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The question of what structures-as-universals are can be approached in a fur-
ther way, namely, by searching for an identity criterion for structures. There is a re- identity criteria for structures

stricted and an unrestricted version of this goal: in the restricted version, we look for restricted . . .

a criterion which determines for arbitrary structures S1 and S2, say, the respective
structures of given systems S1 and S2, whether they are identical; in the unrestricted
version, we want a criterion which determines identity for arbitrary structures and . . . and unrestricted

arbitrary entities, say, Julius Cæsar. Unrestricted identity criteria for structures will
not be addressed here at all. For restricted identity criteria there are different can- restricted identity criteria:

isomorphism?didates, the most obvious of which is isomorphism. The corresponding candidate
identity criterion would be

(I0) S1 and S2 have the same structure, i.e., S1 is identical with S2, iff S1 and S2

are isomorphic.

But although isomorphism is certainly a sufficient condition for having the same
structure, it is very plausible that it is not a necessary condition. This is easily seen
by looking at the example of lattices. This type of structure can be characterized in example: lattices

two different ways.1 On the order-theoretic characterization, a lattice is a non-empty order-theoretic . . .

set A of objects together with a (partial) ordering2 ‘≤’ on A such that for all a, b ∈
A there are infima3 as well as suprema4 of {a, b}. The other way of characterizing
lattices is algebraic: here, a lattice is a non-empty set A together with two binary . . . and algebraic

operations ∩ and ∪ on A which are associative and commutative5 and satisfy laws
of absorption, i.e., a∪(a∩b) = a and a∩(a∪b) = a, for all a, b.

Prima facie, order-theoretic lattices and algebraic lattices are two different types
of structure, having nothing in common: an order-theoretic lattice can never be
isomorphic to an algebraic lattice, because the former involves one dyadic relation
whereas the latter involves two binary functions. Nevertheless mathematicians con-
sider the resulting theories as just two different ways of characterizing one and the
same type of structure. This is because the two theories are definitionally equivalent:6 definitional equivalence

of theories
∗eMail: Christopher.von.Buelow@uni-konstanz.de ; Homepage: www.uni-konstanz.de/

FuF/Philo/Philosophie/Spohn/vonBuelow
1See, e.g., Davey and Priestley 1990.
2I.e., a dyadic relation ‘≤’ such that for all a, b, c, the following hold: a≤a (reflexivity), a≤b≤c →

a≤c (transitivity), a≤b ∧ b≤a → a=b (antisymmetry).
3I.e., greatest lower bounds: objects iab ∈ A such that iab≤ a, b and for all i ∈ A, if i ≤ a, b then

i≤ iab.
4I.e., least upper bounds, cf. fn. 3.
5I.e., a∪(b∪c) = (a∪b)∪c, a∩(b∩c) = (a∩b)∩c, a∪b = b∪a, and a∩b = b∩a, for all a, b, c.
6See Corcoran 1980, and Wilson 1981 (esp. p. 411), where the term ‘interdefinable’ is used instead.

Cf. also Shapiro 1997, 241.
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Let Th≤ and Th∩∪ be the theories given by the axioms for order-theoretic lattices and
for algebraic lattices, respectively; and consider the following definitions:

i = a∩b ↔ i ≤ a, b ∧ ∀j ≤ a, b: j ≤ i, (D∩)

s = a∪b ↔ s ≥ a, b ∧ ∀t ≥ a, b: t ≥ s; (D∪)

a ≤ b ↔ a∩b = a.7 (D≤)

(Here, a ∩b and a ∪ b are defined to be the infimum and the supremum of {a, b},
respectively, whose uniqueness follows from the axioms. Reading ‘∩’ as ‘infimum’
in this way, a must obviously be ≤ b iff it is the infimum of the two.) Then, the
order-theoretic axioms together with the definitions (D∩) and (D∪) imply both the
algebraic axioms (and thus the whole theory Th∩∪) and the definition (D≤), and vice
versa:

Th≤+(D∩)+(D∪) = Th∩∪+(D≤).

In other words, there is a theory which is a definitional extension8 (via (D∩) and (D∪),
and via (D≤)) of both Th≤ and Th∩∪.

