is conservative over its background mathematical theory.

Proof. Let RTn � k denote the set of theorems of RTn having proofs with gödel
numbers smaller than k. We demonstrate that:

(∗) ∀k, n∀M
(
M |= RTn → ∃S(M,S) |= RTn+1 � k

)
.

In words: every model ofRTn can be expanded to a model satisfying all the theorems
of RTn+1 which have proofs with gödel numbers smaller than k.

For the proof of (∗), fix k, n and M |= RTn. Define the set Sn as {� ∈ Ln : � <
k ∧M |= �} (so, Sn contains only sentences with gödel numbers smaller than k).
Since Sn is the set of true sentences of restricted syntactic complexity, RTn proves that
Sn is consistent. Define S (the intended interpretation of the predicate ‘Tn’ of RTn+1)
as a maximal consistent extension of Sn. Note that S is definable in M, hence it is fully
inductive.

It is easy to verify that every proof in RTn+1 with gödel number smaller than k
contains only sentences true in (M,S). This finishes the proof of (∗).

From (∗) it follows that each RTn is conservative over its background mathematical
theory.

Remark: The proof of Lemma 1 employed the idea of expandability of models of
RTn to models of certain fragments of RTn+1. It should be emphasized that this does
not generalize to full expandability, i.e., it is not true that every model of RTn is
expandable to a model of full RTn+1. In fact, the general expandability theorem fails
already for RT0 and RT1.17

Lemma 2. FS– is proof-theoretically conservative over its background mathematical
theory Q.

This is not surprising, since it is known that the “formalised �-rule”

∀y : ∀xT (y(x)) → T (∀x : (y(x))

is the main factor in the mathematical strength of FS.18

Proof. The proof is basically a repetition of the argument for Theorem 14.31 in [14,
pp. 181–185] with only minor changes: we use the functions gn defined on page 181
in [14] to provide an interpretation of fragments of FS without the quantifier axioms
(fragments with restricted number of application of Necessitation) in the RTn’s.

Theorem 3. RKf is proof-theoretically conservative ( for the mathematical base
language) over its background mathematical theory Q.

17 For the proof, see [6], Theorem 6.0.13, p. 96.
18 See [22].
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Proof. (Sketch.)
Let again RKf+ be defined as RKf + ∀x, y : Pr(x, y) → (y = 0 ∨ y = 1), and let

FS– (over Q) be just like in definition 1. Now consider the translation 
 which is the
homophonic translation for atomic mathematical formulae, commutes with the logical
operators, and has the following recursive clause for Pr:


(Pr(x, y)) ≡ (¬T (
(x)) ∧ y = 0) ∨ (T (
(x)) ∧ y = 1).

Then 
 is an interpretation of RKf+ in FS–. By Lemma 2, FS– is conservative over Q.
Stringing these facts together gives us the conservativity result for RKf.

Lemma 3. FS– can be interpreted in the standard model of arithmetic, hence it is
�-consistent.

Proof. The interpretation of FS– in the standard model of arithmetic is obtained by
revision semantics. Let N be the standard model of arithmetic. Define T0 as empty,
Tk+1 = {� : (N,Tk) |= �}. Let T� be the set of stable sentences, that is,

T� = {� : ∃m∀k ≥ m(N,Tk) |= �}.

Define T as a maximal consistent extension of T� . Then (N,T ) |= FS–. Namely,
given a proof (ϕ0 ... ϕk) in FS–, it can be demonstrated by induction that ∀i ≤ k(ϕi ∈
T� ∧ (N,T ) |= ϕi). In particular, in the step for the Necessitation rule, we use the fact
that T� is closed under Necessitation.

Since RKf is interpretable in FS–, we obtain the following corollary.

Corollary 2. RKf can be interpreted in the standard model of arithmetic, hence it is
�-consistent.

Theorem 2 and Corollary 2 provide support for the hypothesis that RKf is an
acceptable background framework for formally investigating debatable principles
concerning type-free subjective probability, whilst RK� most definitely is not. RKf is
a minimal system for reflexive subjective probability, whilst RK� is a maximal system
for reflexive subjective probability. Both systems represent natural positions in the
landscape of systems of reflexive subjective probability.

§5. Probabilistic reflection. Since RKf is an acceptable basic theory of type-free
subjective probability, it is a suitable formal background against which questions of
formal epistemology might be investigated. Let us have look at one example of this.

In [23], van Fraassen proposed and explored the following probabilistic reflection
principle:

Definition 3. (V, “van Fraassen”)

[n > 0 ∧ Prt(Prt+n(ϕ) = a) �= 0] →
Prt(ϕ | Prt+n(ϕ) = a) = a.

