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Johannes von Kries’s Range Conception, the Method of Arbitrary Functions, and 

Related Modern Approaches to Probability 

 

Abstract: A conception of probability that can be traced back to Johannes von Kries is 

introduced: the “Spielraum” or range conception. Its close connection to the so-called 

method of arbitrary functions is highlighted. Possible interpretations of it are discussed, 

and likewise its scope and its relation to certain current interpretations of probability. 

Taken together, these approaches form a class of interpretations of probability in its 

own right, but also with its own problems. These, too, are introduced, discussed, and 

proposals in response to them are surveyed, some of which also go back to von Kries. 

The structure of the paper is as follows: 

 

i) The range conception introduced 

ii) Scope of the approach 

iii) Interpreting the range probabilities 

iv) Refining the range conception 

v) The problem of the measure 
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i) The range conception introduced 

By the end of the 19th and the beginning of the 20th century several writers developed 

accounts of probability that refer in some way or other to the specific properties of set-

ups that allow empirically successful ascriptions of probability. Of course, there are 
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many and varied such phenomena, but one may ask what it is about them that enables 

us to attach definite and precise numbers to possible outcomes of certain otherwise 

unpredictable processes and to operate effectively with them when forming 

expectations. That this should be possible at all is a remarkable fact that calls out for 

explanation. There must be some underlying objective features of the world captured by 

those numbers, and the common opinion of such writers as Émile Borel, Eberhard Hopf, 

Johannes von Kries, Henri Poincaré, Hans Reichenbach, Marian von Smoluchowski, and 

others (see von Plato 1994, ch. 5) was that an account of probability is incomplete 

without an investigation into these features, or should even be built around them. 

Furthermore, they all shared the basic idea about what these features are. There is no 

established name for this idea, but the most widespread term would presumably be the 

“method of arbitrary functions”. It is to be taken in a wide sense here that admits of 

many varieties. One could well say that this approach to probability was in the air at that 

time. The aforementioned writers all explicated it in somewhat different ways, and 

largely independently from one another. I am going to present it after a few further 

preliminary remarks, with special emphasis on von Kries (1886; see also 1916, ch. 19, 

26). Unless stated otherwise, all references are to von Kries (1886). 

The received and still dominating conception of probability at this time was the 

classical one, culminating in Laplace, according to which probabilities are ascribed to 

cases using a “principle of indifference” or “principle of insufficient reason”. This 

conception was first and foremost meant to be an epistemic or subjective one, although 

there had all along been evidence that something is missed in this way. To rightly attach 

equal probabilities to the possible outcomes of, e.g., a throw of a coin or die, these 

outcomes must be “equally possible” and that, in turn, is also a matter of the physics of 

the coin or die and not just of our symmetric ignorance with respect to the outcomes. 
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With a displaced center of gravity it would just be wrong to ascribe equal probabilities, 

whether one knows about the bias or not – wrong, that is, if the ascription of 

probabilities is to have empirical success. This was recognized by several writers in the 

classical tradition, so the latent idea was that there is also an objective aspect to 

statements of probability. But what this aspect could be was largely underdeveloped. 

It was the advent of statistical mechanics that made fully clear that it would not 

do to pursue a purely epistemic or subjective interpretation of probability. From this 

time on the development of a concept of probability that was objective in some clear 

sense was definitely on the agenda. The general presupposition, however, was still that 

the world is deterministic, that every event occurs due to sufficient causes that 

necessarily produce it under the given circumstances, and that the chains of such causes 

can in principle be followed arbitrarily far into the past. This deterministic outlook had 

also figured most prominently in Laplace and prompted his conception of probability. 

The thoroughgoing determinism was not questioned, and statistical mechanics, in 

particular, was no reason to question it. Rather, the challenge was to provide a 

sufficiently objective interpretation of probability within a deterministic framework. 

Pulte (this volume) provides a comprehensive account of the historical background of 

the von Kriesian ideas. 

Before reviewing the work of von Kries and other authors we have to be clear 

about the relation of their accounts of probability to frequentism. The phenomena that 

allow for empirically successful applications of the calculus of probability combine 

unpredictability in the single case with characteristic relative frequencies of outcomes 

upon repetition. We have a certain type of process the result of which cannot be 

foreseen in single instances, but repeated operation shows a random sequence of results 
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with the possible outcomes approximately occurring with certain characteristic relative 

frequencies. 

The repetition is mathematically modeled as a sequence of independent, 

identically distributed random variables, a kind of modeling that can be called standard 

or fundamental with respect to applications of the probability calculus. Thus 

Kolmogorov writes, in his “Foundations of the Theory of Probability” (1933): 

“Historically, the independence of experiments and random variables represents the 

very mathematical concept that has given the theory of probability its peculiar stamp.” 

(Kolmogorov 1956, p. 8) Using the weak law of large numbers and related theorems, the 

probabilities can be estimated from observed frequencies, on the one hand, while they 

can be used to predict frequencies of all kinds of events, on the other hand, both in a 

rigorous way. 

So, why not simply say that ascriptions of probability are about relative 

frequencies of outcomes within sequences of random experiments? Some of the 

aforementioned writers would indeed be prepared to say such things. But still, the 

question is why such sequences occur in nature. What is it about a set-up that gives rise 

to the typical probabilistic patterning of outcomes? To put it another way: It certainly 

seems possible that frequencies emerge out of sheer coincidence, so that it won’t be 

appropriate to let one’s expectations be guided by them. The frequencies ought to be 

counterfactually robust to yield “true” probabilities, and again the question arises which 

features of reality account for this robustness. It is then only a small step to the view that 

it is these features, rather than the frequencies themselves, on which an account of 

objective probability must be based. 

This line of thinking is reinforced by the following considerations. In all models 

with independent, identically distributed random variables there is a positive 
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probability that the relative frequency of an outcome that has a non-trivial probability of 

occurring deviates from this probability as much as you like, even in very long 

sequences. This is, furthermore, not an artefact of the mathematical modeling, but to be 

expected from the very concept of independent repetitions of a random experiment. 

Therefore it is strange, to say the least, to assume a strict, non-probabilistic connection 

between probabilities and relative frequencies. For example, in the repeated 

independent tossing of a fair coin all possible outcome series of a fixed length n occur 

with exactly the same probability, namely 2-n. Thus, when in a series of n throws the fair 

coin comes up “heads” n times, this particular outcome series is probabilistically 

speaking as good as any other outcome series of length n. This does not even change if 

one replaces the integer n by infinity (provided that probabilities are modeled to be not 

only finitely, but countably additive). In this case, every particular outcome series (of 

infinite length) occurs with the same probability 0. Relative frequencies can be typical or 

atypical for a given set-up only in the sense that, upon repetition, they occur with a 

higher or a lower probability. Thus, again, it is not actual frequencies of outcomes but 

the underlying features of the set-up which are the proper truthmakers for ascriptions 

of probability. 