This implies that under the definitions given, there is for every model S1 of thenonisomorphic systems
having the same structure one theory a corresponding model S2 of the other which has the same domain and,

in a certain sense, the same structure (without being isomorphic to S1): for every state
of affairs in S1 that can be expressed by a formula ϕ1 of the one language, there is a
corresponding formula ϕ2 of the other language such that ϕ1 and ϕ2 can be shown
to be equivalent on the basis of either set of axioms together with its supplementary
definition(s); and ϕ1 holds in S1 (under some variable-assignment h) iff ϕ2 holds
in S2 (under h).

The relationship which thus obtains between S1 and S2 can also be characterized. . . because of a common
definitional expansion as follows: Let S1 = 〈A,≤A〉 and S2 = 〈A,∩A,∪A〉, then S̄ := 〈A,≤A,∩A,∪A〉 is a

definitional expansion9 (via (D∩) and (D∪), and via (D≤)) of both S1 and S2:10

〈A,≤A,∩A,∪A〉

〈A,≤A〉

(D
∩
),

(D
∪
)

〈A,∩A,∪A〉.

(D
≤ )

What particular domain S1 has is of course wholly irrelevant for its structure. So,. . . because of isomorphic
definitional expansions for S1 to have the same structure as some other system S2, it should suffice if, in-

stead of having a common definitional expansion, the two systems have isomorphic
definitional expansions. This allows for their having different domains – or the same
domain but with its objects permuted. Thus an order-theoretic lattice 〈A,≤A〉 and
an algebraic one, 〈B,∩B,∪B〉, would have the same structure in this sense if the fol-

7On the right-hand side, ‘a∪b = b’ would do just as well.
8This is what Shoenfield (1967, 60) calls ‘extension by definitions’.
9Or “expansion by definitions” (Shoenfield 1967, 134).

10That S̄ is a definitional expansion of Si corresponds to Si’s being a “full subsystem” of S̄ (cf. Shapiro
1997, 91), and to Si’s being a “truncation” of S̄ containing S̄ as a “subpattern” (cf. Resnik 1981, 536; Resnik
1997, 209).
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lowing situation obtained:

〈A,≤A,∩A,∪A〉
∼= 〈B,≤B,∩B,∪B〉

〈A,≤A〉

(D∩),(D∪)

〈B,∩B,∪B〉.

(D≤)

Generalizing from lattices to arbitrary systems, we get the following candidate structure equivalence

for a concept of having the same structure (and thus for an identity criterion for
structures):

(I ′1) S1 and S2 have the same structure iff S1 and S2 have definitional expansions
S̄1 and S̄2 which are isomorphic.

This can be illustrated with the diagram

S̄1

∼=
S̄2

S1

D1

S2,
D2

where D1 and D2 stand for sets of explicit definitions. This equivalence relation is
called structure equivalence by Shapiro (1997, 91) and corresponds to Resnik’s pattern
equivalence (1997, 209; 1981, 536).11 Structure equivalence is, as it were, isomorphism
modulo definability. Structure equivalence is of course implied by isomorphism.

Structure equivalence is really not just one equivalence relation but rather a whole 〈N, Succ〉 and 〈N, +, 0, 1〉
and definability in
higher-order logicfamily of them. Consider the system of the natural numbers with the successor re-

lation, 〈N, Succ〉, and the system of the natural numbers with addition, zero and 1,
〈N,+, 0, 1〉. There is a simple definition of successorship on the basis of addition
and 1:12

n = Succm ↔ n = m+1, (DSucc)

and, going in the other direction, there are easy definitions of zero and 1 on the basis
of successorship:

n = 0 ↔ ∀m: n 6= Succm, (D0)

n = 1 ↔ n = Succ 0. (D1)

But successorship does not admit – at least not in the language of first-order logic – addition isn’t
1st-order-definable
from ‘successor’of an explicit definition of addition.13 If, however, we allow ourselves to use second-
. . . but it is
2nd-order-definable

order logic, we can give the following definition:

n = l+m ↔ ∀X(3)
[
∀i: Xi0i ∧ ∀i, j, k

(
Xijk → Xi Succ j Succk

) → Xlmn
]
.14

(D+)

11Resnik and Shapiro give characterizations which, though equivalent, amount to the more complicated
diagram

T

S1

∼=
T1

D 1

T2

∼=

D
2

S2.

