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This paper gives a detailed formal characterization of dependency equilibria — a
novel solution concept for games that provides a natural extension of Nash equi-
libria to strategic interactions where the standard assumption of non-cooperative
game theory of the causal independence of the players’ choices is retained, but the
assumption of their probabilistic independence is forgone. Hence, players’ beliefs
may be entangled, i.e., permit probabilistic dependencies between their choices,
in which case they maximize conditional expected utility (in contrast to correlated
equilibria, where players maximize posterior unconditional expected utility). We
demonstrate how this novel equilibrium concept can account for seeming out-of-
equilibrium behavior in a variety of experimentally and socially relevant games.
We further provide lower and upper bounds for the existence of dependency equi-
libria, determine epistemic conditions for their obtaining, and demonstrate how
certain simple iterative belief revision algorithms can lead players into a common
dependency equilibrium state.
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1. INTRODUCTION

Nash equilibria (NE) are the cornerstone of non-cooperative game theory. Characteristi-
cally, they assume the causal independence of players’ strategy choices. This is reflected
in the probabilistic independence of players’ mixed strategies in a NE. Or, if one inter-
prets a NE as an equilibrium of beliefs, as in epistemic game theory, causal indepen-
dence is taken to imply that each player views the choices of all players as evidentially
independent of one another. This has been understood since NE were first conceived.
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Indeed, the indicated step from the causal to the probabilistic independence of mixed
strategies has been taken for granted as well and has rarely been felt to require justifica-
tion.

In fact, though, this probabilistic independence is a strong and unrealistic assump-
tion that is likely to be violated. We should instead envisage players as having entangled
belief systems that allow for probabilistic dependencies amongst their actions or strat-
egy choices.1 The choices of other players are then treated, in decision theoretic terms,
not as independent, but as dependent states of the world. How should an agent ratio-
nally behave given such entangled belief systems? By maximizing conditional expected
utility. This is the general decision rule applicable when states are act-dependent (see
Fishburn (1964)). It reduces to maximizing unconditional expected utility only when the
expectation is taken with respect to probabilistically independent states of the world, as
developed by Savage (1954). In a NE, each player attempts to maximize his or her uncon-
ditional expected utility. However, in entangled belief systems, where players view their
choices as probabilistically dependent, only the conditional sense of maximizing ex-
pected utility applies. In a dependency equilibrium (DE), as proposed here, each player
attempts to maximize conditional expected utility and can do no better in this regard by
changing to another choice. So, DE are entirely in the spirit of best-response reasoning,
preserving the core idea of NE and extending their application to cases in which players’
choices are probabilistically dependent. It is this extension we study in this paper.

One may interject that Aumann (1974) has already provided an equilibrium notion
designed for probability distributions in which the choices of players are not indepen-
dent, namely the by now standard notion of a correlated equilibrium (CE). We will care-
fully explain the distinction between CE and DE in Section 4.1 and argue that the treat-
ment of dependence should not be left to CE, but is significantly enhanced by DE.

Why should we consider entangled belief systems and the novel equilibrium notion
they entail? It seems that the independence in NE is an extreme limiting case, just as
would be full dependence. Reality mostly moves between the extremes. It should be
clear that entangled belief systems are ubiquitous. In the comparative Section 3 we shall
discuss a variety of phenomena displaying dependence and proposals trying to cope
with it. We will find that they either are more complicated or fail to be general. They all
differ from our treatment.

Alas, these phenomena and considerations are not well reputed in standard game
theory. Why? This is because the causal independence of players’ strategies is constitu-
tive of non-cooperative games in normal form. And it is taken to entail the probabilistic
independence of these strategies. Thus, entangled belief systems as envisaged here ap-
pear to exemplify something like magical thinking, the false notion that a player’s action
can causally influence her opponents’ actions.

However, inferring probabilistic from causal independence is generally a fallacy. Ac-
cording to the widely accepted common cause principle of Reichenbach (1956) (ch. 19)
every probabilistic correlation must be either a causal one itself or generated by some

1When speaking of entangled belief systems, we mean just this. No allusion to quantum theoretic entan-
glement is intended. Quantum game theory is foreign to this paper.
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common cause.2 So, if the entangled beliefs are to have a causal base, it need not come
from the players’ belief that their actions causally influence one another’s actions, which
would contradict the presupposition of games in normal form; it may rather come from
the players’ belief that they are mutually influenced by a common cause.

