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Abstract Kripke’s notion of groundedness plays a central role in many responses to
the semantic paradoxes. Can the notion of groundedness be brought to bear on the
paradoxes that arise in connection with abstraction principles? We explore a version
of grounded abstraction whereby term models are built up in a ‘grounded’ man-
ner. The results are mixed. Our method solves a problem concerning circularity and
yields a ‘grounded’ model for the predicative theory based on Frege’s Basic Law V.
However, the method is poorly behaved unless the background second-order logic is
predicative.
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1 Introduction

There has recently been a lot of interest in abstraction principles, which are principles
of the form:

§a = §B < O(a, f), ey
where the variables ‘@’ and ‘B’ range over items of a certain sort, ‘§’ is an operator
taking items of this sort to objects, and ‘® («, B)’ expresses an equivalence relation on
items of this sort.! When the variables are of second order, we will follow Frege and

ISee for instance [1, 5, 8].
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speak of them as ranging over concepts. Two famous examples are Hume’s Principle
and Frege’s Basic Law V:
#F =#G < F~ G (HPo)

eF =¢eG < Vx(Fx < Gx) Vo)

(The subscript ‘0’ will be explained shortly.) The right-hand side of Hume’s Prin-
ciple abbreviates the claim that the concepts F and G are equinumerous; that is,
that there is a relation that one-to-one correlates the F's and the Gs. This princi-
ple plays a key role in Fregean approaches to arithmetic. For Hume’s Principle is
consistent and suffices, when combined with second-order logic and some natural
definitions, to derive all of second-order Dedekind-Peano Arithmetic. But Basic Law
V, which is concerned with extensions and the equivalence relation of coextensional-
ity, is inconsistent against the background of any second-order logic that contains at
least H} -comprehension [1, p. 47].

This raises the question of what forms of abstraction are acceptable. We would
like to draw a well motivated line between acceptable and unacceptable forms of
abstraction. This is often known as the bad company problem.> We wish to explore
a response to this problem that has received less attention than it deserves.? Kripke’s
notion of groundedness is rightly celebrated as a response to the semantic paradoxes.
Can an analogous notion of groundedness be articulated and used to provide an
account of acceptable abstraction?

The purpose of this article is to explore a particular explication of the idea of
grounded abstraction that naturally comes to mind when taking one’s inspiration
from Kripke. As is well known, Kripke starts with the set of (Godel numbers of) sen-
tences of the language of arithmetic supplemented with a truth predicate. He then
builds up larger and larger extensions and anti-extensions of the truth-predicate in a
grounded manner. Transposed to the case of abstraction, this suggests that we start
with a set T of closed abstraction terms, that is, singular terms of the form §x.¢ (x)
with no free variables. We then endeavor to build up an equivalence relation R on
T in a ‘grounded’ manner such that the R-equivalence classes of T yield a model
for the relevant abstraction principle and some fragment of second-order logic. Since
any closed abstraction term is to denote its own R-equivalence class in the resulting
model, this model can thus be regarded as a ferm model for the relevant abstraction
principle.

The results of our investigation are mixed. The method that we develop addresses
an important concern about circularity and yields a ‘grounded’ model for the pred-
icative theory based on Frege’s Basic Law V (in what we will shortly call its
axiomatic version). Although this theory is already known to be consistent,* our
construction establishes the stronger claim that the theory has a natural model—
in a sense we make precise. Other results are limitative. Our explication of the
idea of groundedness turns out to be poorly behaved unless the background second-
order logic is predicative. This limitation is not noted in earlier studies of this

2See [18] for an overview.
3However, there has recently been some enthusiasm for the approach: see [13, 15, 17].
4

See [9].
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approach to grounded abstraction, such as [13]. This severely limits the strength of
the abstractionist theories that can be justified in this way. In particular, anyone seek-
ing an account of grounded abstraction that is strong enough to justify a substantial
amount of classical mathematics will need an alternative explication of the idea of
groundedness.’

A side benefit of our investigation has to do with Frege himself. As several com-
mentators have observed, Frege appears to rely on something like term models in
some important arguments.® The primary example is Grundgesetze 1, §§29-31, where
Frege attempts to prove that every well-formed expression of his language has a
unique denotation, using ideas related to his famous ‘context principle’. Since he
took sentences to denote truth-values, this would ensure that his system in consistent.
So by Russell’s paradox, we know that the proof must be flawed. Can any aspects of
Frege’s argumentative strategy be salvaged? We shed light on this question by deter-
mining the potential for the term model approach. In particular, we prove that [2]’s
very negative assessment of its potential is only partially right.

Since we wish to consider term models, it will be convenient to consider abstrac-
tion principles of a schematic rather than an axiomatic form. The axiomatic form is
given by Eq. 1 above. The schematic form is as follows:

§x.0(x) = §x.¥ (x) « @[$/F, ¥/ G], 2

where § is a variable-binding operator taking formulas to singular terms, and where
the right-hand side is the formula that results from ® (F, G) when any occurrences of
F't and Gt, for any first-order term ¢, are (simultaneously) replaced by corresponding
occurrences of the formulas ¢ () and v (¢) respectively. For instance, the schematic
form of Basic Law V is:

ex.¢(x) = ex. Y (x) < Vx(¢(x) < ¥ (x)). V)

As a notational convention, we will add a subscript ‘0’ to indicate that an abstraction
principle is axiomatic rather than schematic. Clearly, a schematic principle (2) is at
least as strong as the corresponding axiomatic one (1), as is seen by letting ¢ (x)
and ¥ (x) be Fx and Gx respectively. Conversely, Eq. 1 allows us to reproduce all
instances of Eq. 2 whose formulas ¢ (x) and v (x) are allowed to figure in the second-
order comprehension axioms. However, when full impredicative comprehension isn’t
assumed, the axiomatic principle (1) will be weaker than the schematic one (2).”
The article is organized as follows. We begin by clarifying the idea of term mod-
els for abstraction principles (Section 2). The construction of such term models is
threatened by two different forms of impredicativity (Section 3). Our method of
groundedness nicely overcomes one of the threats (Section 4). We illustrate the value
of this discovery by constructing a natural model for the axiomatic version of Basic
Law V (but not the schematic version) and predicative second-order logic (Section 5).
Unfortunately, the other threat from impredicativity remains stubborn and means

5See e.g. [19] and [20] for two attempts to do this.

0See e.g. [2, esp. ch. 17, 10, 11, ch.s 3 and 5, 16].

TThe situation is analogous to that of the two theories ACA and ACA( of second-order arithmetic, from
which our notation is inspired.
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that our method works only when the background second-order logic is predicative
(Section 6).