Here the subscripts of Pr are real numbers, representing moments in time. Then V
imposes a connection between future and current credences. The antecedent is of
course needed to ensure that the conditional probability in the consequent is well
defined.

https://doi.org/10.1017/S1755020323000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000047


AXIOMS FOR TYPE-FREE SUBJECTIVE PROBABILITY 13

The principle V (and variations on it) has been much discussed in the literature, and
enjoys considerable popularity. Principle V has an air of ill-foundedness. If we think
of later credences as determined, perhaps by conditionalisation, by earlier credences,
in a way similar to the way in which higher level typed truth predicates are determined
by lower level typed truth predicates, then V seems to break type restrictions.

The variant of van Fraassen’s V by setting n = 0 in V, is truly type free; and as a
coordination principle for probability functions through time, it seems interesting [4,
p. 322]:

Definition 4. (RV)

Pr(Pr(ϕ) = a) �= 0 → Pr(ϕ | Pr(ϕ) = a) = a.

Nonetheless, RV cannot consistently be added as a new axiom to RKf:

Proposition 6. RKf + RV is inconsistent.

Proof. We reason in RKf + RV.
By the diagonal lemma, we may take a sentence � such that � �↔ Pr(�) < 1, or,

equivalently, � ¬�↔ Pr(�) = 1.
Assume, for a reductio, that Pr(Pr(�) = 1) �= 0. Then, by RV for the case where

a = 1, Pr(� | Pr(�) = 1) = 1, which is equivalent to Pr(Pr(�) < 1 | Pr(�) = 1) = 1,
which is in turn equivalent to

Pr(Pr(�) < 1 ∧ Pr(�) = 1)
Pr(Pr(�) = 1)

= 1,

which yields a contradiction.
So we conclude � Pr(Pr(�) = 1) = 0. Then, by the diagonal property, � Pr(¬�) = 0,

which by a Kolmogorov axiom is equivalent to � Pr(�) = 1. By Necessitation, we then
get � Pr(Pr(�) = 1) = 1, which gives us a contradiction.

This again illustrates the restrictiveness of even the minimal calculus RKf.
Other variants of van Fraassen’s principle V have been considered in the literature. In

the light of Proposition 6, they should be regarded with suspicion. Indeed, Campbell–
Moore considers the following variant V∗:

Prt(ϕ | Prt+n(ϕ) ∈ [a, b]) ∈ [a, b] for all a, b with a ≤ b.
She shows by a simple diagonal argument:

Proposition 7. RKf + V ∗ is inconsistent.

Proof. Theorem 1.7.1 in [2].

Observe that Proposition 6 also tells against van Fraassen’s principle V. An agent
may not update her probability function during some interval [t, t + n], for some n > 0,
because no new evidence has come in to conditionalize on, and because she has in this
interval no reasons for adopting a radically different probability function. Moreover,
she might be certain at t that Prt = Prt+n, i.e.,

Prt(Prt = Prt+n) = 1.

However, if Prt, Prt + n satisfy RKf+V, then we have:19

19 Thanks to an anonymous referee for this proposition and for the proof of it.
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Proposition 8. For all positive rational numbers n, t: Prt = Prt+n → Prt(Prt =
Prt+n) < 1.

Proof. Assume that Prt = Prt+n. Let � be the liar sentence, i.e., � � ≡ Pt+n(�) < 1.
Suppose Pt+n(�) < 1. Then Pt+n(¬�) > 0. By assumption, Pt(Pt+n(�) = 1) > 0.
By RV, Pt(� | Pt+n(�) = 1) = 1. On the other hand, Pt(� | Pt+n(�) = 1) =
Pt(� | ¬�) = 0, a contradiction. So � Pt = Pt+n → Pt+n(�) = 1. By Necessitation,
� Pt(Pt =Pt+n → Pt+n(�) = 1) = 1. So� Pt(Pt =Pt+n) = 1 → Pt(Pt+n(�) = 1)) = 1.
But Pt(Pt+n(�) = 1) = 1 implies that 1 = Pt(� | Pt+n(�) = 1) = Pt(� | ¬�) = 0, a
contradiction. So � Pt(Pt+n(�) = 1)) < 1, which means � Pt(Pt = Pt+n) < 1.

Van Fraassen’s principle V has been criticised anyway. Some drug might make one
confident that one can fly; if I think I’ll take this drug tomorrow, my present conditional
confidence that I’ll be able to fly tomorrow, given that tomorrow I’ll be quite sure that
I can fly, should not be very high [4, p. 321]. But RV has been taken by many as a
law of rational subjective probability. Van Fraassen, for instance, refers to RV as the
“synchronic—I should think, uncontroversial— part of [V]” [24, p. 19]. The point of
Proposition 6 is that the inconsistency of RV can be proved from Kolmogorov principles
for finitely additive probability in a type-free setting.
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