These considerations are quite explicit in von Kries. For him, actual frequencies 

taken as such are pure contingencies (p. 168). The question is not what the frequencies 

are, because they could have been and can be any other way, but rather what we should 

expect them to be, and this, in turn, is governed by certain properties of the set-up that 

produces the frequencies. The easiest example with which von Kries illustrates his 

“Spielraum” or range conception of probability is the “Stoss-Spiel” (push-game) similar 

to a simplified Roulette (see ch. III, sect. 2). 
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Imagine a very long smooth horizontal channel which is subdivided into narrow 

alternating black and white vertical stripes of equal size. A ball is pushed down the 

channel and eventually comes to rest with its center either on a black or a white 

segment. The probability of “black” in this “Stoss-Spiel” is ½, and so is the probability of 

“white”. Why that? The whole setting is deterministic, with the final position of the ball 

depending on the initial impulse or the initial velocity only, if we take all other 

parameters that influence the final position, like air pressure or the properties of the ball 

and the channel, as fixed boundary conditions. Also, the channel is assumed to be 

perfectly even, so that the frictional forces that slow down the ball do not depend on the 

ball’s position during the movement. 

Von Kries rejects the principle of indifference or insufficient reason that underlies 

classical ascriptions of probability: We can neither say that black and white are equally 

probable (as these are the two possible outcomes of the game), nor that each stripe is 

equally possible as the one on which the ball finally rests (as all the stripes are of equal 

size). Von Kries notes that there is no reason to judge that the ball may come to rest on 

the 500th segment as easily as on the 10.000th. Quite the contrary: we have every reason 

to suppose that, when ordinary humans play this game, the 500th and the 10.000th 

segment are not equally likely to contain the ball’s final position. But, and this is the 

crucial insight, all we need to ascribe equal probabilities to white and black is to assume 

that adjoining segments are almost equally likely to cover the final position. Whatever 

the probability that the ball comes to rest on stripe no. n may be, it is certainly only a 

little different from the probability that it rests on stripe no. n+1. This is sufficient to 

conclude that black and white are approximately equally probable. 

According to von Kries, every continuous probability attachment (“stetige 

Wahrscheinlichkeits-Ansetzung”, p. 51) to the possible final positions of the ball gives 
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the outcomes “white” and “black” approximately equal probability. He notes that the 

notion of continuity employed by him is not the mathematical one, which roughly means 

that there are no jumps in the distribution as represented by a density function. Here, 

the requirement is rather that the density is of appropriately bounded variation, 

meaning that it must not oscillate too quickly. Only sufficiently smooth density functions 

are considered. About all this von Kries is quite clear, although he lacks some modern 

terms like “density function” or “bounded variation”. Instead of final states one can as 

well consider initial states, like initial velocity or impulse or kinetic energy of the ball 

when it is pushed down the channel. Given the dynamics of the system, any sufficiently 

smooth distribution over possible initial states transforms into such a distribution over 

possible final positions. 

The following pictures show two density functions of appropriately bounded 

variation and one quickly oscillating one over the one-dimensional initial-state space 

that can be associated with the “push-game” (cf. Strevens 2011, p. 347–348). The space 

consists of all possible initial velocities v of the ball and is represented by the v-axis. The 

black and white columns are given for better visualization. They highlight the partition 

of the v-axis induced by the outcomes “white” and “black”. One would get a very similar 

picture, just with columns of equal instead of decreasing width, when one takes the 

possible final positions of the ball as constituting the state space. Each sufficiently 

smooth distribution gives the outcomes “white” and “black” a probability of 

approximately ½. Not every quickly oscillating one yields deviating probabilities, but 

some do. In order to rule out all these, one may, for example, require that the density 

functions under consideration are differentiable with the absolute value of the 

derivative below a suitable threshold throughout. 
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The requirement that every sufficiently smooth distribution over possible system states 

should yield the same outcome probabilities is an important feature of von Kries’s 

conception. It is not as if one could already justifiably ascribe probabilities when the 

relative sizes of the ranges that correspond to the possible outcomes are known. That 
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would amount to the choice of a uniform distribution which is what the classical 

conception of probability does. Rather, the point is that the ranges of states that 

correspond to the respective outcomes are entangled in a way such that any sufficiently 

“regular” or “smooth” or “well-behaved” distribution over possible states yields the 

same outcome probabilities (at least approximately). 

The thing that remains as an assumption of equipossibility that might remind one 

of the Laplacean conception is the approximate equiprobability of small adjoining ranges 

of equal size – an assumption which seems quite innocent in comparison to the various 

uses and misuses of a Laplacean principle of indifference. But still, there is such a 

supposition. When introducing his example, von Kries already makes use of the concept 

of probability in assuming that proximate segments of the channel are almost equally 

likely to cover the final position of the ball. We will treat the meaning of such an 

assumption and the problems arising from it in section iii). 

Let’s have a look at Keller’s analysis of a coin toss as a second example for this 

approach to probability (Keller 1986; cf. Engel 1992, pp. 44–48). In the Stoss-Spiel of 

von Kries, the final position of the ball may be viewed as depending on its initial velocity 

only, given fixed boundary conditions. Thus, the initial-state space is one-dimensional. 

The coin in Keller’s analysis is supposed to be flipped from a fixed position straight into 

the air. The toss ends abruptly when the coin’s center of gravity reaches the initial 

height. The coin is not allowed to bounce on a surface, but caught when it reaches its 

initial position, and the side which is up at that moment counts. In this setting, the coin 

shows “heads” or “tails” after the toss depending on two parameters: the initial vertical 

and the initial angular velocity, so the initial-state space is two-dimensional here. Again, 

several boundary conditions are assumed to be constant. The mathematical analysis 

shows a partition of the state space induced by “heads” and “tails” that looks like this: 
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Cf. Engel (1992, p. 46). ω denotes initial angular velocity, v/g initial vertical velocity 

divided by the constant gravitational acceleration of the Earth. 

 

Keller actually derived the structure of the space from the dynamics of the example. It 

can be extended by including further variables that characterize the coin’s initial 

position and by including the bouncing of the coin on a perfectly flat surface (see Engel 

1992, pp. 47–48, but also Diaconis et al. 2007). The requisite mathematics is difficult, 

and it is not possible to rigorously treat cases that are much harder than this. 