2 Term Models for Abstraction Principles

We now examine how term models for abstraction principles can be constructed.
As mentioned, the idea is to identify an appropriate set 7 of abstraction terms and
build up, in a ‘grounded’ manner, an equivalence relation R on 7' such that the set
of R-equivalence classes of members of 7' gives rise to a term model of the relevant
abstraction principle. The task of this section is to explain the general idea of such
term models; in particular, to identity some constraints on our choice of first- and
second-order domains.

2.1 How to Work Modulo an Equivalence

The idea of working modulo an equivalence relation R can be implemented in two
different ways. One option is to let the first-order domain be the set of R-equivalence
classes of T and interpret the identity predicate ‘=" as real identity on this set. On this
implementation, each abstraction term in 7" will denote its own R-equivalence class.
Another option is to let the first-order domain be the term set T itself and instead
interpret the identity predicate ‘=" by means of R. On this option, each abstraction
term in 7 will denote itself, while an identity based on terms from 7 will be deemed
true iff these terms are R-equivalent. Although the two implementations are math-
ematically equivalent, many of our constructions are smoother in the context of the
second implementation, which we therefore adopt. (Of course, any of the resulting
structures will have an associated quotient structure.) Henceforth, our term set will
therefore be referred to as ‘D;’, which frees up the letter ‘7T for other uses.

In order to ensure that Leibniz’s Law remains valid, we need to ensure that R
satisfies the following closure condition:

(*x) Lett, t, and T be closed abstraction terms, and let 7’ = T[¢'/¢] be the result
of substituting ¢’ for each occurrence of # in T. Then, if {(r,#’) € R, then
(T,T') € R.

For now, we simply assume as given an equivalence relation R satisfying (x) and on
this basis examine how to construct a structure for the relevant language. In Section 4,
we will examine how such an R can be built up such that the resulting structure is a
model for the desired abstraction principle.

2.2 The Need to Consider Open Abstraction Terms

There is little point in letting the term set D consist of anything other than closed
abstraction terms, that is, abstraction terms with no free variables. For in the term
models that we will examine, each term in D is to denote itself. But we do not want
an open abstraction term to denote itself: an open term should only be assigned a
denotation relative to an assignment to its free variables.

@ Springer
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However, if our construction is to result in a model for an abstraction princi-
ple, it will nevertheless have to involve open abstraction terms, even though these
are not present in D;. The reason is that our language permits quantification into
abstraction terms. Indeed, such quantification plays a key role in standard uses of
abstraction principles. Consider for instance the Fregean definition of the notion of
a number:

N(x) < AF(x =#u.Fu) 3)

This makes crucial use of second-order quantification into the open abstraction term
#u.Fu. Such quantification is also required in the definition of the relation P of
immediate predecession, which plays a crucial role in so-called Frege arithmetic (that
is, arithmetic based on Hume’s Principle and second-order logic):

P(x,y) < dAFAw[Fw AN x=#u(Fu Au#w) N y=#u.Fu] 4)
2.3 The Interpretation of Open Abstraction Terms

As explained, each closed abstraction term from D; is to denote itself. How are
we to handle the open abstraction terms, which, as we have seen, also need to be
considered? As a warm-up, consider the case where the only free variables are of
first order. Assume, for instance, that the term ¢ is §u.¢(u, vy, ..., v,), with all
free variables displayed. Let ¢ be a variable assignment that assigns to each vari-
able v; a closed term ¢;. Relative to o, the term ¢ can be taken to denote the term
§u.¢p(u,ty,...,t,). So we need to ensure that this term is an element of D;.

What about free variables of second order? We would like these too to be be
eliminable once an assignment ¢ has been specified. We will now see that this
requirement constrains our choice of a second-order domain. To keep things sim-
ple, we consider only the case where the second-order parameters are monadic. The
general case is analogous.

A natural option is to let every element X of the second-order domain D, be rep-
resented by an object language formula i with a unique free variable of first order,
with the understanding that X is to apply to t € Dy justin case v is satisfied when ¢ is
assigned to its unique free variable. This approach makes available a natural interpre-
tation of the abstraction operator § relative to any variable assignment . To see this,
consider an open abstraction term ¢ of the form §u.¢(u, vy, ..., vy, F1, ..., Fy).
The assignment o will ascribe to each second-order variable F; an object language
formula v; with one free variable. Relative to this assignment we can rewrite ¢ by
replacing each predication of the form Fjs, where s is any first-order term, with
¥ (s). When combined with the treatment of first-order parameters explained above,
this will allow every open abstraction term ¢ to be rewritten, relative to an assign-
ment o, as a closed abstraction term ¢’. Relative to o, we can therefore let ¢ denote
the closed term ¢’. Of course, we need to ensure that ¢’ is an element of D and will
return to this at the end of the next subsection.

An alternative option, one might have thought, is to let the second-order domain
D, be the powerset of D;. But on this approach, how are we to evaluate an open
abstraction term ¢ relative to an assignment? Consider the general case where ¢
has free variables of both first and second order. Assume that ¢ is of the form
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Su.p(u, vy, ..., vm, Fi, ..., F,), with all free variables displayed. Then each vari-
able F; is assigned a set S; from D;. Now there is no systematic way to reduce the
term 7, relative to this assignment, to a term in D1.% Accordingly, on this approach
we are unable to eliminate second-order parameters.

We conclude that, in order to be able to interpret open abstraction terms, the
second-order domain D, must consist of object language formulas with an appropri-
ate number of free variables.'?

2.4 The First- and Second-Order Domains

A further constraint on D; is that we must be able to define the satisfaction of an
atomic predication V—where V is a second-order variable and ¢ is any first-order
term—relative to the assignment of any formula from D5 to V. The crafting of such
a definition turns out to be rather delicate. Two different options will be explored in
Sections 3.2 and 6. The former option requires a restriction to predicative second-
order logic; the latter promises to avoid this restriction but is unsuccessful. For
present purposes, it suffices simply to assume that a set of open formulas have been
provided as our second-order domain D, and that a definition has been provided of
what it is for an atomic predication of the mentioned sort to be satisfied by a member
of Dj.

We also need to decide which abstraction terms are to populate the first-order
domain D;. If we are studying a schematic abstraction principle, then D; will consist
of all the closed abstraction terms in the relevant language. Clearly, this choice of
D; will allow the reductions involved in our interpretation of an open abstraction
term relative to an assignment to go through. If instead we are studying an axiomatic
abstraction principle, then it is appropriate to let D consist of all closed terms of
the form §u.¢(u), where ¢ is in D;. For the kinds of choices of D, that we will
consider—namely, all predicative formulas or all formulas whatsoever—it is easy

8Note that the argument is independent of the particular choice of Dy. For any set D of abstraction terms,
the second-order parameters are chosen from the set ¢ (7'), which means there will be no natural way of
eliminating such parameters from a given abstraction term # to yield a term in Dj.