Still, it seems that this inference can be saved in the case at hand. One may point out
that the players’ actions or choices are exogenous variables in decision or game mod-
els. They are, in the terminology of causal Bayes net theory, interventions that are ex-
ogenous (= parent-less) in the relevant causal Bayes net since they are truncated from
all causal predecessors they might have had.3 This is the distinctive characteristic of
causal decision theory to which game theorists are attached. Hence, in the players’ eyes,
there can’t be a common cause of their choices. This entails that the exogenous choices
can be evidentially relevant only for their causal effects and excludes any probabilistic
dependence between the players’ actions. Hence, inferring probabilistic from causal
independence seems justified in the case of NE.

Alas, this argument is faulty. Spohn (2003) has suggested that there still may be a
common cause of the players’ choices. Individual decision theory must conceive the
action or choice of an agent as caused by her mental set-up, her beliefs and desires or
probabilities and utilities, i.e., precisely by her subjective model of her decision situa-
tion. Game theory may conceive of players’ choices as being caused in the same way.
Prior to their choices, there is plenty of time for causal interaction between players’
mental set-ups. If so, these interacting mental set-ups provide a common cause of their
choices. For instance, in the original PD story the two criminals have a long career of
joint crimes and plenty of occasions to form entangled beliefs which they need not give
up when separated by the police in their prison cells. In some such way, the probabilistic
dependence allowed in dependency equilibria may have a causal background after all.
This is the basic reason why entangled belief systems and their associated DE should be
taken seriously even within the setting of non-cooperative game theory and its causal
presuppositions. We shall unfold this point in Section 4.1.

This paper begins developing the theory of DE in various directions. It will proceed
as follows: Section 2 presents basic definitions, theorems, and examples. In Section 2.1,
we define and compare NE, CE and DE in the case of completely mixed strategies; in
this case the comparison is particularly palpable. In Section 2.2, we remove the restric-
tion from the previous section and give two equivalent general definitions of DE, one in
terms of Popper measures and one in terms of lexicographic probabilities. Moreover, we
specify tightest lower and upper bounds for the existence of DE (which, however, will
leave a large space in between). Section 2.3 looks at three prominent two-person games
in order to showcase the novel DE solution concept in action. It behaves in significantly
different ways; see in particular our discussion of PD and the ultimatum game.

Section 3 offers two kinds of rationalization of DE. In Section 3.1, we copy epistemic
game theory by showing that common or, rather, second-order mutual knowledge of

2Quantum theoretical phenomena like the Einstein-Podolsky-Rosen paradox seem to be exceptions. There
is some debate in philosophy whether there are also ‘ordinary’ exceptions (see Cartwright (2007)), but this
need not concern us here.

3This is the core of the prevailing interventionist theory of causation, as paradigmatically developed, e.g.,
by Pearl (2009). See there in particular Section 3.2.3.
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the game, of rationality (in the form of maximizing conditional expected utility), and of
entangled beliefs entails a DE. This rationalization works just as well as in the case of NE.
It may be criticized for its strong common knowledge assumptions. Therefore, the much
less demanding evolutionary rationalizations or explanations of equilibrium behavior
have become popular; see Sandholm (2010). This is the topic of Sections 3.2 and 3.3.
Section 3.2 rehearses how NE can be reached by an evolutionary dynamics. That is, it
does so in its reinterpretion as a deliberational dynamics, as suggested by Skyrms (1990)
(Section 3.2). This interpretation is the more suitable one for us. In Section 3.3, then,
we show how this account can be generalized to DE, and we shall propose two natural
classes of dynamics that may converge to DE (that need not be NE), if they converge at
all. The important upshot is: Evolutionary rationalizations apply to DE too.

Section 4, finally, is devoted to an extensive comparative discussion. Section 4.1
thoroughly compares CE and DE in order to reject the idea that CE are a sufficient treat-
ment of the phenomenon of dependent beliefs. In Section 4.2, we argue that social
norms and conventions are better captured by DE rather than by CE, as proposed by
Vanderschraaf (1995) and Gintis (2009). Section 4.3 pursues the same aim vis à vis the
suggestion of Binmore (2010) to explicate social norms via NE in in(de)finite repetitions
of games. Quite a different approach to explaining cooperative behavior was put for-
ward by Roemer (2019) with his idea of so-called Kantian equilibria. They have a moral
touch. We shall see in Section 4.4 that Kantian equilibria are a special case of DE. Self-
similarity need not be morally enforced, though, as conceived by Roemer. It seems to
be quite a natural psychological tendency. Then, however, it is treated as the fallacy of
magical thinking in the economic literature. This is discussed in Section 4.5, again with
the aim of making clear that DE do not fall prey to this fallacy.