Von Kries holds that whenever precise probabilities attach to a process, there is an 

underlying state space of this kind, although its structure can only be made explicit in 

comparatively simple examples. We can meaningfully ascribe numerical probabilities to 
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certain events and apply the mathematical calculus of probability if and only if such a 

situation obtains in the background (see pp. 73–74, p. 113, p. 127, ch. IX sect. 14). He 

was the first to introduce this kind of approach to probability. His “Die Principien der 

Wahrscheinlichkeitsrechnung” is a careful and in-depth analysis of the matter, but 

almost entirely informal. The requisite mathematics was in a comprehensive way done 

by Hopf (1934, 1936) for the first time, who deepened and extended results obtained by 

Poincaré (1896; see also 1902, ch. 11). The term “method of arbitrary functions” is due 

to them. Hopf has done a lot to push rigorous treatments of examples to their limit, but 

there is still some work done nowadays (see the monograph Engel 1992). Taking the 

work of von Kries, we may say: 

 

(Arbitrary Functions) Let E be a random experiment with an associated 

continuous state space S. Let A be a possible outcome of E. If every not-too-

quickly oscillating density on S yields roughly the same value p when 

integrated over the subset of states associated with A, then there is an 

objective probability of A upon a trial of E, and its value is p. 

Equivalently: 

(Range Conception) Let E be a random experiment with an associated 

continuous state space S. Let A be a possible outcome of E. If A is 

represented in each bounded and not-too-small interval within S with 

roughly the same proportion p, then there is an objective probability of A 

upon a trial of E, and its value is p. 

 

These definitions are meant to be preliminary and will be explicated and modified 

subsequently. Definitions of such a kind are not contained in von Kries’s writings, but 
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they may be said to capture his ideas in modern terms. See Zabell (this volume) for an 

analysis of von Kries’s account on his own terms. 

 

ii) Scope of the approach 

(Range Conception) is meant to establish truth conditions for statements of numerical 

probability. The term “random experiment” has to be taken in a wide sense, referring to 

any clear-cut kind of situation where this kind of consideration could reasonably be 

applied. As only relatively simple examples can actually be analysed mathematically, we 

often have to be content with the warranted assumption that a given process can be 

associated with a state space of the indicated kind. Not being able to directly assess the 

relative sizes of the “ranges” that correspond to the different possible outcomes, we 

have only indirect evidence for them, namely, observed actual frequencies of outcomes 

or apparent symmetries. These serve as conditions of warranted assertibility, but not as 

truth conditions for the respective probability statements. 

With this qualification, the domain of applicability of the approach is larger than it 

may at first seem. The paradigm examples are all from the realm of classical mechanics, 

the most important being the application to statistical mechanics. It was already 

sketched by von Kries (ch. VIII; cf. Strevens 2003, ch. 4.8). Other writers have developed 

ideas how to apply the approach to probabilities in biology (Strevens 2003, ch. 4.9; 

Abrams in preparation), and the social sciences (Abrams 2012b). These are necessarily 

sketchy. Strevens (2003) and, more streamlined, Strevens (2013) are two books that 

explore the whole scope of an approach of this kind. 

Von Kries was rather restrictive, however: He wanted numerical probabilities to be 

meaningful in application to single cases, that is, not only to a type of random process or 

experiment, but to its particular instances. According to him, probability statements are 
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first and foremost about single cases, and only derivatively about types (see ch. V, sect. 

6). Therefore, he disdained the probabilities given by physiology, psychology, and the 

social sciences (see ch. IX, sect. 6–13). This is noteworthy in particular because 

physiology and psychology were his main professions, so he argued for a view of 

probability not suited to his everyday work. Numerical values for, e.g., the probable 

course of a disease or the effectiveness of a certain treatment come by averaging over 

very different individual cases from which a global statistic has been compiled. 

Presumably there are several “hidden parameters” that influence the outcome in single 

cases. A physician who was about to treat a specific person would be ill advised to base 

his expectations just on these statistically compiled numbers and not to take into 

account what he knows about the constitution of the particular patient. His ensuing 

expectations may be justified, but the respective probabilities cannot be given a definite 

numerical value. 

What should one think about this? Contrary to what von Kries says, it seems clear 

that a state space always relates to a type of process or experiment, because in an 

individual case there is also just one particular (initial) state. The continuous space 

emerges from surveying the possibilities for how a process of a certain type can go. The 

“ranges” come from the leeway left open by the laws of nature, and von Kries himself 

states that the notion of such a leeway, namely, of a quantified objective or physical or, 

as he puts it, “ontological” possibility, is meaningful only if applied to a “general case”. 

With respect to an individual case, talk about possibility as well as probability is no 

more than an expression of ignorance (p. 87). Thus, it seems that he was simply in error 

when claiming that probability statements primarily refer to single cases. We have to 

know what counts as a repetition of the experiment, or, equivalently, a process of which 
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type is considered in order to meaningfully talk about an initial-state space with definite 

ranges of the various possible outcomes. 

Nevertheless, von Kries’s point regarding medical, psychological or socio-economic 

probabilities stands. And one could as well include certain applications of probability in 

biology which were not yet considered by him. As far as these probabilities are extracted 

from results of statistical surveys, they very often come from averaging over cases that 

are quite diverse also in nomological respects. These applications are not comparable to 

repeatedly throwing the same dice, or to drawing balls from the same urn (with 

replacement and after due shuffling). Rather, they are like drawing balls from urns with 

varying compositions, or to throwing dice with unequal centers of gravity. The relevant 

state space or the partition induced by the outcomes under consideration may be quite 

different each time, and consequently it is impossible to make an inference from 

observed actual frequencies to certain definite “ranges”. 

This, however, does not mean that (Range Conception) does not apply here. One 

should rather say that there are range probabilities in these contexts, only that 

biological, medical, psychological, or socio-economic statistics normally do not yield 

them. But they may at least give upper or lower estimates for them, and, furthermore, 

one would approach the numerical probabilities appropriate in a particular case when 

investigating many strictly comparable cases, e.g., when one gave a certain medical 

treatment to people of very similar constitution. 

In addition to this, the probabilities given by biological etc. statistics might even 

receive a straightforward reading in terms of the range conception, namely, when one 

relates them to the idea of a probabilistic mix of varying circumstances. The point can be 

illustrated thusly: Imagine six urns of varying composition. One of them is selected by a 

regular throw of a die, and a ball is drawn from that urn after careful mixing. What the 
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probability of drawing a ball of a certain colour is depends on what counts as the 

experiment conducted here: Either, drawing a ball at random from a specific urn, or 

randomly selecting an urn and then drawing a ball from it. Either way, the probabilities 

can be given a range interpretation. The numbers given by biological etc. statistics can 

be related to a set-up of the latter kind, and insofar there is no in-principle obstacle to 

regarding them as range probabilities. 

We have to be careful, though, not to base claims about objective probabilities on 

mere fictions. It may be very difficult to get a firm grasp on some clear-cut random mix 

of varying circumstances that has to be tacitly assumed for the applications under 

discussion. Which process, exactly, is considered in such a case, what is the well-defined 

“experiment type” corresponding to a specific state space? As long as this is not fleshed 

out, it remains doubtful whether certain statistically compiled numbers can be said to 

mirror probabilities that are in any sense objective. Although difficult to assess in its 

scope, the scepticism expressed by von Kries is partially warranted. This, however, does 

not only concern the range conception, but objective probability in general, so I need not 

take a definite stance on the issue. 