9We are here ignoring two options which strike us as desperate and unattractive. One is to exclude from
our language all abstraction terms with free second-order variables. This would enable us to let the term
set D be the set of abstraction terms thus restricted, and let Dy be the powerset of D;. However, this
would come at the cost of sacrificing some of the core applications of abstraction, which, as we observed
in Section 2.2, require second-order quantification into the scope of abstraction operators.

A second desperate option is to operate with rwo (monadic) second-order domains: a narrower one,
corresponding to the first of the above options, and a wider one, corresponding to the second option.
Assume the language contains two sets of second-order variables. Then it is possible to let one set of
second-order variables range only over the narrower domain and admit quantification with respect to such
variables into the scope of abstraction operators, while not admitting this for the second set of second-
order variables, which range over the wider domain. See [1, p. 119] for discussion of a closely related idea.
However, this option strikes us as contrived and not much better than first constructing a term model and
then adding a layer of second-order quantification ‘by hand’.
10This limitation is not noted in earlier studies of grounded abstraction, such as [13].
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to verify that D; again allows the reductions involved in the interpretation of open
abstraction terms to go through.

2.5 Putting Everything Together

Let’s now put all the components together to define a Tarskian notion of satisfac-
tion in the term model based on a set D; of abstraction terms and an equivalence
relation R that satisfies the closure condition (*).

The first-order domain is the set of abstraction terms Dj.
The second-order domain D is a set of first-order formulas with an appropriate
number of free (first-order) variables.

e We have explained how an abstraction term ¢ is to be interpreted relative to a
variable assignment o by showing how ¢, relative to o, can be reduced to a term
in D;.
The identity predicate is interpreted by means of R.
We have assumed as given a definition of satisfaction of atomic predications of
the form V1, ..., t, relative to a variable assignment o'.

e The truth-functional connectives and the first- and second-order quantifiers are
interpreted in the standard Tarskian way.

We write M R] for the resulting structure and M[R] =, ¢ for the notion of satisfac-
tion of a formula ¢ relative to a variable assignment o. As soon as the underspecified
components have been fully described, we will verify that M[R] is indeed a model
for a fragment of second-order logic. Notice that our notation leaves the term set D
implicit. The reason is that D will mostly be fixed, whereas the equivalence relation
R will vary.

2.6 Term Models Relative to an Arbitrary Base Model

The model construction outlined above can also be carried out relative to an arbi-
trary base model. Consider a base model M of some first-order base language L.
Assume we wish to abstract on M with respect to an abstraction principle (2). Let
L be the language that results from L by adding the abstraction operator § and, if
Eq. 2 is a second-order principle, also second-order resources.

In this case, it makes sense to allow the abstraction terms to contain arbitrary
parameters from the domain My of Mg. We do this by letting the first-order domain
D1 be the result of adding to M all ordered pairs of the form (§u.¢ (u, v), b), where
the first coordinate is an abstraction term proper and the second coordinate is a string
of parameters from M) to be assigned to the string v of non-designated free variables
that occur in the abstraction term. Our goal is now to build up an equivalence relation
R on D (which had better not identify any of the elements of M). As before, we let
the second-order domain D, consist of first-order formulas of £ with a designated
free variable; however, this time we allow the formula to contain additional parame-
ters with values in My, to be coded by means of ordered pairs as above. It is easy to
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verify that the other definitions listed in Section 2.5 can be adapted to this modified
setting.

3 Concerns About Impredicativity

According to [2, ch. 17], impredicativity is ‘the serpent’ that entered Frege’s par-
adise. It is this serpent that undermined Frege’s attempt to construct a term model for
Basic Law V, which in turn was meant to ensure the reference of its abstraction terms
via an invocation of the ‘context principle’. In this section we show that impredica-
tivity is indeed the source of the main threats to the construction of term models for
abstraction principles. However, the picture we defend is both more nuanced than
Dummett’s and somewhat less bleak.

3.1 Two Kinds of Impredicativity

We begin by distinguishing between two different kinds of impredicativity, each of
which will be shown to pose a threat to our desired construction. One kind pertains
to the background second-order logic. Consider the second-order comprehension
scheme:

ARVxy ... Vxu[Rx1...Xp < ¢ (X1, ..., Xn)], (Comp)

where ¢ may contain free variables of first and second order that are not displayed
(but not, of course, R). As usual, an instance of this scheme is said to be predicative
provided that the formula ¢ contains no bound second-order variables; otherwise, the
instance is said to be impredicative.

Another kind of impredicativity pertains to the abstraction principles themselves.
Say that an abstraction principle is impredicative if the singular terms on its left-hand
side purport to denote objects that are included in the range of some quantifier occur-
ring on its right-hand side; otherwise say that it is predicative. For instance, (HP) and
(V) are impredicative because their right-hand sides quantify over all objects, includ-
ing the ones referred to on the left-hand side. By contrast, the abstraction principle
for directions is predicative:

d(l) =d(l) < i || 2 (&)

For the variables /1 and /; range only over lines, not over directions.
3.2 The Problem of Impredicative Comprehension

The question of how to define the satisfaction of an atomic predication of the form
Vi, ..., t, in a term model relative to an assignment o came up in Section 2.4 but
was deferred. We now develop one answer. (Another answer will be discussed in
Section 6 and found wanting.) We focus on the monadic case. The polyadic case is
analogous. So assume o assigns to the monadic second-order variable V the formula

v (x).
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By far the most natural approach is to reduce the question of whether

MIR] =, Vi (6)
to what we hope will be a simpler question of whether
MIR] =6 ¥ (0). ™

However, if ¢ contains bound second-order variables, then the latter question will be
just as complex as the former, which means that the envisaged satisfaction clause for
predications of the form V¢ is not guaranteed to be well-defined.

If, on the other hand, we restrict the second-order domain to formulas that are
predicative (in the usual sense of containing no bound second-order variables), then
the envisaged reduction will succeed. To see this, let the second-order domain D;
consist of all and only first-order formulas ¥ of the object language with a unique
free variable of first order. Then every question of the form Eq. 6 reduces to a question
of the form Eq. 7, without the latter ever leading back to the former.

This ensures that all permissible questions receive answers. But are the answers
the right ones? Assume ¢ and ¢’ are R-equivalent. We need to ensure that the two
associated questions of the form Eq. 6 receive the same answer. The following propo-
sition shows that this—and more—is ensured by our closure condition (x) from

p. 5.