The motivation of program equilibria (Tennenholtz (2004)) and translucent equi-
libria (Halpern and Pass (2018)) resembles that of our entangled belief systems. They
also implement the idea that players’ decision procedures are mutually partially or fully
transparent, so that players’ actions are believed to be dependent. This is addressed in
Sections 4.6 and 4.7. We shall see, however, that the formal explications diverge largely.
Finally, we discuss the most suggestive idea that entangled belief systems rest on some-
thing like evidential reasoning. Al-Nowaihi and Dhami (2015) take up this idea and sub-
sume it under the heuristics and biases program in cognitive psychology. As we shall
see in Section 4.8, their notion of a consistent evidential equilibrium comes closest to
our DE, but they are still not the same, and their interpretation is quite different. DE are
not intended as an expression of bounded rationality. Section 4.9 finally explains that
DE may find sympathy among evidential decision theorists, mainly found in philoso-
phy. Just as NE build on causal decision theory, DE build on evidential decision theory.
However, we emphasize that DE are not committed to this subsumption. As already
indicated above, there is a causal story underlying entangled belief systems.

Section 5 provides a very brief conclusion.
This paper builds on Spohn (2003), where the idea of DE was first proposed. How-

ever, that paper had a different interest. It was largely concerned with causation-
and decision-theoretic foundations, while the game-theoretic consequences were little
worked out. It did not go beyond two-person games, a few examples, and a somewhat
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weaker version of Theorem 2 below. We still think that these foundations are important.
However, in this paper we want to remedy this neglect and focus on the game-theoretic
consequences. All in all, this paper is to demonstrate the significance, plausibility, and
tractability of the novel notion of DE in various game-theoretic fields, to an extent show-
ing that it deserves further attention and development.

2. DEPENDENCY EQUILIBRIA: DEFINITIONS, EXAMPLES, AND SOME THEOREMS

2.1 Nash, Correlated, and Dependency Equilibria: The Completely Mixed Case

Let us try to make precise the vague suggestions made so far, dealing only with games
in normal form. We leave it open how to transfer our ideas to games in extensive form.
Neither do we strive for maximal mathematical generalization. We are happy to deal
with finitely many players pondering about finitely many pure strategies. So, let I :=

{1, . . . ,m} be the set of players, and Si (i= 1, . . . ,m) be the set of pure strategies of player
i. Si is finite and has at least two members. Let S :=×i∈ISi be the set of strategy profiles,
with a typical element s= (si, s−i), where si ∈ Si and s−i ∈ S−i :=×j ̸=iSj . We speak of
strategies here, as is common in game theory. However, it may be advisable to simply
conceive of them as actions. The task of defining dependency equilibria for games in
extensive form in which strategies can be detailed is beyond the present paper.

Each player i has a utility function ui defined on the strategy profiles; i.e., ui : S →R.
Such a set-up γ :=

(
I, (Si)i∈I , (ui)i∈I

)
is called a game in normal form4; Γ denotes the

set of all such games. Finally, let ∆(S) be the set of all probability distributions over S,
∆+(S) the set of all completely mixed distributions p ∈∆(S) for which p(si) = p({si} ×
S−i) > 0 for all i ∈ I and si ∈ Si,5 and ∆⊥(S) be the set of probability distributions b ∈
∆(S) for which there are bi ∈∆(Si) for all i ∈ I such that b = ⊗i∈Ibi (i.e., in b each bi is
probabilistically independent from all the other bj ; the letter b is to signal this).6

For comparison, let us rehearse the traditional notions:

DEFINITION 1. Let γ ∈ Γ. Then b ∈∆⊥(S) is a NE in γ iff for all i ∈ I , si ∈ Si with b(si)> 0,
and s′i ∈ Si,∑

s∈S

ui(s)b(s) =
∑

s−i∈S−i

ui(si, s−i)b(s−i)≥
∑

s−i∈S−i

ui(s
′
i, s−i)b(s−i). (1)

Here, we may interpret bi as a mixed strategy of player i. In a NE player i can do no better
in terms of expected utility than choosing the mixed strategy bi, given the other players
stick to their mixed strategies in the NE. Or we may interpret a NE b as an equilibrium of
beliefs. Then bi expresses the expectation the other players have about player i. And the
NE b expresses the idea that the choices of the players are believed to be probabilistically
independent and that, given her expectations about the other players, each player can

4Throughout this text γ always represents a tuple
(
I, (Si)i∈I , (ui)i∈I

)
.