 

iii) Interpreting the range probabilities 

The questions concerning the scope of application of the range approach may be tricky 

but do not pose fundamental interpretational problems. We now turn to these. 

As mentioned in section i), when introducing his approach von Kries relies on the 

principle that adjacent small regions of equal size within the state space are 

approximately equally likely to cover the actual state of the process. One may ask: 

equally likely in what sense? Or take (Arbitrary Functions): What do the density 

functions mentioned here mean, what do they stand for? A natural idea would be that 
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they represent probability distributions on the state space. Given such a distribution for 

initial states, the outcome probabilities are thereby fixed – numerically, but also in their 

meaning. How to interpret outcome probabilities entirely depends on the proper 

interpretation of input probabilities, i.e., of the probability distributions given by the 

density functions on the state space. With typical random experiments the space is 

structured in such a way that the exact form of the density does not matter, so we need 

not care what the probability distribution on the state space in fact is. As long as it is not 

very eccentric, the outcome probabilities are virtually independent from its exact form. 

Yet, the independence is not perfect, because different smooth densities on the state 

space may well lead to slightly differing outcome probabilities. This does not matter 

much, but clearly, in this view the interpretation of the outcome probabilities is 

dependent on the meaning of the input probabilities given by the density functions, and 

vice versa. When introduced in this way, the account seems to presuppose a conception 

of probability instead of providing one. 

On the other hand, (Range Conception) neither mentions nor seems to 

presuppose in any other way a notion of probability. It simply takes partitions of state 

spaces as providing truth conditions for probability statements. Why not take the range 

conception as it stands as a self-contained interpretation of probability? (I have already 

tried to argue for this in my 2010 and 2012.) As (Arbitrary Functions) is equivalent to 

(Range Conception), there is a fortiori no circularity involved even here. One has to be 

very clear that according to these definitions probabilities are given by proportions in 

appropriately structured state spaces, and that’s it. They do not derive from a state 

space in connection with a distribution, or even a class of distributions, on it. The state 

space, to be sure, must be such that any probability distribution on it that is not 

extremely “irregular” yields approximately the same outcome probabilities, but whether 
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the space is that way depends on the space and the partition induced by the possible 

outcomes alone. 

But probability statements do not ordinarily mean to refer to proportions in 

suitably structured state spaces. One does not arrive at these truth conditions by 

conducting some piece of meaning analysis. This fact may prompt the feeling that one 

has to say more about probability than is contained in (Range Conception) or (Arbitrary 

Functions). Why should proportions in suitably structured state spaces associated with 

certain processes count as the probabilities of the respective outcomes? Whatever 

entities are given the label “objective probability”, they deserve their name only if they 

can make a justified claim to guide our expectations. So, the problem discussed here is 

not about circularity in the sense that some notion of probability would be presupposed 

by the range approach, but about the conditions under which it is appropriate to let 

one’s expectations be guided by ranges in continuous state spaces. 

A first idea would be that it is appropriate if and only if the distribution of actual 

initial conditions emerging upon repetition of the experiment looks random and is such 

that it can be approximated by some non-eccentric smooth density. But then the whole 

approach becomes a variety of frequentism. The connection to frequencies is not 

straightforward, to be sure, because there is an idealizing step involved: the replacement 

of a discrete empirical distribution of actual initial states by an integrable density. 

Nevertheless, interpreted in this way, the range approach yields a sort of frequentist 

probabilities. They primarily attach to types of experiments or processes and only 

derivatively, if at all, to particular instances. This line of thought would be favoured by 

Hopf (1934, 1936), Reichenbach (1920; 1935, § 69), and von Smoluchowski (1918). 

Modern advocates of (considerably different) varieties of it are Abrams (2012a) and 

Strevens (2011). 
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Alternatively, the densities can be seen as reflecting our uncertainty or ignorance 

with respect to the obtaining conditions. This is Savage’s (1973) and Myrvold’s (2012) 

approach (see also Engel 1992, p. 4). Then the resulting probabilities are subjective or 

epistemic ones, distinguished by their robustness: As a matter of fact, it is not possible 

for us to improve on them in our expectations of outcomes of experiments. Brian 

Skyrms’s (1980) notion of resiliency is relevant here: Probabilities that appear to be 

objective are nothing but resilient subjective or epistemic probabilities. The resiliency 

may have different sources, but the kind of situation described by the method of 

arbitrary functions is certainly one of them. In this view, one starts from a subjective or 

epistemic conception of probability and enriches it by objective aspects as captured by 

(Range Conception). The resulting probabilities attach to single instances as well as to 

types of processes or experiments. 

Von Kries should be read as advocating something like this, although he is not 

easy to understand in this respect. His “stetige Wahrscheinlichkeits-Ansetzungen” 

(continuous probability attachments) are not supposed to mirror actual or hypothetical 

frequencies. This is clearly shown by some of his considerations concerning the proper 

applications of probability. As we have seen, he is rather restrictive, on the one hand, but 

on the other hand he mentions the idea of attaching probabilities to the possible values 

of natural constants, like the specific weight of a substance (pp. 24–25). Although he 

subsequently rejects such applications as misguided (pp. 30–31), essentially because of 

Bertrand-like paradoxes, the fact that he considers them at all shows that at least his 

starting point is a reading of probability that has nothing to do with repeatable physical 

processes. In a similar vein, Wolfgang Pietsch (in preparation) attaches his more general 

“causal probabilities” even to hypotheses.  
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It is worth noting that on an epistemic reading, a striking vagueness of (Range 

Conception) receives a natural resolution. The definition speaks about arbitrary 

bounded intervals within the state space that are “not too small”. The condition laid 

down there cannot hold for all intervals, to be sure, but it has to hold for all intervals 

above a certain minimum size. What fixes this size? On the epistemic reading, it depends 

on our capacities of measurement and control. For the emerging probabilities really to 

be “resilient”, it is important that we are not able to deliberately aim at or foresee the 

occurrence of a subset of the state space in which the proportion of an outcome is 

significantly dissimilar to its overall share in the state space. 

It may be due to his basically epistemic outlook concerning probabilities, which 

he is inclined to call “logical” (in a sense of this word no longer in vogue today), that von 

Kries received a somewhat one-sided reception. Primarily, he was read and cited by 

forerunners or advocates of a logical theory of probability (see Heidelberger 2001). 

Here, von Kries’s continuity requirement is dropped. What is left is the idea of deriving 

probabilities from ranges of possibilities that are now interpreted as logical possibilities. 

This, however, is not what von Kries himself had in mind. The idea of an underlying state 

space with the characteristic that any continuous attachment of probabilities to it yields 

the same probabilities for the events in question is central to his approach. It means that 

there is a distinctly “ontological” aspect to his account of probability that gives it a very 

different flavour from a logical conception. His “ranges” are ranges of possibilities left 

open by the laws of nature, and are of a certain special structure that is a matter for 

natural science to determine. Therefore, the term “natural range conception” would be 

more precise than “range conception” with regard to the approach. 