12In what follows, I use ‘Succ’ as a function symbol for the sake of brevity and readability.
13Given the particular system 〈N, Succ〉, we can characterize addition implicitly via the first-order recur-

sion conditions n+0 = n and n+Succ m = Succ(n+m). These do not constitute an implicit definition in
the sense of fixing, together with the theory of 〈N, Succ, 0〉, the extension of ‘+’ in arbitrary models. Thus
Beth’s Theorem cannot be exploited to infer the existence of an explicit definition.
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So, whereas 〈N, Succ〉 and 〈N,+, 0, 1〉 are not structure-equivalent with respect to
first-order logic (unlike the two lattices 〈A,≤A〉 and 〈A,∩A,∪A〉), they are so with re-
spect to second-order logic. I define two systems S1 and S2 to be n’th-order structure-n’th-order structure

equivalence equivalent iff they have definitional expansions S̄1 and S̄2 with respect to n’th-order
logic which are isomorphic. As isomorphism entails first-order structure equiva-
lence, so n’th-order structure equivalence entails (n+1)’th-order structure equiva-
lence. Thus we get a family of successively coarser-grained equivalence relations for
systems and candidate identity criteria for structures (n > 0):

(In) S1 and S2 have the same structure iff S1 and S2 are n’th-order structure-equiv-
alent.

By accepting structure equivalence, not isomorphism, as the adequate concep-what about “the” relation
places of a structure? tion of sameness in structure, my suggestion that structures have relation and func-

tion places besides their object places (p. ??) seems to be cast into doubt. If the lat-
tices 〈A,≤A〉 and 〈A,∩A,∪A〉, being first-order structure-equivalent, have the same
structure, S, then does S have one relation place or rather two function places?
There doesn’t seem to be any definite array of relation (and function) places which
belongs to S itself; rather, each type of systems exemplifying S has its own array
of relation places: one for order-theoretic lattices isomorphic to 〈A,≤A〉, another for
algebraic lattices isomorphic to 〈A,∩A,∪A〉, still another for their definitional expan-
sions like 〈A,≤A,∩A,∪A〉, etc.

But there is another road open as well. If n’th-order structure equivalence is
taken as the criterion for sameness in structure then we could also consider S as
having a relation place for every relation definable in n’th-order logic from whatevera place for every

definable relation has been taken as basic in the characterization given for S. Thus S, the structure
of 〈A,≤A〉, would, over and above its ≤-place, have a ≥-place to be occupied by the
converse of the ≤-place’s occupant, ∩- and ∪-places for the corresponding binary
operations, and so on. Even the cardinal structures would each have at least one
relation place, viz., the one to be occupied by their respective identity relations. If
we restrict ourselves to first-order logic then 〈N, Succ〉 and 〈N,+, 0, 1〉 have different
structures, with the relation places of the former system’s structure constituting, or
at least corresponding to, a proper subset of those of the latter system’s structure; if,
however, we adopt higher-order logic, these differences are nullified.

So, the concepts of relation, function, and distinguished-object places of struc-
tures shouldn’t be abandoned. One must merely keep in mind that what relation
(etc.) places a structure has depends on which notion of structure one employs, i.e.,
which logic one has chosen; and that there may be more relation places than meet
the eye.

Which identity criterion for structures is the right one? Mathematical practicewhich identity criterion
to choose? strongly suggests that criterion (I0), based on isomorphism, is not it. Also, crite-

rion (I1), based on first-order structure equivalence, seems still too restrictive. In any
case, I see as yet no reason for us to choose. What is important, rather, is that we be
clear that different notions of structure exist (‘iso-structure’, ‘first-order structure’,
‘second-order structure’, etc.), and that, if necessary, we specify which of these we
use at any one moment.

Now, a notion of structure which permits us to add or delete definable relationsadditional definable objects?

14Here, the superscript in ‘X(3)’ indicates that ‘X’ is to be a three-place variable. One could also use a
two-place variable, since l is the only i we need on the right-hand side: n = l + m ↔ ∀X(2)

ˆ
X0l ∧
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in a system without thereby changing its structure may seem very liberal. What
more could one desire? I believe the structure concept could have still more latitude,
namely, it could allow for extensions and truncations of the domain by “definable”
objects.15 This desire is best motivated by taking a look at two ontological theories. → motivation from ontology:

Realists about universals maintain that besides particulars, i.e., ordinary objects, realism about universals . . .

there also exist universals, i.e., properties and relations, which can be exemplified
by particulars. Nominalists, on the other hand, believe there are no universals, only . . . vs. trope-theoretical

nominalismparticulars. The trope-theoretical variety of nominalism, however, contends that in ad-
dition to ordinary particulars there are also nonordinary particulars, tropes, which
are somewhat like particularized universals: Instead of all red things exemplifying
one single universal, redness, each red thing has its own particular red-trope. Dif-
ferent red things do not have anything (any entity) in common; rather, their colour
tropes are similar to each other, and dissimilar to, e.g., green-tropes.