5Note that this is slightly weaker than requiring that p is strictly positive or regular. For a completely mixed
p ∈∆+(S) we might still have p(s) = 0 for some s ∈ S.

6If b ∈∆⊥(S) is completely mixed, then, of course, b is strictly positive.
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do no better in terms of expected utility than taking one of the pure strategies ascribed
positive probability by the other players. For us, this will be the preferred interpretation.

The independence assumption is given up in the idea of correlated equilibria first
ventured by Aumann (1974). Any distribution p ∈∆(S) can be a CE. To be precise, two
definitions are in use, as observed by Aumann (1987) (p. 12). Right now, we present only
the definition of what is called a CE distribution (by Aumann) or a canonical CE, because
it is directly comparable with the definition of NE and that of DE to be given. Aumann’s
original definition is a different one. We shall return to this point in Section 3.1.

DEFINITION 2. Let γ ∈ Γ. Then p ∈∆(S) is a (canonical) CE in γ iff for all i ∈ I , si ∈ Si

with p(si)> 0, and s′i ∈ Si,∑
s∈S

ui(s)p(s) =
∑

s−i∈S−i

ui(si, s−i)p(s−i|si)≥
∑

s−i∈S−i

ui(s
′
i, s−i)p(s−i|si). (2)

Here, p can be interpreted as a joint mixed strategy profile. Myerson (1991) (p. 253)
suggested that a mediator plays out this mixture and informs each player only about her
assignment. Should a player accept her assignment? After the assignments, p results in
a certain expected utility for each player i. If, for all players i, this is not exceeded by
the expected utility of any of i’s pure strategies with respect to the probabilities p(s−i|si)
conditional on the mediator’s assignment of si, then, and only then, p is a correlated
equilibrium in which no player has a reason to abolish the dependence. This may be
interpreted as an equilibrium of beliefs, too. The beliefs of each player i about what
the others will do all derive from one joint distribution p and the mediator’s assignment
of si. Then, in a CE p, abolishing the dependence and choosing independently of the
others cannot be better in terms of expected utility than accepting the dependence and
playing out p by following the proposal.

We want to suggest that this is not the only standard of comparison and perhaps not
the most suitable one. As the second and third term of (2) make clear, in a CE we com-
pare the conditional expected utilities of the si mixed by p(si) with the unconditional
expected utilities of the s′i after the mediator’s assignment of si. However, once we allow
probabilistic dependence between choices and ‘states of the world’, i.e., the other play-
ers’ choices, optimization is always about conditional expected utilities. This is how we
roughly explained the idea of dependency equilibria in the introduction.

DEFINITION 3. Let γ ∈ Γ. Then p ∈∆+(S) is a completely mixed (canonical) DE in γ iff
for all i ∈ I , si ∈ Si with p(si)> 0, and s′i ∈ Si,∑

s∈S

ui(s)p(s) =
∑

s−i∈S−i

ui(si, s−i)p(s−i|si)≥
∑

s−i∈S−i

ui(s
′
i, s−i)p(s−i|s′i).7 (3)

Obviously, this definition works only in the completely mixed case where p ∈ ∆+(S).
Otherwise we might have p(s′i) = 0 so that the last term of (3) is undefined. Getting rid

7This definition was first proposed in Spohn (2003) (p. 200), though only for two-person games.
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of this restriction will require some work beyond the standard probabilistic framework.
We leave this to Section 2.2. Still, let’s stick for a moment to the restricted case, because
it eases the understanding of the basic idea of DE and its comparison with NE and CE.

Let us observe right away:

PROPOSITION 1. For all γ ∈ Γ, each NE in γ is a CE, and each completely mixed NE is a
completely mixed DE in γ, but not vice versa. And there may be completely mixed CE in γ

which are not completely mixed DE in γ, and vice versa.

As to the first claim about CE, Aumann (1974) (p. 78) has proved that the convex closure
of all NE in γ is a subset of the set of all CE in γ and often a proper one. The first claim
about DE is evident. The second claim of Proposition 1 will be verified by examples in
Section 2.3. There we will also see that the restriction of proposition 1 to the completely
mixed case is irrelevant. Thus, CE and DE are two independent generalizations of NE.