Let’s come back to our main interpretational problem. The aforementioned 

writers all share the idea that structures of the indicated kind underlie the successful 
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applications of the probability calculus. As a matter of historical fact, each of them 

tended to or took as a starting point either an epistemic or a frequentist understanding 

of probability, and passed this on to the range probabilities, with von Kries belonging to 

the former group. Thus, the range approach does not appear to be an interpretation of 

probability in its own right, but rather to be supplementing either a basically frequentist 

or a basically subjectivist or epistemic outlook. In order to improve on this, we first have 

to confront another difficulty. 

 

iv) Refining the range conception 

A suitably eccentric distribution on the state space, interpreted as a probability 

distribution, would yield deviating outcome probabilities. Only when we are considering 

reasonably well behaved distributions can we equate the outcome probabilities with the 

respective proportions within the space. Now, the method of arbitrary functions, as 

developed by Poincaré (1896; 1902, ch. 11) and Hopf (1934; 1936) really works for 

arbitrary densities. They need not even be continuous, just (Lebesgue-)integrable. How 

can this be? 

Poincaré and Hopf choose a density and then vary certain parameters of the 

physical setting. Poincaré considers a roulette wheel with a fixed density for initial 

conditions (a joint density for initial position and initial angular momentum) and 

imagines narrowing the wheel’s sections more and more. This means that the state 

space is constantly changing: not with respect to the variables, but with respect to its 

patterning in view of the results “red” and “black”, while the density, or rather its shape, 

is kept fixed. No wonder that in the limit every density yields the probability ½ for “red” 

and likewise for “black”. In a similar manner, Keller (1986), who analyzed the coin flips, 

shows that any joint density for initial angular velocity and initial vertical velocity whose 
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functional form is chosen once and for all and which is then shifted away from the origin 

of the state space along any straight line, yields probability ½ for “heads” as well as for 

“tails” in the limit. 

In this way, the problem of quickly oscillating densities is solved – but at the price 

of constantly changing the physical circumstances, while keeping the shape of the 

density. With Poincaré’s roulette wheel, the number of red and black sections is 

increased beyond any limit, and the coin in Keller’s analysis is flipped ever more 

vigorously, with ever higher angular and vertical velocities. In the same vein, Hopf 

proves general theorems to the effect that the distribution of certain outcomes is 

completely independent from the distribution of initial conditions, as long as this 

distribution can be expressed by a density at all. 

It is, however, not clear what bearing exactly the reasoning of Hopf and Poincaré 

is supposed to have on the philosophical problem of determining truth conditions of 

probability statements. Real coins are not flipped ever more vigorously, and real 

roulette wheels have compartments of a certain fixed width. The moving-about of a 

density of a fixed functional form over a state space, or the changing of physical 

circumstances towards limiting cases does not admit of a realistic construal. It clearly 

remains possible that in repeating a random experiment, actual initial states obtain that 

approximately match a density which is periodic in a critical way or puts extreme weight 

on just one “patch” of the state space. If, moreover, this specific density emerged 

repeatedly, i.e., if always when the experiment was often repeated, actual initial states 

followed suit, we would reasonably judge it to be reliable or counterfactually robust. 

This judgment could well be wrong, everything we observed could be a huge 

coincidence. But provided there is something behind the specific eccentric distribution 

that (probabilistically) explains its stability, expectations about outcomes should be 
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guided by it rather than by the proportions of the outcomes within the state space. The 

fact that if we moved the eccentric density far enough about the space, we would get the 

probabilities we expected, is simply irrelevant here. It won’t do to dig one’s feet in and 

stick to (Range Conception) if this means to ignore a mechanism that tends to produce 

deviating frequencies of outcomes. Objective probabilities may be equated with 

proportions in a state space only if these connect to appropriate degrees of belief, and 

assuming a feature that reliably produces deviating relative frequencies, one cannot 

reasonably maintain this connection. Thus, an ascription of probability with a claim to 

objectivity can definitely not be made true by the mere fact that our experiment relates 

to a state space with such-and-such a structure. 

There are real-world cases in which robustly periodic distributions of actual 

initial states are to be expected. An easy example is provided by a wheel of fortune or 

carnival wheel. A rotating disc divided into alternating red and black segments 

eventually comes to rest, and yields the outcome “red” or “black” according to a fixed 

pointer outside. In contrast to the roulette wheel and to von Kries’s “Stoss-Spiel”, the 

frictional forces slowing down the wheel also depend on its position. The positional 

component of the force is due to nails or pins that are arranged on the wheel’s rim 

exactly on the borderline between any two adjoining segments. The pointer outside 

bumps against those pins, and the wheel is slowed down rather quickly in this way. 

Now, if the segments are not of equal size, but, say, the black ones are twice as 

large as the red ones, the probability of the outcome “red” is not 1/3, but considerably 

higher, because it is mainly the pointer bumping against the pins that stops the wheel. 

Examples of this kind were treated for the first time by Hopf (1936; see also Engel 1992, 

pp. 103–106). They are remarkable because here the exact probabilities are not to be 

guessed in advance from symmetry considerations, but have to be derived by applying 
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the method of arbitrary functions. Any sufficiently smooth distribution over initial 

velocities (or initial angular velocities) is transformed into a “critically periodic” 

distribution over final positions. If these are taken to constitute the state space 

associated with the experiment or are taken as initial states for some further physical 

process, we have a state space that naturally comes equipped with distributions that are 

periodic in just the critical way. If we apply the range conception to this latter state 

space, it gets us the outcome probabilities wrong. 

 Of course, there is an obvious explanation why the distributions of final positions 

are periodic in this case. We just have to take the initial (angular) velocities of the wheel 

as initial states to get the probabilities right. The portions of velocities leading to “red” 

are considerably larger than 1/3 within the space of possible initial (angular) velocities. 

This example illustrates von Kries’s answer to the problem of a robust empirical 

distribution with high oscillation over the state space. It must be due to a special 

physical setting, and we have to take the initial states of this setting as establishing the 

probabilities. In von Kries’s wording, the ranges must be “ursprünglich” (original, 

primordial) to give us the true probabilities (pp. 34–35, 70–71). 

The idea is the following: Taking the ranges in a state space to determine the 

probabilities of the possible outcomes of a type of physical process means to carry out a 

cut in time that is in principal arbitrary. This point is not to be confounded with the 

above-mentioned one that we should view the range probabilities as attaching to a type 

of experiment, and only derivatively to its particular instances. Even if this is agreed, we 

can ask: Why not take later or earlier possible states of the same (type of) process as 

constituting the relevant space? Nothing hinges on this choice as long as it does not 

change the proportions of the outcomes in question, but if it does, it is the prior space 

that gets the probabilities right, because the later states depend on the former, not vice 
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versa. If any reasonably well-behaved distribution on a prior state space transforms into 

a quickly oscillating one on a space downstream in time it is the ranges in the former 

one that yield the true probabilities. Ranges are called “original” if all the various state 

spaces upstream in time would yield the same probabilities for the possible outcomes of 

the process. Given this, the consideration of the coming-about of actual initial states 

does not change the probabilities. 