Let’s bring these competing ontological theories into mathematical form by con-
ceiving of their respective pictures of the world like mathematical systems. The
world as envisioned by the realist is a system 〈DR,U, E〉, where the domain DR con-
tains what exists according to the realist, viz., ordinary particulars and universals.
The universals are picked out by the monadic relation U, and the dyadic relation E
specifies which particular, i.e., non-universal, exemplifies which universal. – The
world of the trope-theoretical nominalist is a system 〈DT, T,H,S〉, withDT inhabited
by ordinary particulars and tropes. The latter are distinguished from the former via
the monadic relation T, the dyadic relation H specifies which ordinary particular has
which trope, and S is an equivalence relation that holds exactly between those tropes
which are similar to each other.

Realists and nominalists alike asseverate that these two ontological theories are serious opposition . . .

contrary to each other: they cannot both be true. Universals either exist or they don’t,
and likewise for tropes. Many authors take these putative differences seriously, but
I find it impossible to do so. To me these theories look rather like two different ways . . . or just superficial variants?

of describing the same world structure, just as talking about order-theoretic lattices
and talking about algebraic lattices are merely two different ways of talking about a
single type of (first-order) structure.

Even though in the specification of the trope-theoretical system 〈DT, T,H,S〉 uni- hidden universals in the
trope-theoretical systemversals and exemplification are nowhere mentioned explicitly, nevertheless the sys-

tem in some sense contains them implicitly, by containing all the information neces-
sary to reconstruct them. Take as “universals” the equivalence classes of tropes with
respect to similarity; i.e., for each t ∈ T let [t]S = { t ′∈T | t ′S t }, and define (the set
of) universals for trope theory by

UT := T/S =
{

[t]S
∣∣ t ∈ T

}
.

Then define trope-theoretical exemplification by letting the ordinary particular x ex-
emplify an ersatz universal [t]S iff x has a trope similar to t; i.e., for all x ∈ DT\T and
t ∈ T :

x ET [t]S iff there is a t ′∈ [t]S such that xH t ′.

Similarly, the realist system implicitly contains tropes. All we have to do to see hidden tropes in the
realist system

∀j, k
`
Xjk → X Succ j Succ k

´ → Xmn
˜
.

15This notion of object definability is not the ordinary one. In the ordinary sense, an object is definable
iff it is definable as a distinguished object, i.e., iff a monadic relation true of only this object can be defined.
In this sense, zero and 1 are definable in 〈N, Succ〉 (p. 3). This doesn’t affect the domain since these objects
were in it beforehand.
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this is “index” universals uwith particulars x exemplifying them, i.e., define (the set
of) the realist’s tropes by

TR :=
{
〈x, u〉 ∈ DR×U

∣∣ x /∈U and xEu
}
.

Define having of these surrogate tropes by stipulating that, for ordinary particulars
x, y ∈ DR\U and universals u ∈ U ,

x HR 〈y, u〉 iff x = y.

Finally, define “tropes” to be similar to each other iff the universals they contain as
their second components are identical:

〈x, u〉 SR 〈y, u ′〉 iff u = u ′.

Thus we get natural bijections between the objects of the one theory and con-natural bijections
between domains structions from the objects of the other theory: to a universal (say, redness) there

corresponds a certain S-equivalence class of tropes (the set of red-tropes); to a (red-)
trope there corresponds a certain indexed universal, i.e., a pair consisting of a partic-
ular and a universal exemplified by it (say, the oldest fire engine in Constance, and
redness); and the ordinary particulars are anyway the same in both theories. Build-
ing on this bijection we then get a factuality-preserving correspondence between
states of affairs in the two systems.

There is one potential stumbling block: the procedure as sketched will only yieldunexemplified universals?

such a bijection if all universals are exemplified. If unicornhood is a universal then
it is an unexemplified one, and in the absence of unicorns, neither are there unicorn-
hood-tropes to correspond to the universal. So, do these two theories describe dif-
ferent world structures after all? I will deal with this problem later on; for the nonce
let us assume that universals are always exemplified.