The difference between Definitions 2 and 3 immediately catches the eye. Defini-
tion 2 represents optimization by breaking the dependency after receiving the media-
tor’s assignment, while Definition 3 represents optimization within the dependency. No
player can do better in terms of conditional expected utility by changing to a strategy
not receiving positive probability in the equilibrium. Again, one might interpret this
as a choice of a joint mixed strategy combination, e.g., administered by a mediator, to
which all players agree. However, it is perhaps more natural to interpret a DE as an equi-
librium of beliefs. Each player has possibly varying probabilities for the choices of the
other players conditional on her own choices, as dictated by the DE p, and relative to
them she maximizes her conditional expected utilities by choosing one of her options
having positive probability in p. The relation between CE and DE will be discussed in
more detail in Section 4.1.

In Section 1 we have indicated a causal story as to how agents’ beliefs may take such
a shape. We will return to it and related stories in Section 3. Section 3.3 will add an
evolutionary story. Whatever the reasons for the players to be in a state of entangled
belief systems, DE provide the appertaining equilibrium concept. Let us study them
more carefully.

2.2 Dependency Equilibria: The General Case and Some Observations

Due to its restriction to completely mixed distributions, Definition 3 of DE was not yet
satisfactory. Of course, we must not confine DE to such distributions. Let’s get this
straight in this section. The obvious idea is to approximate the general case by com-
pletely mixed distributions. This leads to

DEFINITION 4. Let γ ∈ Γ. p ∈∆(S) is a limit dependency equilibrium (limDE) iff there
is a sequence (pr)r∈N with pr ∈∆+(S) for all r ∈ N such that limr→∞ pr = p and, for all
i ∈ I and s′i ∈ Si,

lim
r→∞

∑
s∈S

ui(s)pr(s−i|si)pr(si)≥ lim
r→∞

∑
s−i∈S−i

ui(s
′
i, s−i)pr(s−i|s′i).8 (4)

8This definition is also given in Spohn (2003) (p. 201) for two-person games.
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This allows for the possibility that the left terms are smaller than the right terms for all
r ∈ N and reach equality only in the limit. Perhaps one should exclude this possibility.
However, we don’t pursue here this theoretical option.

We should add right away:

DEFINITION 5. p ∈∆(S) is a proper DE in γ iff p is a limDE, but not a NE in γ. p is a pure
DE in γ iff p is a limDE in γ and there is an s ∈ S with p(s) = 1. Otherwise, p is a mixed
DE in γ. And p is a completely mixed DE in γ iff moreover p ∈∆+ (S).

There is another, perhaps more straightforward way to correct Definition 3. We may
assume a probabilistic structure in which probabilities conditional on null propositions
are defined. This is specified in

DEFINITION 6. P is a Popper measure for S iff P (A|B) is defined for all A ⊆ S and all
B with P (B|C)> 0 for some C ⊆ S, such that P (.|B) is a probability measure for S and
P (A∩B|C) = P (A|B ∩C)P (B|C), whenever P (A|B ∩C) is defined. Let ∆Popp(S) be the
set of all Popper measures for S. We will write P (A) for P (A|S).

We use “P " in order to denote this kind of measure. The label honors Popper (1938)
where such a structure was first conceived. There are variations concerning the set of
propositions for which conditional probabilities are defined (see, e.g., Spohn (1986)).

The notion of lexicographic probabilities is perhaps a more familiar way of dealing
with null conditions:

DEFINITION 7. A sequence λ := (λ0, . . . , λq) is a lexicographic probability for S iff each λk
(k ≤ q) is a probability measure for S such that λk+1

(
{s ∈ S : λl(s) = 0 for all l ≤ k}

)
= 1.

Let ∆lex(S) be the set of all such sequences.

However, the two notions are equivalent:

LEMMA 1. Let λ ∈∆lex(S). Define P by P (A|B) = λk(A|B) where k =minl≤q

(
λl(B)> 0

)
.

Then P ∈∆Popp(S). Conversely, let P ∈∆Popp(S). Define λ0 := P (.|S), and if Tk := {s ∈
S : λk(s)> 0}, define λk+1 := P (.|S\

⋃
l≤k Tl). Finally, let q be the largest k + 1 for which

P (.|S\
⋃

l≤k Tl) is still defined. Then λ= (λ0, . . . , λq) ∈∆lex(S). Thus, if T =
⋃

l≤q Tl, P(A
| B) is defined iff B ∩ T ̸= ∅ and undefined iff B ⊆ S \ T .

PROOF. See van Fraassen (1976), and Spohn (1986) for the σ-additive case.