If one thinks of classical or logical probability and (mistakenly) reads von Kries as 

advocating something like this, one might have the idea that an “original” or 

“primordial” state space is a maximally refined one, like Rudolf Carnap’s language-

dependent set of “state descriptions” to which any assignment of logical probability is to 

be reduced. In contrast to this, von Kries has temporal or causal, not logical, precedence 

in mind. He says that “the probability of a present or future state is to be judged from the 

former modes of behavior that are suited to bringing it about” (p. 34), and much more to 

the same effect. 

Interpreting von Kries, we have to say the following. If, upon repetition of the 

experiment, an “extreme” density emerges on the initial-state space, if, that is, actual 

initial states match a quickly oscillating density function, either this phenomenon is 

capable of an explanation in terms of a specific mechanism, or, if no such explanation is 

forthcoming, it has to be viewed as a mere coincidence not affecting the probabilities. 

Either the ranges upon which we base our ascriptions of probability are not “original”: 

then we have to go back in time and consider something else to be the “true” initial state 

space of the experiment, at the same time discovering a mechanism that explains the 

peculiar empirical distribution on the state space downstream in time. Or the move back 

in time does not change anything with regard to the respective proportions of the 

different outcomes: then we have to view this peculiar distribution as being purely 
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accidental and consequently as irrelevant for our expectations regarding the possible 

outcomes of the type of process. As long as there is “nothing behind” the eccentric 

distribution, we should not consider it to be robust, even if it appears to be so, and stick 

to the range probabilities given by the state spaces. This follows from the basic idea of 

the range conception, namely, that we should not take brute actual frequencies as 

truthmakers for probability statements, but those features of set-ups that account for 

them (if there are any), as the frequencies themselves can be purely accidental and thus 

misleading with regard to the probabilities.  

Von Kries is inclined to view the “principle of ranges” as he calls it, as a synthetic 

a priori principle, although he does not take this idea too seriously and does not make 

much of it (pp. 170–171). This line of thought is due to Neo-Kantian inclinations he 

shared with many German philosophers and scientists of the time. The idea would not 

be that probabilities can be ascribed a priori, as it is an empirical question what the laws 

of nature are, which determine the structure of state spaces. Rather, the thought is that 

any true numerical probability must come from a proper primordial initial-state space, 

and that actual distributions of outcomes gain their counterfactual robustness and their 

credentials in guiding expectations entirely from there. If there is a conflict between 

original ranges and actual relative frequencies, it is the latter that have to give way: 

 

(Range Conception Refined) Let E be a random experiment with an associated 

continuous n-dimensional state space S. Let A be a possible outcome of E. If A is 

represented within each equilateral n-dimensional, bounded, and not too small interval 

of S with roughly the same proportion p, and if, furthermore, S is original with respect to 

A in the sense that every prior state space displays a similar structure with respect to 
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the outcome A and contains it with the same ratio p, then there is an objective 

probability of A upon a trial of E, and its value is p. 

 

The qualification “equilateral” is due to the fact, also noted by von Kries, that a state 

space may well consist of very long, very thin “stripes” (in the two-dimensional case), or 

very large, but at the same time very thin “layers” (in the three-dimensional case), etc. 

(see pp. 66–67, fn. 1). The stripes or layers etc. give rise to bounded intervals with a 

considerable n-dimensional volume in which all initial states lead to the same outcome, 

but the range conception should, intuitively speaking, nevertheless be applicable. It is 

impossible for us to deliberately aim at one particular “stripe” or “layer”, and it is in 

need of explanation when actually occurring states fit a density that is quickly oscillating 

in at least one dimension. 

 The notion of an original or primordial state space is evidently problematic. It 

ultimately points to circumstances that obtained at the beginning of the universe. The 

initial state of our world, in every detail, is supposed to be part of a truly global initial-

state space. It contains some states that give rise to trajectories on which the experiment 

of interest E is conducted, and if we survey just these states, they have to form a subset 

with the indicated structure. This requirement is implicit in the notion of an original 

state space, but von Kries did not think about it. The idea of a beginning of the universe 

was not around at his time and would presumably have been alien to him. He notes the 

severity of the requirement that all the earlier state spaces one might conceive of as 

representing the “initial states” of a given type of process yield the same probabilities, 

but thinks he cannot do without it (p. 35). 

 The problem of how to interpret a probability distribution for possible initial 

states of the universe is known from statistical physics (see Sklar 1993, ch. 8; Albert 
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2000, ch. 4). If we simply stick to ranges in original state spaces without considering 

probability distributions on them, and insist that they in themselves give us the 

probabilities of events, the recurring question is how we can be entitled to interpret 

these ranges probabilistically. Is this not just a stipulation? To get this problem better 

into focus, we turn to a final and fundamental objection to the range conception von 

Kries was unaware of. 

 

v) The problem of the measure 

The structure or patterning or partition of a state space induced by the different 

outcomes depends on the choice of variables that characterize the initial states. There 

are continuous changes of variables that give rise to different patternings with 

arbitrarily chosen proportions of the respective outcomes. This problem is best known 

under the label “Bertrand’s paradoxes” and seems to befall any symmetry-guided 

attachment of probabilities to a continuum (see, e.g., van Fraassen 1989, ch. 12). 

In the typical paradoxical examples different representations that seem to be 

equally natural lead to very different probability assignments. Essentially, any non-

linear transformation of variables will do. This is definitely not the case with the range 

conception, due to the special structure of the state space. Here, any ordinary choice of 

variables leads to the same outcome probabilities (cf. von Kries 1886, p. 54, fn. 1). We 

have to consider very peculiar periodic changes of variables if we really want to alter the 

ratios with which the outcomes are represented within the space. This mirrors the fact 

that all “well-behaved” distributions on the state space, when interpreted as probability 

distributions, yield the same outcome probabilities. 

In the “Stoss-Spiel” of von Kries, e.g., nothing changes with respect to the range 

probabilities, if the initial velocity (or momentum) of the ball is replaced by its square 
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(or initial kinetic energy). Such simple nonlinear transformations give rise to different 

probability attachments in the original Bertrand’s paradoxes and similar cases, but here 

they pose no threat. Only if one expands by means of a suitable periodic transformation 

the sections of the initial-state space leading to “white” as outcome and shrinks the 

“black” ones to the same degree, one gets ranges of a very different size. The physical 

quantity which is represented by means of an interval scale in this way does not play 

any role in physical theory. The same holds in general: Transforming the space in a way 

that changes the proportions of the outcomes means that the resulting vector 

components do not correspond to anything like familiar physical quantities. 