The structural similarity between the realist theory and the trope theory looks“definitional equivalence”?
– 1st attempt: 1-sorted somewhat like definitional equivalence (p. 1). Let us see how far we get by trying

to prove this. The axioms for realist systems 〈DR,U, E〉 would have to be the follow-axioms for realism

ing.16 Every universal is exemplified:

Uu → ∃x xE u; (R1)

exemplification E is always of universals by particulars, i.e., by non-universals:

xE u → ¬Ux∧ Uu; (R2)

and there are universals:
∃u Uu. (R3)

Together, these axioms imply that there are particulars: there is a universal (R3), it is
exemplified (R1), and what exemplifies it must be a particular (R2).

The axioms for trope-theoretical systems 〈DT, T,H,S〉, on the other hand, wouldaxioms for trope theory

be as follows. For every trope t, there is exactly one object which has t:

T t → ∃!x xHt; (T1)

similarity S is an equivalence relation:

tS t ∧ (sS t → tS s) ∧ (rS s∧ sS t → rS t); (T2)

16For the sake of readability, I use the letters ‘U ’ and ‘E ’ (and ‘T ’, ‘H’, ‘S’) in the object-language, too.
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“having” H is always of tropes by ordinary particulars, i.e., by non-tropes:

xHt → ¬T x∧ T t; (T3)

similarity is only between tropes:

sS t → T s∧ T t; (T4)

and there are tropes:
∃t T t. (T5)

Like before, these imply that there are (ordinary) particulars.
Now we have to find definitions for the concepts of each theory’s complement. definitions of U and E

in trope theoryThe task is easier in the case of trope theory. “Universals” are S-equivalence classes,
i.e., certain sets of tropes, so we define UT to be the monadic second-order relation
which applies to a set U ⊂ DT iff there is a trope t such that U is the set [t]S of those
tropes which are similar to t:

UTU
(1) ↔ ∃t

[
T t ∧ ∀s(Us ↔ sS t)

]
. (DU )

The objects s in U must then be tropes because of axiom (T4). “Exemplification”
is a mixed first/second-order relation between particulars x on the one hand and
“universals” U on the other which obtains iff x has a trope in U:

xETU
(1) ↔ UTU ∧ ∃t(Ut ∧ xHt). (DE)

In this case xmust be an ordinary particular because of axiom (T3).
Proceeding to realism, if we try to represent tropes as pairs, as we did in the definitions of T, H and S

for realistspreceding informal account, and use for this purpose the Kuratowski definition
〈a, b〉 :=

{
{a}, {a, b}

}
, then the property of being a “trope” 〈x, u〉 turns out to be

third order,17 and rather complicated besides. In the context of our formalized real-
ist theory, however, we can make do with second-order logic, by defining “tropes”
to be sets containing (exactly) two objects x, u such that x exemplifies u:

TRT
(1) ↔ ∃x, u

[
xE u ∧ ∀z(Tz ↔ z=x∨ z=u)

]
. (DT )

Axiom (R2) then guarantees that x is a particular and u is a universal. The “having”
of these “tropes” can be defined correspondingly as membership of a particular in
such a “trope”:

xHR T
(1) ↔ ¬Ux ∧ TRT ∧ Tx. (DH)

Finally, two “tropes” S and T are “similar” to each other iff they have a universal u
as a common member, that is, iff the universals they contain are identical:

S(1)SR T
(1) ↔ TRS ∧ TRT ∧ ∃u(Uu∧ Su∧ Tu). (DS)

One could now go ahead and try to prove that (R1)–(R3), (DT ), (DH), (DS) to- “definitional equivalence”?
– translation problems!gether imply (T1)–(T5), (DU ), (DE), and vice versa, and thus demonstrate that the

two theories are definitionally equivalent. This cannot work as straightforwardly
as it did for lattices and for number theory, because here the analogues of some
of the first-order objects of the one theory (say, the realist’s universals) are second-
order objects of the other (trope-theoretical “universals”). This means that we have

17Sets of sets of objects are second-order “properties”, i.e., third-order objects.
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to translate parts of the axioms and definitions. For example, the realist axiom (R1)
(Uu → ∃x x E u) would have to become ‘UTU

(1) → ∃x x ETU’ to be adequate for the
formalized trope theory. This wouldn’t constitute such a great obstacle if it weren’t
for the fact that some formulae do not have syntactically well-formed translations.
If we perfunctorily translate axiom (R2) (x E u → ¬Ux ∧ Uu), we get ‘x ET U

(1) →
¬UTx∧UTU’; but ‘UTx’ makes no sense, since the predicate ‘UT’ is reserved for second-
order variables, variables for sets, not for first-order objects.18 Analogous problems
arise for attempts to translate, conversely, from trope-theoretical language to realist
language.