Proposition 1 Let D; consist of all first-order formulas with one or more free vari-
ables, D1 be a set of closed abstraction terms that is closed under the two reduction
procedures involved in the interpretation of open terms, and R be an equivalence
relation on D that respects (x). Then M[R] is a model of predicative second-order
logic.

Proof The only part of the claim that is not immediate from the definitions
summarized in Section 2.5 is that M[R] satisfies Leibniz’s Law and predicative
second-order comprehension. For the former, let ¢ and ¢’ be R-equivalent members
of D and ¢ any formula. We need to show that for any assignment o, we have:

MIR] o ¢ < ¢[t'/1] @)

We prove this claim by induction on the syntactic complexity of ¢. Assume first
that ¢ is atomic. There are just two cases to consider. One is that ¢ is an identity.
If ¢ flanks the identity predicate, then Eq. 8 is immediate from the fact that R is an
equivalence relation. If instead ¢ occurs as a subterm of a complex term that flanks the
identity predicate, then we additionally need to invoke (). The other case is that ¢ is
a predication of the form Vs, ..., s,, where V is a second-order variable. To handle
this case, it suffices to show that Eq. 8 holds for any first-order formula ¢. We show
this by an inner induction on the syntactic complexity of ¢. The only base cases are
now the two kinds of identity contexts that we considered above. And the induction
steps involve preservation of Eq. 8 under negation, disjunction and quantification, all
of which are straightforward. This completes the inner induction. Returning to the
outer induction, all that remains is to prove the induction steps. But these are the
same as in the inner induction. This completes the outer induction as well.
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Next, let ¢ be a predicative formula, possibly with parameters of first and second
order. Relative to the variable assignment o, these parameters can be replaced by
abstraction terms or formulas, as described in Section 2.3. Relative to o, the formula
¢ can thus be rewritten as a formula ¢ in D;, which establishes that comprehension
on ¢ relative to o is permitted.

By contrast, the impredicative second-order comprehension axioms are not guar-
anteed to hold. This restriction to theories with no more than predicative comprehen-
sion is a serious limitation. For instance, (HP) plus predicative second-order logic
yields only Robinson arithmetic Q, rather than full second-order Peano-Dedekind
arithmetic. And although (V) plus predicative second-order logic has the virtue of
being consistent, it is known to be very weak.!! This raises the question of whether a
less restrictive approach to the second-order domain is possible. We will return to this
question in Section 6, where we will defend a negative answer. Until then, we will
rely on the natural approach outlined above and accept the predicativity restrictions
to which this gives rise.

3.3 Are Impredicative Abstraction Principles Viciously Circular?

We now turn to the equivalence relation R on the term set D1, which has so far simply
been assumed. The idea is that R should hold between two closed abstraction terms
just in case they are to be regarded as co-denoting. Does an abstraction principle
enable us to build up a suitable equivalence relation R?

Attempts to do so face a major obstacle, which is articulated by Dummett in a
discussion of a closely related attempt of Frege’s in Grundgesetze 1, §§29-31.2 The
abstraction principle in question is (V).

Frege [...] proceeds to lay down the condition for the truth of a statement of
identity between value-ranges under the guise of fixing the reference of the
abstraction operator. That will depend upon the truth of a universally quan-
tified statement [...]. The truth-value of that statement will in turn depend
upon the application of some complex predicate to every element of the
domain, and hence, in effect, upon the truth-value of every result of inserting
a value-range term in its argument-place. Since these statements are likely to
involve further identity-statements between value-range terms of unbounded
complexity, Frege’s stipulations are not well founded: the truth-value of an
identity-statement cannot be construed as depending only on the references
of less complex terms or on the truth-values of less complex sentences.
[2, pp. 221-222]

A bit of explication won’t hurt. The truth-value of an identity statement ex.¢(x) =
ex. ¥ (x) is supposed to be fixed by the truth-value of the quantified statement
Vx(¢(x) < ¥(x)). But the truth-value of the latter statement will depend on the

11171 proves the theory to be exactly as strong as Q.
12 A similar worry is expressed by [10, pp. 460-61] and [5, p. 88].
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application of the open formula (or ‘complex predicate’) ¢ (x) < ¥ (x) to every
value-range term in the language, including ones of complexity greater than the
value-range terms flanking the original identity statement.!? Indeed, since the for-
mulas ¢ (x) and v (x) may contain the identity predicate, we may be led to identity
statements as complex as, or even identical with, the one with which we started.!4
Frege’s attempt to assign truth-values is therefore not well-founded.

What went wrong? It is important to realize that the problem is entirely indepen-
dent of the impredicativity of the background second-order logic. The complications
just canvassed arise irrespective of whether impredicative second-order comprehen-
sion is allowed. Rather, the problem is that the truth-condition of a quantified formula
Vx ¢(x) obviously depends on the range of the quantifier. But in a term model, this
range consists of equivalence classes of abstraction terms that are deemed to co-
refer and will thus depend on the truth-conditions of identity statements between
two abstraction terms. Yet the converse dependency seems to obtain as well. For the
truth-conditions of such identity statements are to be determined via (2) and will
thus depend on the truth-conditions of various quantified formulas. So there seems
to be a circular relation of dependency: the truth-conditions of quantified formulas
depend on those of identity statements, which in turn depend on the truth-conditions
of quantified formulas. Let’s call this the circularity worry.

In fact, the converse dependency just mentioned arises only for impredica-
tive abstraction principles. It is only when the right-hand side of an abstraction
principle quantifies over the objects referred to on its left-hand side that the truth-
conditions for identity statements will depend on the truth-conditions for formulas
that quantify over these very objects. (We are here assuming that the right-hand
side of the abstraction principle does not contain the abstraction operator §. This
assumption will henceforth be left implicit.) Unfortunately, the fact that pred-
icative abstraction principles avoid the circularity worry provides little solace.
For it is straightforward to construct models for predicative abstraction princi-
ples.!> It is only for the mathematically and foundationally more interesting class
of impredicative second-order abstraction principles that it is hard to construct
models.

In short, when an abstraction principle is predicative, the search for term mod-
els avoids the circularity worry but is not needed. And when an abstraction principle
is impredicative, this search promises to be of real value but cannot avoid the cir-
cularity worry. Our only hope is thus to face the worry head on and show how the
circular relation of dependency need not be vicious. Thankfully, we will now see

3For instance, the ‘complex predicate’ has to be applied to the terms su(u = ex.¢(x)) and su(u =
ex. P (x)).

14For instance, this situation will arise if ¢ (x) is of the form JuTv(u = v A 0(u, v, x)).