The range conception of probability proposes to trace back probabilities to state 

space volume. One can either tinker with the quantities that are used to characterize the 

possible states, or with their representation, that is, with their mapping onto 

mathematical space, or with the notion of volume therein, to cause trouble for the range 

conception. The state space is a mathematical representation of physical possibilities, 

each dimension representing one of the quantities. If n quantities are used to 

characterize the state of the system, the corresponding space is the n-dimensional real 

vector space, or some proper part of it. Talk about proportions within this space draws 

on a notion of n-dimensional volume or measure. The standard choice in this regard is 

the so-called Lebesgue measure which generalizes the intuitive notion of area or volume 

in a unique way. 

Now, the question is: Why apply the Lebesgue measure to a state space arising 

from a linear mapping of standard physical quantities onto mathematical space in order 

to determine the outcome probabilities? That the range probabilities are fixed in this 

way is the tacit assumption behind everything I have described so far. One could, 

instead, use some non-standard quantities to characterize the state of the system. Or one 
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could map the standard ones in a distorted way onto mathematical space, so that they 

are no longer represented by interval scales. Or one could use an extraordinary measure 

on the state space instead of the Lebesgue measure. 

These three possibilities amount to the same thing, though. With respect to the 

probabilities, they are nothing but three different ways to perform the same 

transformations. Thus, one can without loss talk about “the problem of the (right choice 

of) measure (on the state space)”. Many transformations, and, for that matter, all half-

way normal ones, do not change the relevant proportions, but some rather far-fetched 

do. It does not matter whether one calls into question or demands a justification for the 

use of ordinary quantities, or the straightforward ways of mapping them onto a 

mathematical space, or the standard measure thereon. Either way, one has to make 

some extremely weird or “unnatural” choices to affect the proportions with which the 

different outcomes are represented within the state space. 

 

(Range Conception Completed) Let E be a random experiment with an associated 

continuous n-dimensional state space S, using natural modes of representation. Let A be 

a possible outcome of E. If A is represented within each equilateral n-dimensional, 

bounded, and not too small interval of S with roughly the same proportion p, and if, 

furthermore, S is original with respect to A in the sense that every prior state space 

arising from natural modes of representation displays a similar structure with respect to 

the outcome A and contains it with the same ratio p, then there is an objective 

probability of A upon a trial of E, and its value is p. 

 

This may not seem very satisfying. One could object the following: Prima facie the weird 

transformations amount to nothing more than unfamiliar representations of possible 
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states. But the reasons not to choose such a representation are merely pragmatic. In 

principle, it is as good as any other. To press the objection this far, however, means to 

turn the problem into a skeptical one. One should not concede too quickly that all the 

choices made in representing possible states are pragmatic and that in principle every 

alternative would be as good. The conditions laid down for the range probabilities 

guarantee that there is no easy or normal way to different probabilities, and this is the 

crucial difference to Bertrand’s paradoxes and similar cases that are rightly viewed as 

causing deep trouble for the idea of assignments of probability distributions from 

symmetry considerations. 

As long as all natural modes of representation lead to the same proportions for 

the possible outcomes, this should be enough objectivity. It would be unreasonable to 

demand more of a probability to grant it the label “objective”. Or so I will try to argue in 

what follows. From this, it is again evident that the term “natural range conception” 

would be most appropriate for this approach to probabilities. The assumption that 

certain modes of representing the set of possible states are “natural”, while others are 

not, is an indispensable element of it. What could justify this assumption? 

First, one would certainly regard the sort of partitioning of a state space as given 

by (Range Conception Completed) at least as a partial explanation as to why the calculus 

of probabilities is successfully applied to the phenomenon in question and the 

probabilities are such-and-such (see pp. 167–169). The structure of the state space 

seems to explain very well the typical probabilistic patterning of the series of results on 

repeated trials and the robustness of the phenomenon. This kind of explanation, 

whatever its exact status, and whether or not one is ready to take the underlying 

structure as providing truth conditions for probability statements, would be worth 
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nothing if weird representations of the space of possible states would be as good as 

ordinary ones. This is hardly credible. 

At this point approaches to probability in the von Kriesian manner may be 

fruitfully compared with David Lewis’s best-system analysis of laws of nature in general 

and of chance in particular (Lewis 1994, see Beisbart (this volume) for a full-fledged 

comparison of the approaches). It is no accident that we operate with something like the 

standard physical quantities and not with weirdly transformed ones, and we should not 

take it as simply being a matter of convention when we also base our ascriptions of 

probability on these standard quantities. One could say about the range conception, 

paraphrasing David Lewis: “All this would be worse than useless if we couldn’t 

distinguish natural from gerrymandered kinds; we could get the analysis to yield almost 

any answer we liked. But we can distinguish. If we could not, puzzles about chance 

would be the least of our worries.” (see Lewis 1994, p. 477) 

Lewis says this when introducing his own ideas, but we can apply it to our 

problem as well. We have to resist the idea that any mode of representation of initial 

states is as good as any other, that we cannot distinguish natural from gerrymandered 

ways. From a somewhat different angle one could say: That explanations of the indicated 

kind of probabilistic patterns in series of outcomes are good explanations should be 

taken as a starting point. The explanations offered may not be complete, they do not 

point to something like a necessity, but they are undoubtedly illuminating. We should 

not go so far as to completely deny this by allowing arbitrarily weird modes of 

representation on a par with ordinary ones. 

In this manner, the objection is not answered, but rather rejected as a problem 

that has to be dealt with, except perhaps in some skeptical contexts. But second, one can 

give more substance to the reply by providing specific arguments in favour of the 
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ordinary modes of representation. There is a broad discussion of what justifies the 

choice of the Lebesgue measure on the phase space in statistical mechanics. This can be 

viewed as the most important special case of the problem discussed here, and physicists 

came up with independent considerations that speak in favour of this measure. First, the 

Lebesgue measure of a set is invariant given the dynamics of the statistical mechanical 

system (Liouville’s theorem). A set of a certain measure may evolve into a set of very 

different shape as time passes, but the volume remains the same. Thus, the measure has 

the physical significance of a conserved quantity. Second, the Lebesgue-measure 

generalizes the notion of finite number in a natural way, so that one can say that sets of 

very large Lebesgue measure are “typical” (typicality approach). 

But still, these objectively distinguishing characteristics of the Lebesgue measure 

bear no obvious connection to probability – at least in the sense of probability as actual 

frequency, which is the sense that seems to be most conspicuous to many physicists. It is 

one question what the Lebesgue measure or “natural volume” of a certain subset of the 

phase space is, quite another, how frequently one finds the microstate of a statistical 

mechanical system being actually within this subset when one considers real-world 

systems. For a recent discussion, see Ben-Menahem and Hemmo (2012, chs. 3, 4, 6, 8). 