To avoid these problems it seems best to supplant the one-sorted languages we“definitional equivalence”?
– 2nd attempt: 2-sorted have hitherto used with two-sorted languages. Realist systems then have two do-

mains: a nonempty set of (ordinary) particulars, P, and a nonempty set of univer-realist systems and axioms

sals, U. The variables ‘x’, ‘y’, ‘z’ (possibly with primes ′ or with subscripts) are to
get their values from within P, the variables ‘u’, ‘v’, ‘w’ (possibly with primes or
subscripts), from within U. The job of differentiating between universals and partic-
ulars is thus done by these two kinds of first-order individual variables, rendering
the predicate ‘U ’ obsolete. We keep the relation symbol ‘E ’, which must now be in-
terpreted as a subset of P×U. So, a realist system has the form 〈P,U; E〉 (where the
semicolon is used to separate domains from relations). As axioms we only need a
modified version of (R1) now:

∀u ∃x xE u, (R ′
1)

because what had to be stated explicitly in (R2) and (R3) on our former account is
now contained implicitly in the language and its semantics.

Trope-theoretical systems similarly have two domains P and T, containing thetrope-theoretical systems
and axioms ordinary particulars and the tropes, respectively. We use the variables ‘x’, ‘y’, ‘z’

(and variants thereof) for ordinary particulars again, and the variables ‘r’, ‘s’, ‘t’ (and
variants), for tropes. Like ‘U ’, the predicate ‘T ’ is obsolete; and we can dispense with
axioms (T3)–(T5), stipulating that H ⊂ P×T and S ⊂ T2. Thus a trope-theoretical
system 〈P, T ;H,S〉 must merely satisfy the axioms

∀t∃!x xHt (T ′
1)

and
tS t ∧ (sS t → tS s) ∧ (rS s∧ sS t → rS t). (T2)

The definitions we need for trope theory are almost as before (slightly simpler,new definitions of U and E
for trope theory in the case of (D ′

U )); I use the superscript ‘(T)’ instead of ‘(1)’ to indicate that the
second-order variable ‘U’19 is monadic with arguments from the set T of tropes.

UTU
(T) ↔ ∃t∀s(Us ↔ sS t); (D ′

U )

x ETU
(T) ↔ UTU ∧ ∃t(Ut ∧ xHt). (D ′

E)

As for realism, it seems cleaner to conceive of “tropes” not as properties, whichnew definitions of T , H and S
for realism would have to be domain-spanning now, but rather as relations between a unique

18Nor does it help to introduce an additional predicate ‘P ’ for ‘particular’, and use ‘Px’ instead of ‘¬Ux’
in (R2) and (DH): we would again have theorems like ∀z(Pz ∨ Uz), which aren’t usefully translatable.

19I apologize for more ambiguities to be resolved by context: whereas ‘U’ stands for the set of universals
in the context of realism, it is a second-order variable in the context of trope theory; analogously for ‘T ’.
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particular and a unique universal, “arrows” from P to U, as it were:20

TRT
(P,U) ↔ ∃x, u

[
xE u ∧ ∀y, v(Tyv ↔ y=x∧ v=u)

]
; (D ′

T )

xHRT
(P,U) ↔ TRT ∧ ∃u Txu; (D ′

H)

S(P,U)SR T
(P,U) ↔ TRS ∧ TRT ∧ ∃x, y, u(Sxu∧ Tyu). (D ′

S)

Before we proceed to prove the “definitional equivalence” of the two theories, it translations

will be helpful to specify the translations that are to be employed. The realist lan-
guage we are dealing with is supposed to be talking about ordinary particulars, uni-
versals and “tropes” only, not about arbitrary sets, relations, or functions on the two
domains P andU. This means that second-order variables ‘R’, ‘S’, ‘T ’, . . . only appear
in quantifications of the forms ∀T (P,U)

[
TRT → ϕ(T)

]
and ∃T (P,U)

[
TRT ∧ ϕ(T)