15Consider for instance the predicative version of Basic Law V formulated in a two-sorted language with
one sort for ordinary objects and another sort reserved for extensions, where the abstraction terms on
the left-hand side belong to the latter sort, while the right-hand side belongs entirely to the former. To
construct a model, start with any domain D of ordinary objects, let the second-order quantifiers range over
the powerset of D, let this powerset also be the domain of extensions, and finally interpret the operator &
as the identity function.
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how a method of groundedness enables us to overcome the circularity observed by
Dummett and others. This is a partial vindication of the strategy employed by Frege
in Grundgesetze 1, §§29-31, despite the undeniable problems that Frege’s argument
encounters. In particular, our method delivers, in a perfectly grounded way, a term
model of the sort sought in [2, p. 221], thus disproving Dummett’s claim that Frege’s
strategy is fundamentally flawed.

4 How Groundedness Overcomes the Circularity Worry

Previous investigations show that there are indeed cases where the circularity worry
can be overcome. One example concerns Davidson’s criterion of identity for events,
which says that two events are identical just in case they share the same causal rela-
tions to any third event. The impredicativity of this criterion gives rise to a similar
circularity worry, which [12] shows not necessarily to be vicious. We also draw
inspiration from [13].

Our strategy is to build up approximations to the desired equivalence relation in
stages. Throughout, we will assume that D is a set of closed abstraction terms that
is closed under the two reduction procedures involved in the interpretation of open
terms.

Definition 1 (Approximations) Let an approximation be an ordered pair £ =
(E™*, E7) of sets of abstraction terms from D; such that:

(i) ET is an equivalence relation
(ii) ET is disjoint from E~

One approximation E is extended by another F (in symbols: E C F)iff E¥Y C F+
and E- C F~.

Intuitively, ET represents the pairs of abstraction terms that have been deter-
mined as equivalent, and £, the set of pairs of terms that have been determined as
inequivalent.

Recall the closure condition that we need to impose on an equivalence relation R
in order to ensure that M[R] respects Leibniz’s Law:

(x) Lett, t, and T be closed abstraction terms, and let 7’ = T[¢'/¢] be the result
of substituting ¢ for each occurrence of ¢ in T. Then, if (¢,#') € R, then
(T,T') € R.

Definition 2 (Admissible extensions) An dyadic relation R on D is an admissible

extension of an approximation E (in symbols:'® E T R) iff the following conditions
are met.

16Note that the symbol ‘C’ is being used ambiguously for the relation between one approximation and
another that extends it, and for the relation between an approximation and an admissible refinement. In
practice, this will cause no confusion.
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(i) R is an equivalence relation
(i) R respects (%)
(iii) R respects all the positive and negative information encoded in E, in the sense
that EF CRand ETNR =@

We next define an operation D that takes us from one approximation E to a better
one. The definition uses our Tarskian notion of satisfaction from Section 2.5. Because
the abstraction terms involved are closed, we can suppress the assignment o.

Definition 3 Let D (E) be the set of pairs (§x.¢1, §x.¢») of elements of D; such
that:

for every admissible extension R 3 E, we have M[R] = ®[¢/F, ¢2/G].

Let D™ (E) be the set of ordered pairs (§x.¢1(x), §x.¢2(x)) of abstraction terms from
D such that M[R] = —®[¢/F, ¢»/G] for any admissible extension R of E. Let
D(E) = (D*(E), D™ (E)).

That is, we let DT (E) (alternatively: D~ (E)) consist of the ordered pairs of
abstraction terms such that, for any choice of admissible extension R of E, these
terms are identified (alternatively: distinguished) by the criterion of identity ® in the
term model based on D and R.

Lemma 1
(a) If E is an approximation, then so is D(E).
(b) D is monotone with respect to the ordering C.

Proof For (a), it is straightforward to show that DV (E) is an equivalence rela-
tion and that DT (E) is disjoint from D~ (E). For (b), consider an approximation
E = (ET, E™) that is extended by another approximation F = (F*, F~). Then
an equivalence relation R is an admissible extension of F only if it is an admis-
sible extension of E. It follows that D(E) is extended by D(F), i.e. that D is
monotone.

We can now describe the method of groundedness. We start with the empty
approximation E( given by EO+ = E, = &. Lemma 1 allows us to iterate appli-
cations of the operation D by defining Eo 4, = (D1 (Ey), D™ (Ey)) and E; =
(U, < E;‘, U, <» E,) for limit ordinals 1. As usual, the monotonicity of D and car-
dinality considerations ensure that we eventually reach a fixed point Eg = Egy|.
We say that E; and Eg consist of all the grounded facts about identity and distinct-
ness. These facts have been established in a natural and conclusive way, despite the
circularity worry.

Here it is easy to lose sight of an important fact. Although each of the admissi-
ble extensions that we consider in the course of the above procedure satisfies (*),
it is not the case that each of the EJ does. Consider the case of Basic Law
V, and let ¢ and ¢’ be the terms su(u = u) and su(u = u Vv u = u),
respectively. Then M [E}] thinks # = ¢ but eu(u = ) # eu(u = t'), in
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violation of (x). Thankfully, such pathologies are avoided when « is a fixed
point.

Proposition 2 Assume that B is a fixed point. Then E; satisfies the closure
condition (x).

Proof Assume {t,t') € E; Let T € Dy and T' = T[t'/t]. We wish to show

(T, T € E; Clearly, there is a formula ¢ such that T = §u.¢. We thus also have
T' = §u.¢’, where ¢’ abbreviates ¢[¢'/1]. Since B is a fixed point, it suffices to show
that, for every admissible extension R of Eg, we have:

MIR] = @[¢/F, ¢'/G] ©)

Since @ is an equivalence relation, M[R] obviously thinks that ¢ is ®-equivalent
with itself. Hence Eq. 9 follows by an application of Leibniz’s Law, which is available
by Proposition 1.

To what extent does the method of groundedness succeed in resolving the circu-
larity problem? That is, under what conditions does our least fixed point Eg give rise
to a term model for the abstraction principle (2) in the context of predicative second-
order logic (which is what we have restricted ourselves to, at least for the time being)?
The answer turns out to be largely positive. The first step towards seeing this is the
following proposition:

Proposition 3 Assume Eg is a fixed point such that E; @) EE = Dy x Di. Then

M[E;] is a model of each instance of Eq. 2 where the identity sign on the left-hand
side is flanked by terms from D;.