In our context, we must specifically consider such Popper measures for which all
probabilities conditional on the players’ strategies are defined. Hence, let ∆∗

Popp(S) be
the set of Popper measures P for S for which P (.|si) is defined for all si ∈ Si, i ∈ I . Then
we can straightforwardly define dependency equilibria in terms of these notions without
recourse to limit constructions:

https://econtheory.org
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DEFINITION 8. Let γ ∈ Γ. Then P is a lexicographic dependency equilibrium (lexDE) iff
P ∈∆∗

Popp(S) and for all i ∈ I and s′i ∈ Si,∑
s∈S

ui(s)P (s−i|si)P (si)≥
∑

s−i∈S−i

ui(s
′
i, s−i)P (s−i|s′i). (5)

Note that equation (5) is identical with (3) except that the standard p is replaced
by the Popper measure P . Thus, Definition 8 is the straightforward generalization of
Definition 3 we looked for.

Now we have two generalizations of Definition 3, a lexicographic one and one in
terms of limits. What is their relation? They cannot be strictly equivalent because lexDE
(Popper measures) are more fine-grained than limDE (standard distributions). Still, they
are essentially equivalent. We defer showing this to Appendix A.

How to compute DE? In Section 2.3, we shall consider some examples of 2× 2 two-
person games. There, DE are easy to calculate. If there are only (completely) mixed DE,
then the weak inequalities in Definition 3 are in fact equations. Hence, we have three
equations for the four unknowns in the probability matrix. Therefore, we usually have
a one-dimensional family of DE in 2× 2 two-person games. We will find, though, that
when computing DE in 2× 2 two-person games one already gets entangled in quadratic
equations. And it is easily seen that the order of the polynomial equations increases
with the number of strategies available to the two players. This is in sharp contrast to
the computation of NE in two-person games with any finite number of strategies, which
requires only linear programming for solving linear equations.

However, this observation is deceptive. Datta (2003) proved that finding Nash equi-
libria in three-person games is equivalent to finding the solutions of any polynomial
equation system whatsoever, where the number of strategies of the three players re-
quired for this equivalence is effectively specifiable. He also showed the same equiv-
alence for n-person games in which each player has just two strategies and effectively
specified the number n of players. So, as soon as we leave the domain of two-person
games the solution theory of Nash equilibria becomes arbitrarily complex as well.

Generally, we can say that the solution space of DE is high-dimensional. If player
i ∈ I = {1, . . . ,m} has ni ≥ 2 strategies in Si, then there are N :=

∏
i∈I ni strategy profiles

in S, and an equal number of probability values has to be specified in a limDE. However,
in a completely mixed limDE we have only

∑
i∈I ni −m+ 1 equations for determining

these values. In case of not completely mixed DE, inequalities replace some of the equa-
tions. For some first results on the solution theory for two-person games see Portakal
and Sturmfels (2022). If the notion of a DE is indeed an interesting one, then the inter-
esting parts of this solution space should be identified and more deeply investigated.

For the moment, however, we can only offer, as it were, lower and upper bounds on
this solution space. The greatest lower bound is specified by the security levels of the
players, where the security level ui of player i is defined as

ui =maxsi∈Si

(
mins−i∈S−i

(
ui (si, s−i)

))
. More precisely we have:

PROPOSITION 2. Let γ ∈ Γ and p ∈∆(S). If
∑

s∈S ui(s)p(s)< ui for some player i, then p

is not a limDE.

https://econtheory.org
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PROOF. Let P be a Popper measure with p= P (.|S). If P were a lexDE, then we should
have ui >

∑
s∈S ui(s)P (s) ≥

∑
s−i∈S−i

ui(s
′
i, s−i)P (s−i|s′i) for all s′i ∈ Si. But this is im-

possible; we must have
∑

s−i∈S−i
ui(s

′
i, s−i)P (s−i|s′i) ≥ ui at least for that s′i for which

ui(s
′
i, s−i) = ui. And if P can’t be a lexDE, p can’t be a limDE.

Hence, no player can fall below her security level in a DE. However, players can fall
so low. The ‘bad’ DE in the Hi-Lo game discussed in Section 2.3 will demonstrate that
there are DE in which all players realize no more than their security levels, even though
they could do much better.9 Note also that Proposition 2 only says that there cannot be
a DE in which the players’ expectations are below their security level. This still allows
that strategy profiles falling below their security levels are part of a DE. We will find this
situation exemplified in the ultimatum game discussed in Section 2.3.