]
, with

‘T ’ free in ϕ(T). I designate the trope-theoretical translation of a realist formula ϕ
by ‘Tϕ’. The translation can thus be determined by the following recursion clauses: translation from realist

language to trope-theoretical
Tx=y := x=y,

Tu=v := U(T) = V(T),

TS=T := s=t,

TxE u := xETU
(T),

TxHRT := xHt,
TSSRT := sS t,

TTxu := xHt ∧ Ut, (∗)
T¬ϕ := ¬Tϕ,

T(ϕ∧ψ) := Tϕ∧ Tψ,

...
T∀x ϕ(x) := ∀x Tϕ(x),

T∃x ϕ(x) := ∃x Tϕ(x),

T∀u ϕ(u) := ∀U(T)
[
UTU → Tϕ(U)

]
,

T∃u ϕ(u) := ∃U(T)
[
UTU∧ Tϕ(U)

]
,

T∀T (P,U)
[
TRT→ϕ(T)

]
:= ∀t Tϕ(t),

T∃T (P,U)
[
TRT∧ϕ(T)

]
:= ∃t Tϕ(t).

The formula ‘Txu’ in (∗), which somewhat artificially mixes universals and tropes,
must nevertheless be accounted for; it is best read as: ‘T is the u-trope of x’ – like,
e.g., the fire engine’s colour-trope is a red-trope. Analogously, the formula ‘Ut’ – see
(†) below – of the extended trope-theoretical language can be read as: ‘t is aU-trope.’
This explains the way they appear in each other’s translations.

Matters are similar for the translation of trope-theoretical formulae ϕ to realist translation from trope-
theoretical language to realistformulae Rϕ:

Rx=y := x=y,

Rs=t := S(P,U) = T (P,U),

20The superscript ‘(P,U)’ indicates that the first argument is to be from P, and the second, from U.
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RU=V := u=v,

RxHt := x HR T
(P,U),

RsS t := S(P,U) SR T
(P,U),

RxETU := xE u,
RUt := ∃x Txu, (†)

R¬ϕ := ¬Rϕ,

R(ϕ∧ψ) := Rϕ∧ Rψ,

...
R∀x ϕ(x) := ∀x Rϕ(x),

R∃x ϕ(x) := ∃x Rϕ(x),

R∀t ϕ(t) := ∀T (P,U)
[
TRT → Rϕ(T)

]
,

R∃t ϕ(t) := ∃T (P,U)
[
TRT ∧ Rϕ(T)

]
,

R∀U(T)
[
UTU→ϕ(U)

]
:= ∀u Rϕ(u),

R∃U(T)
[
UTU∧ϕ(U)

]
:= ∃u Rϕ(u).

Now we can go ahead and prove (a) the translations T(R ′
1), T(D ′

T ), T(D ′
H), T(D ′

S)
of the realist axioms and definitions on the basis of the trope-theoretical axioms
and definitions, and (b) the translations R(T ′

1), R(T2), R(D ′
U ), R(D ′

E) of the trope-
theoretical axioms and definitions, on the basis of the realist axioms and definitions.
The proofs themselves are easy and uninteresting.21

As an example, I present an informal proof of the translated first axiom of tropeproof of R(T ′1) in
the realist setting theory, R(T ′

1), i.e.,

∀T (P,U)(TRT → ∃!x xHRT),

in the realist setting: Let T (P,U) be arbitrary (i.e., an arbitrary subset of P×U) with TRT.
According to (D ′

T ), this means:

∃x, u
[
xE u ∧ ∀y, v(Tyv ↔ y=x∧ v=u)

]
. (1)

Let x and u be fixed; reading the biconditional from right to left we get Txu, i.e., T is
the u-trope of x. The two propositions TRT and Txu together imply xHRT (see (D ′

H)):
x has T ; so all that is left to show is that x is the only ordinary particular which has T.
Let y be arbitrary with yHRT. By (D ′

H), this entails that there is a universal v such
that Tyv, and, reading the biconditional in (1) from left to right now, we derive that
y = x – which completes the proof.

We can now see the extended sense in which these two ontological theories are
definitionally equivalent, and also the extended sense in which additional objects
may be definable in a system. And finally we get a notion of “having the same
structure” which is even more liberal than structure equivalence – or is it??

21In some places one has to make use of the axiom schema of comprehension to secure the existence of
certain second-order entities.
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