The widespread feeling among physicists seems to be that even if one can give 

compelling arguments that a certain measure is the natural one for a continuous state 

space due to its generalizing the notion of number or respecting well-established 

physical symmetries or conservation laws, the case for its probabilistic interpretation 

remains shaky. 

In contrast to this, I would like to maintain, in the spirit of von Kries, that one 

should not tie probabilities too close to actual relative frequencies. If there are naturally 

distinguished modes of representation of initial states that give the outcomes of 
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processes definite proportions within the set of possible initial states, and if, moreover, 

the respective state spaces are original in the sense that there is no mechanism that 

generates special inputs to them, we are entitled to view deviating relative frequencies 

as mere coincidences that should not guide our expectations. 

Most modern philosophers who hold views similar to those of von Kries share the 

physicists’ doubt, however. They are not satisfied with pure “range considerations”, but 

put in one way or other constraints on the distributions of actual initial conditions. They 

are only prepared to take the “ranges” as truthmakers for probability statements when 

actual occurrences of initial states follow suit. See Roberts (this volume) for a 

comprehensive discussion of this “input problem”. 

Marshall Abrams’s (2012a) account turns everything I have said here upside 

down by deriving the measure on the state space from those initial states that appear in 

actual experiments. Thus, for him there is neither a problem of justification of the choice 

of measure nor of eccentric distributions on the state space. The difficulties with which I 

have struggled here at length simply dissolve because they go into the construction of 

the measure with which the state space is equipped. This move, however, brings actual 

frequentism back into play. Abrams’s ranges – the “bubbles”, as he calls them – are 

constructed out of actual frequencies. Abrams, to be sure, uses the partition of the state 

space obtained in his way also to explain actual frequencies and as a basis for 

counterfactuals, but ultimately it is global actual frequencies that are in the driver’s seat, 

because they determine the choice of the measure. It is therefore impossible that 

probabilities and actual relative frequencies fall apart globally. 

 An intermediate position is taken by Michael Strevens (2011). His account 

operates with ranges given by standard physical quantities combined with constraints 

on actual distributions of initial conditions. These must approximately match a 
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sufficiently smooth density – Strevens prefers to talk about “macroperiodic” densities – 

and robustly so. This additional qualification is very important. Strevens is not satisfied 

with actual initial states being the right way, in addition, this right way must not be a 

brute fact. If the random process were to be repeated more and more often, very likely a 

density of appropriately bounded variation would emerge for initial states. This 

counterfactual robustness is spelled out in terms of possible worlds: In most nearby 

possible worlds the distributions of initial conditions in most long series of repetitions 

of the experiment can be approximated by a density of appropriately bounded variation. 

Having said this much, one can even exempt the actual world. The ranges give us the 

true probabilities, provided that in most nearby possible worlds the distributions of 

occurrent initial conditions are as indicated, no matter how they are distributed in the 

actual world. In this way, full frequency tolerance of the probabilities is restored and we 

have a fundamental parting from actual frequentism. 

To my mind, this kind of move is a very natural one. But it is also very 

demanding: It presupposes a measure on the set of close possible worlds. The task of 

justifying such a measure seems to lead back precisely to the kind of “range 

considerations” that prompted von Kries’s account. There is no other way to judge the 

counterfactual robustness of actual distributions of initial states than to analyze how the 

initial states come about, by what mechanism they are produced. This means in effect to 

go further back in time and consider prior state spaces, like von Kries does with his idea 

of original ranges. A measure on the set of (close) possible worlds may be a useful 

formal tool, but ultimately it must be based on facts about our world. So, which features 

of the actual world justify the chosen measure for close possible worlds? What could the 

facts be that underlie robustly smooth initial condition distributions? The only 

alternative to an approach in the spirit of von Kries seems to be the path taken by 
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Abrams, namely to base counterfactuals and counterfactual robustness of frequencies on 

measures derived from global actual frequencies. But the latter are taken as brute facts, 

then, and any explanation of them or their counterfactual robustness is shallow, because 

they are the ultimate source of everything else mentioned. 

 Again, it is instructive to take a look at David Lewis’s best-system account of 

chance here (see Lewis 1994). It refers to nothing like the von Kriesian “ranges”, but 

links objective probabilities indirectly to global actual frequencies of events – like 

Abrams and Strevens do, but in a very different manner. The basic idea is that objective 

probabilities come from probabilistic laws of nature, where laws of nature are those 

universal statements that describe our world most efficiently. They may well contain 

probabilities, because probabilistic characterizations can be comparatively simple while 

still being very informative. The objective probabilities are what the laws of nature 

(thusly understood) say they are. Barry Loewer (2001, 2004) and David Albert (2000, 

see also ch. 2 of Ben-Menahem and Hemmo 2012) have applied this approach to the 

probabilities of statistical mechanics. Although there is nothing like a direct or easily 

explicable connection of probabilities and actual frequencies in this approach, there 

must be some connection, and a rather close one too, as probabilities supervene on what 

actually happens and help to describe it in an optimal way. 

Abrams’s, Strevens’s (in one version) and the Lewis-Albert-Loewer approach can 

hardly be called varieties of actual frequentism, but in all of them actual frequencies play 

an important role in fixing objective probabilities. With all of them, it is impossible that 

probabilities and actual relative frequencies fall apart across the board. The empirical 

success of ascriptions of objective probabilities is thereby guaranteed, at least in the 

long run, but I find this position uncomfortable. There seem to be only gradual 

differences between short, medium-sized, and long runs, or between three tosses of a 
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coin, a thousand tosses, or all such tosses ever conducted during the history of the 

universe. Even if they all yielded “heads”, this could just be a huge coincidence, not 

affecting the objective probability of “heads”. This, at least, is a definite possibility given 

the usual mode of application of the probability calculus. Admittedly, the coincidence 

would be still greater than with three or thousand “heads” in a row, and consequently, 

the probability of such an event is even closer to 0, but ultimately the difference between 

these cases is a matter of degree, not of principle. It seems unduly ad hoc to allow 

frequencies that deviate from objective probabilities in short, but not in long runs, or 

locally, but not globally. 

According to von Kries, it is the nomological aspect of reality in the sense of the 

dynamical laws of physics that delimits the ranges and thereby fixes the probabilities. 

These ranges, or their relative sizes, allow us to genuinely explain and predict actual 

frequencies of outcomes, using the weak law of large numbers or related theorems. All 

these explanations and predictions are, as it should be, probabilistic in themselves, and 

the emerging second-order-probabilities can in turn be interpreted according to the 

range conception. The state space associated with k independent repetitions of an 

experiment E is simply the k-fold Cartesian product of the state space associated with E 

with itself. But at no stage is there anything like a strict connection between 

probabilities and actual events. The price to pay is that the probabilities emerging in this 

way provide no definite guide to what actually happens. Ascriptions of objective 

probabilities are not guaranteed to be empirically successful. But who would have 

expected that much from probabilities? 
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