There is also a kind of lowest upper bound for DE which is more interesting. It is
given by the weakly Pareto-optimal strategy profiles in S. More precisely, we have:

THEOREM 1. Let p be a limDE and let s∗ ∈ S be at least as good as p in the sense that for
all i ∈ I , ui(s∗)≥

∑
s∈S ui(s)p(s). Then p∗ defined by p∗(s∗) = 1 is a pure limDE.

PROOF. The proof is best given in terms of Popper measures and lexDE. First, as-
sume that p(s∗) > 0. Then s∗ is in the support of the (mixed) DE p, so that ui(s

∗) =∑
s∈S ui(s)p(s) for all i ∈ I . Thus, p∗ is equivalent to the DE p and itself a (pure) DE.

So, assume p(s∗) = 0 instead. We want to show that there is a P ∗ ∈ ∆∗
Popp(S)

such that p∗ = P ∗(.|S) and P ∗ is a lexDE. Since p is a limDE, there must be a lex-
icographic probability λ = (λ0, . . . , λq) forming a corresponding lexDE. Let P be the
corresponding Popper measure. Now define a new lexicographic probability λ∗ =

(p∗, λ0, . . . , λ∗k, . . . , λq), where k is the smallest index for which λk(s
∗) > 0 and λ∗k =

λk(.|S\{s∗}). And define P ∗ to be the Popper measure corresponding to λ∗. Then
P ∗ ∈∆∗

Popp(S), since the required conditional probabilities are defined in P ∗. And P ∗

is indeed a lexDE, as we show now.

First, we have for all i ∈ I and s′i ̸= s∗i ,∑
s∈S ui(s)P

∗(s−i|si)P ∗(si) = ui(s
∗) (because P ∗(s∗) = 1)

≥
∑

s∈S ui(s)p(s) (by assumption)

9One might think that being a strategy profile that is at least as good as the players’ security levels is suffi-
cient for being a pure DE. However, this conjecture is wrong. Consider the following two-person game:

2,2 3,3 -1,-1

3,3 0,5 5,0

-1,-1 5,0 0,5

Here, (2, 2) is not an NE. There is only one mixed NE, namely, the equal distribution over the lower right
four fields, with an expected utility of 2.5 for each player. The players’ maximin strategies are their second
and third strategies, their security levels being 0. So, if this conjecture would hold, (2, 2) should be a DE. But
it isn’t. However we distribute the probabilities over the lower right four fields, the conditional expected
utility of at least one player is ≥ 2.5. Giving weight to (3, 3) increases conditional expected utility, while (-1,
-1) is below the security levels and receives weight 0. So, this is a counter-example to the conjecture.
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≥
∑

s−i∈S−i
ui(s

′
i, s−i)P (s−i|s′i) (because P is lexDE corresponding to the limDE p)

=
∑

s−i∈S−i
ui(s

′
i, s−i)P

∗(s−i|s′i),
because eitherP ∗(s−i|s′i) = λl(s

′
−i|si) for l ̸= k orP ∗(s−i|s′i) = λ∗k(s−i|s′i) = λk(s−i|s′i\s∗) =

λk(s−i|s′i), since s′i ̸= s∗i (here s′i, etc. are considered as subsets of the space S).
It remains to be shown that the same holds for s′i = s∗i . As before we have: ui(s∗)≥∑

s∈S ui(s)p(s) ≥
∑

s−i∈S−i
ui(s

∗
i , s−i)P (s−i|s∗i ). And P (s−i|s∗i ) = λl(s−i|s∗i ), where l is

the smallest index for which λl(s
∗
i )> 0. Clearly, l≤ k.

If l ̸= k, then λl(s−i|s∗i ) = λ∗l (s−i|s∗i ) = P ∗(s−i|s∗i ), and hence
ui(s

∗)≥
∑

s−i∈S−i
ui(s

∗
i , s−i)P

∗(s−i|s∗i ).
If l= k, we have

ui(s
∗)≥

∑
s−i∈S−i

ui(s
∗
i , s−i)p(s−i|s∗i ) =

∑
s−i∈S−i

ui(s
∗
i , s−i)λk(s−i|s∗i )