Proof Assume first that §x.¢p = §x.¢ is true in the model M [E;] Then the pair

(§x.¢, §x.¥) made it into E; at some « < B. This means that, for any admissible
extension R of E,, the identity criterion ®[¢/F, ¥/ G] is true in the model M[R].
By Proposition 2, one such admissible extension is E; itself, whence it follows that

®[p/F, ¥/G]is true in M [E;], as desired. Assume next that §x.¢p = §x. is false
in the model M [E;] Then the pair (§x.¢, §x.¥) made it into E, at some o < S,
and analogous reasoning establishes that ®[¢/F, ¥/ G] is false in M [E;]

If, on the other hand, Ef U E; C T x T, then we get only a “partial model’ for
the mentioned class of instances of Eq. 2; that is, a model where some identities are
neither deemed true (by the ordered pair of the terms flanking the identity sign being
in E;) nor false (by this pair being in Eg).

The next step is to determine under what conditions the assumption of Proposition
3 is true. A particularly interesting—and demanding—test case is predicative Frege
Theory, that is, the theory based on Basic Law V and predicative second-order logic.
We show in the next section that our method of groundedness gives rise to a natural
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model for the axiomatic version of predicative Frege Theory. So here the circularity
worry has been addressed in a complete and satisfactory way.

5 A Natural Model for Predicative Frege Theory

We now show that our method of groundedness does indeed yield a natural model
for the axiomatic version of predicative Frege Theory, that is, the predicative theory
whose sole non-logical axiom is (Vo), rather than the axiom scheme (V).!7 Readers
who are willing to take our claim on faith may therefore skim this section or even
skip ahead to the next section.

5.1 The Languages and Theories

Although our target is the theory based on Eq. Vo, it will be expedient to do some of
the constructions with a variable-binding operator—as in ex.¢—rather than an oper-
ator taking second-order variables to singular terms— as in € F. The constructions
involving the former operator will then be put to use to prove results about the latter.

Let Lo be the language of monadic second-order logic with identity whose sole
non-logical expression is an operator ¢ taking monadic second-order variables to
first-order terms. Let £ be the same language except that the non-logical expression &
is a variable-binding operator. Notice in particular that, unlike earlier parts of the
article, we are here restricting ourselves to monadic second-order logic.

Let PV be the Ly-theory with predicative second-order comprehension and the
sole non-logical axiom (Vo). Let PV be the £-theory with predicative second-order
comprehension and the axiom scheme (V).

5.2 The Existence of a Natural Model for PV

We define a set D, of first-order formulas of £ and a set D of abstraction terms from
L by simultaneous recursion as follows. Let D; contain every first-order formula ¢
from £ with x as its only free variable and all of whose abstraction terms are in Dj.
Let D; contain the abstraction term ex.¢p whenever ¢ is in D;. Notice that every
abstraction term in D is closed, since the single free variable of ¢ is bound by the
operator ex. This will become important below.

Our strategy is to let D; serve as the second-order domain, and Dy, as the term
set on which we build up an equivalence relation E by means of our groundedness
procedure. Our first main result is that this strategy works.

Theorem 1 The groundedness procedure applied to the term set D and the second-
order domain D, yields of model for PV.

17 As already stated, we believe this is equivalent to the example discussed in [2, p. 221]. It might be
objected that Dummett is concerned with first-order Frege theory. But there is no real difference, as can
be seen by considering the term sets defined in Section 5.2.
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The proof of the theorem relies on a lemma, which we state now and prove later.

Lemma 2 Each identity question t| = t, involving terms from Dy is settled after
finitely many steps. That is, there is an n such that (t, tp) is either in E; orin E,, .

Proof of Theorem 1 By Lemma 2, the groundedness procedure reaches a fixed point
after @ many steps. So by Proposition 2, E} satisfies (x). So by Proposition 1,
M [E}] is a model of predicative second-order logic.

We interpret ¢V, relative to a variable assignment o, as the term eu.¢, where
o (V) = ¢. What remains is now only to show is that Eq. Vo is true in our model.
Consider an instance

eF =¢G < VYx(Fx < Gx),
and let o be an assignment. Assume o (F) = ¢ and o (G) = . We must show that
M[E}] Eex.¢ = ex.yy < Vx(¢ < ).

This follows from Proposition 3 and the fact that Lemma 2 ensures E} U E, =
Dy x Dq.

5.3 Proving Lemma 2

We now state and prove some further lemmas, which will be useful in our proof of
Lemma 2.

Lemma 3 For each natural number n, PV proves the standard first-order formaliza-
tion of the claim that there are at least n distinct objects.

Proof Consider the sequence of abstraction terms {#;}; <, where to = su(u # u)
and t,+1 = eu(u = t,) for each natural number n. A proof by induction shows that
PV proves t; # t; wheneveri # j. The lemma now follows straightforwardly.

For short, say that a formula is QF if it is quantifier-free. Next we establish a
quantifier-elimination result, which says that first-order formulas that contain only
closed abstraction terms are equivalent to QF formulas.

Lemma 4 Let ¢ be a first-order formula of L all of whose abstraction terms are
closed. Let t1, .. .t, be a list of all the abstraction terms that occur in ¢ and all the
variables with at least one occurrence in ¢ outside the scope of the operator €. Then
there is a QF formula v in L such that:

(@) PV <,

(b) ¥ is a disjunction of conjunctions, each conjunction containing, for each
identity statement containing the t;, either it or its negation, but no other
conjuncts.
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Proof By the Lowenheim-Behmann theorem!8 there is a formula 6, provably equiv-
alent (in pure first-order logic) to ¢, which fits the above description of ¥ except that
it may also contain some additional conjuncts concerning the number of u distinct
from all the #;. These additional conjuncts say either that there are exactly k such u
for some k < n, or that there are at least n such . But by Lemma 3, PV proves the
existence of infinitely many objects. So any one of the additional conjuncts can either
be proved, in which case the additional conjunct itself can be deleted, or disproved,
in which case the whole conjunction of which the additional conjunct is part can be
deleted. This yields the desired .

We observe that Lemma 4 would fail if we allowed quantification into the scope
of the operator ¢ (which of course we would if we considered the schematic version
of Basic Law V). To see this, consider the formula s(x) that says that x is a singleton:
dy(x = eu(u = y)). All QF formulas have finite or cofinite extensions, whereas
there are simple models where s(x) has an extension that is neither finite nor cofinite.

Lemma 5 Let ex.« be a first-order abstraction term from Di. Then there is a QF
formula B from Dy such that ex.c = ex.f is settled positively after finitely many
steps.

Proof We begin by establishing the useful fact that, after m steps, the procedure
recognizes the existence of at least m distinct objects. Consider the sequence {#; }; <o
of abstraction terms from Lemma 3. A proof by induction shows that, foralli < j <
m, t; # t; is established by step m.

Let ex.¢y, ..., ex.¢, be a list of all the abstraction terms that occur in £x.«,
with ¢, = o. We may assume that £x.¢; occurs as a proper part of ex.¢; only
if i < j. Assume ex.¢; is the first term on the list that is not QF. Apply Lemma
4 to ¢; to obtain an equivalent QF formula ; from D,. After a suitably large
finite number m; of steps, the equivalence ¢; <> ; follows by pure first-order
logic and the number of objects established to be distinct by step m;. Thus, by step
m; + 1, the identity ex.¢; = ex.y; will have been established. Substitute the latter
term for the former in the remaining terms ex.¢; 1, ..., £x.¢, and repeat the pro-
cess, starting with ‘Assume ex.¢;’, until the entire list consists of QF terms. The
final item on the list that results in this way gives us the desired ex.8 such that
ex.a = gx.p.

We now define a notion of e-rank, which measures the depth of its nesting of
g-operators. '

18See [1, p. 63].

190ur notion of e-rank is closely related to the notion of rank defined in [22, p. 364]. However, our
definition avoids the problems afflicting the latter ([3, pp. 383—4] and [5, pp. 97-8, fn. 27]) because of the
very limited nature of the term set D; on which our notion is defined: every member of our D is a closed
abstraction term. So although our definition and the theorems which it underpins can be regarded as a
partial vindication of Wright’s project, it is important to realize the severity of the restrictions we impose.
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Definition 4 Let the e-rank of any variable be 0. Let the e-rank of an abstraction
term ex.¢ be n 4 1, where n is the highest e-rank of any term occurring in ¢.

We now return to the proof of Lemma 2, which we postponed above and on which
our main Theorem 1 depends.

Proof of Lemma 2 Recall that the lemma says that each identity question | = #,
involving terms from D; is settled after finitely many steps. By Lemma 5, we may
assume #; and t, to be QF.

We proceed by induction on e-rank. For the base case, assume the terms have
e-rank 1. By Basic Law V, the identity question #; = #; reduces to the new ques-
tion Vx(¢; < ¢2). But since ¢p; and ¢, contain no g-operators and are QF, this
new question is settled already at the outset of our procedure. So the question
t; = tp is settled by stage 1. For the induction step, assume all identity ques-
tions involving terms from D of e-rank < n is settled by our procedure after
finitely many steps. Assume #; and f# have e-rank < n + 1. By Basic Law V,
the identity question f; = f, reduces to the new question Vx(¢; < ¢»), which
involves only e-terms of e-rank < n. The induction hypothesis then ensures us
that there is a natural number N such that all identity questions involving the
e-terms that occur in this new question are settled by stage N. Thus the new
question too is settled by stage N. So the question #; = t, is settled by stage
N+ 1.

Note that the proof relies essentially on the quantifier elimination result from
Lemma 4 , which in turn depends on the restriction to closed abstraction terms.
Thus, it is unlikely that anything like this strategy can be extended to provide a
model for the second-order theory that consists of predicative comprehension and the
schematic version of Basic Law V, because this theory crucially involves first-order
quantification into the scope of the operator €.

5.4 A more Explicit Description of the Model

The previous theorem tells us that the groundedness procedure yields a model but
provides little information about what this model is like. Our next theorem shows
that more precise information about the model can be extracted.

Theorem 2 Consider an abstraction term t from Dy, and let t1,...,t, be the
abstraction terms that occur in t (and thus are also in Dy). Then we can find a
formula \ such that:

® the model from Theorem 1 satisfies t = ex,
e iseitherx =1 V...VX =t, (withx # x as a limit case, where n = 0) or
X #E 1 A... \NXx #t, (with x = x as a limit case, where n = 0).

Proof Assume t = ex.¢. By Lemma 4, ¢ can be rewritten as a disjunc-
tion of conjunctions, each conjunction containing, for each identity statement
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containing the #;, either it or its negation, but no other conjuncts. Let y be
this new formula. Next, we use the fact that all identity statements involv-
ing terms from D; are settled to eliminate all conjuncts from ¥ not contain-
ing x: true conjuncts can be omitted, whereas for every false conjunct we can
instead omit the disjunct in which this conjunct occurs. Let v’ be the resulting
formula.

Let 6 be one of the disjuncts of v’. If 6 contains as conjuncts two or more distinct
identity statements of the form x = ¢, then 8 imposes an impossible condition on
x and the whole disjunct 6 can simply be dropped from v/'. We may thus assume
that each disjunct is either a single identity statement of the form x = ¢t or x = x,
or a conjunction of negated identity statements of these two forms. It is not hard to
see that a disjunction of such formulas can be written in the form described in the
theorem.

Corollary 1 Consider the following construction:

Let Ty be the set of the two terms su(u = u) and su(u # u).
Let T,,41 be the set of all terms of the form eu(u = t; vV ...V u = t) and
eu(u 1 A...ANu # ty), where each t; is an elements ofUi<n Tiandty, ..., t%

is a strictly increasing sequence, in the lexicographic ordering.
o ThenletT =, Ty.

The model for PV that results from the grounding procedure is isomorphic to the
model where T serves as both first- and second-order domain, and where ¢ is
interpreted as the identity mapping.*°

Proof This is immediate from Theorem 2 and the observation that each of the
abstraction terms ¢; is of lower e-rank than ¢. The requirement that 7{, ..., be a
strictly increasing sequence is imposed in order to choose a single value-range term
from each equivalence class of coreferring terms.

In unpublished work, Albert Visser has developed an alternative notion of ‘natu-
ralness’ of models for abstraction principles. His analysis ties the idea of naturalness
to initiality in a category of models and mappings. Somewhat surprisingly, Visser’s
candidate for a natural model of PV is isomorphic to ours. We find it very satisfying

2012, p. 219] sketches a closely related model, which he claims is a model for first-order Frege theory.
We suspect Dummett intended the same model as ours but misdescribed it slightly by defining D;, 4
as ‘the union of D, with the set of all its finite and cofinite subsets’: what we want are sets that are
cofinite relative to the final model, not relative to D,,. If so, then our natural term model, whose exis-
tence Dummett denies on pp. 220-22, turns out to be isomorphic to the very model that he himself
invokes as a purely technical trick in order to prove a consistency result. See also [6] for a discussion
of this sort of construction and its relation to Church-Oswald models of set theory. Finally, the corol-
lary also shows that the model that arises naturally from our application of the groundedness procedure
is very similar to the model employed to prove the consistency of Basic Law V with A:—comprehension
in [21].
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that two independently motivated analyses of ‘naturalness’ should in this way give
the same verdict.

5.5 Some Open Questions

Some consistent ways of going beyond the theory PV are known. First, there is
the theory PV, which is based on the schematic version of Basic Law V, rather
than the axiomatic one, which [9] proves to be consistent. Then, there are the
theories A}-PVO and A}-PV based on A}-comprehension and the axiomatic and
schematic versions of Basic Law V, respectively, and proved to be consistent in
[21] and [4], respectively. We do not know whether there are natural models
of any of these theories. (We are inclined to expect not. If so, this would establish the
philosophically interesting point that not every consistent abstraction-based theory
has a natural model—that is, a model generated by our groundedness procedure—
and thus show our Theorem 1 to go well beyond the known fact that PV is
consistent.) Nor do we know whether our groundedness procedure yields a model for
the schematic version of any other interesting abstraction principles.

6 Beyond Predicative Comprehension?

Two kinds of impredicativity were distinguished in Section 3 and shown to pose a
challenge to the construction of term models for abstraction principles. The challenge
posed by the impredicativity inherent in the abstraction principle itself has received a
satisfying answer in terms of our method of groundedness. As mentioned, however,
this method only works when the second-order logic is predicative. This brings us to
the second challenge, which concerns impredicative second-order logic. The problem
is that the definition of satisfaction of an atomic predication of the form V¢ that we
described in Section 3.2 is only available for predicative second-order logic. Can we
do better?

An attempt to do so, for the special case of Basic Law V, is found in [14
The restriction to predicative comprehension is a result of defining the satisfaction
of V¢ in a model in terms of the satisfaction of ¥ (#) in that model, where ¥ (x) is
the formula assigned to V by the relevant variable assignment. What if we simply
sidestep this reduction and handle the former satisfaction directly? In order to do so,
we need an application relation A C D, x D1 which specifies when a formula from
the second-order domain D; is to count as applying to a term from Dj. We can then
define V't to be satisfied by o in the resulting model iff (o(V), ) € A. Of course,
for the resulting model to count as grounded, the application relation A would have
to be constructed along with the equivalence relation R in a grounded manner. [14]
shows how this can be done.

].21

2l Strictly speaking, [14] operates in a somewhat different setting, namely a first-order language with a two-
place predicate ‘n’, where the intended reading of ‘xny’ is ‘x is a member of the extension y’. However,
it is straightforward to adapt his strategy to our setting. This is what we do in what follows.
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As with our own strategy,?” the alternative strategy can be carried out over an arbi-
trary base model. For simplicity, however, we restrict ourselves to sketching how the
alternative strategy is implemented in pure term models.?*> Consider the language of
pure second-order logic with identity (=) and a class abstraction symbol (g). Models
for this language are then constructed as follows. As before, we start with a domain
D that contains as elements all abstraction terms of the form ex.¢. In every model,
an abstraction term denotes itself. Models also include an interpretation E for = and
the mentioned application relation A. In fact, A and E uniquely determine the model
(because D is held fixed), so a model can be denoted as M[A, E]. Then we stipulate
that:

MIA,E]l = ex.¢p =ex.y iff (ex.¢,ex. ) € E
MIA, E] =, Vi iff (o(V), 1) e A

The strategy now proceeds much as in the present article. As with our strategy,
a method is specified for successively generating better models for the language.
Again, the key ingredient is a jump operator that generates an ‘improved’ model from
a given one. We need a notion of an identity interpretation extending (Z) another
identity interpretation, and an application interpretation extending another applica-
tion interpretation. And again, ‘extending’ entails extending as a superset, but further
‘admissibility’ conditions may be imposed. Then we stipulate a jump operation for
the identity relation and a jump operation for the application relation. The ‘jump’ of
identity is generated by basic law V:

E(AE) ={(ex.¢,ex.¥) : V(B, F) D (A, E) = M(B, F) EVx(¢(x) < ¥ (X))},
And the jump of application is given by:
A(A,E) = {{(¢p,ex.¢) :Y(B,F) J (A, E) => M(B, F) E ¢(ex.y¥)}.

At limit stages, we take unions. It can then be shown that this is a monotone process,
which of course always leads to a fixed point. Given suitable admissibility conditions,
fixed point models can be shown to have desirable properties, such as satisfying the
axiom of extensionality for classes.

Unfortunately, the method is beset by severe problems (as is acknowledged in
the article): comprehension fails for some extremely simple—indeed predicative—
conditions. An example is x = ¢ for an arbitrary abstraction term ¢. This in
turn undermines the definition of singleton classes. It is an open question, how-
ever, whether the method fares better with abstraction principles other than Basic
Law V.

The resulting situation seems to us to be the following. Our definition of satisfac-
tion of an atomic predication V¢ is immensely natural. Although it requires a restric-
tion to predicative second-order logic, this restriction has the advantage of being
systematic and well understood. The alternative definition of satisfaction of an atomic
predication V¢ is less natural and requires no less severe restrictions to the compre-

22See section 2.6.
23For a detailed description of the implementation of this strategy, see section 6 of [14].
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hension scheme of the background second-order logic. In fact, these restrictions are
in some respects more severe than those associated with predicative second-order
logic, such as in the mentioned example of singleton concepts and their extensions.
More worrisome yet, these restrictions are poorly understood and have an air of
ad hocery.

Although a conclusive assessment will have to await further investigation, the evi-
dence currently available suggests that the challenge arising from the impredicativity
of the second-order logic is far more robust than that arising from the impredicativity
of the abstraction principles. Our tentative conclusion is thus that Dummett’s diag-
nosis of ‘the serpent’ in Frege’s paradise is at least half right: the Fregean project
of constructing term models for abstraction principles is indeed incompatible with
impredicative second-order logic.

7 Conclusion

This paper has examined the extent to which it is possible to construct term models
for abstraction principles. We have disentangled two apparent limitations to which
the construction is subject and on the basis of which [2, ch. 17] rejected a closely
related strategy of Frege’s as fundamentally flawed. The first apparent limitation has
been upheld: term models are available only when the background second-order logic
is predicative. The only ways to escape this conclusion have been found unaccept-
able, namely to disallow quantification into abstraction terms, which the standard
language permits and many applications require; or, alternatively, to rely on a differ-
ent but poorly understood explication of the idea of groundedness, which requires us
to foresake even singleton classes.

The second apparent limitation suggests that term models cannot be constructed
for any abstraction principle that is impredicative. We have shown how this apparent
limitation can be circumvented by means of an elegant method of groundedness.
The power of this method was illustrated by constructing a grounded term model
for the axiomatic version of Basic Law V with predicative second-order logic. The
construction of this natural model goes beyond the known fact that the theory is
consistent [9]: for not every model is a natural model. 24
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