= ui(s
∗)λk(s

∗
−i|s∗i +

∑
s−i ̸=s∗−i

ui(s
∗
i , s−i)λk(s−i|s∗i ). Subtracting the first term on both

sides and then dividing by 1− λk(s
∗
−i|s∗i ) = λk(s

∗
i \s∗−i|s∗i ) = λk(s

∗
i \s∗|s∗i ), we get:

ui(s
∗)≥

∑
s−i ̸=s∗−i

ui(s
∗
i , s−i)λk(s−i|s∗i )/λk(s∗i \s∗|s∗i )

=
∑

s−i ̸=s∗−i
ui(s

∗
i , s−i)λk(s−i|s∗i \s∗) =

∑
s−i ̸=s∗−i

ui(s
∗
i , s−i)λ

∗
k(s−i|s∗i )

=
∑

s−i∈S−i
ui(s

∗
i , s−i)λ

∗
k(s−i|s∗i ) (because λ∗k(s

∗
−i|s∗i ) = 0)

=
∑

s−i∈S−i
ui(s

∗
i , s−i)P

∗(s−i|s∗i ).

Theorem 1 entails that each weakly Pareto-optimal strategy profile which is at least
as good as some DE constitutes a DE in turn.10 Proposition 2 specifies a necessary con-
dition for a strategy profile to constitute a pure DE, and Theorem 1 a sufficient condition.
We don’t know of a condition that is both necessary and sufficient for pure DE.

We take Theorem 1 to be a significant observation. Pareto-optimality is commonly
taken as the basic (and quite weak) criterion of social optimality or collective rationality
(if we only knew what this precisely is). The alarming point then is that individual ratio-
nality may apparently conflict with social optimality, as paradigmatically demonstrated
by Prisoners’ Dilemma. According to Theorem 1, however, this opposition does not ob-
tain. If DE are individually rational for the players by maximizing their conditional ex-
pected utility, then social or Pareto-optimality is always in reach of individual rationality.
This will clearly be exemplified by our discussion of Prisoners’ Dilemma below, where
the cooperative solution turns out to be a pure DE even in the one-shot game. Pareto-
optimality is thus at least attainable, though there may be many non-Pareto-optimal
DE too. How to choose among Pareto-optimal strategy profiles remains as open as the
general problem of equilibrium selection.

2.3 Some Examples

Let us illustrate the novel equilibrium concept with some examples in order to get a
feeling for how fundamentally DE differ from NE and also CE. We choose some 2 × 2

two-person games exemplifying typical social situations. Spohn (2003) illustrates DE

10In Spohn (2003) (pp. 208f., Observation 5) only a special case of Theorem 1 was proven, namely only for
two-person games and only for strategy combinations that are at least as good as some NE. The proof
proceeded only in terms of limDE.
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with Matching Pennies, Bach or Stravinsky, Hawk and Dove (= Chicken), and Prison-
ers’ Dilemma. We choose here Hi-Lo, the Stag Hunt, and the Ultimatum Game, which
are perhaps more illustrative, while also repeating Prisoners’ Dilemma. Throughout, we
shall denote the strategies of player 1, the row chooser, by a1 and a2 and the strategies
of player 2, the column chooser, by b1 and b2.

b1 b2

a1 2,2∗,+ 0,0+

a2 0,0+ 1,1∗,+

FIGURE 1. HL. Pure NE are
marked with ∗ and pure DE
with +.

p b1 b2

a1 1/9 2/9

a2 2/9 4/9

FIGURE 2. HL. Mixed NE

p b1 b2

a1 0 x ∈ [0,1]

a2 1-x 0

FIGURE 3. HL. 1st family of DE

p b1 b2

a1 x ∈ [0,1/9] (1−x−y)
2

a2
(1−x−y)

2 y =
(1−x±

√
(1−x)(1−9x))
2

FIGURE 4. HL. 2nd family of DE

The Hi-Lo game (HL, Figure 1): This is the paradigmatic coordination game (with
unequal gains). It has two pure and one mixed NE (Figures 1 and 2). Its CE are the
two pure NE, all mixtures of them, and many more, indeed all distributions where both
probabilities on the counterdiagonal are not greater than twice the probability of (a1, b1)
and half of the probability of (a2, b2).

Its DE, however, have an astonishingly complex structure: First, the two pure NE are
also pure DE (Figure 1). Then there is the family of proper DE depicted in Figure 3. Here,
both players are caught in an unhappy dependence. Whatever the one player does, the
other is guaranteed to do the opposite, and both have a conditional expected utility of
0. For x= 1 or 0, these are indeed further pure DE (Figure 1). In analogy to NE, we might
define strict DE and then observe that, whatever x, none of these DE are strict. Thus,
these DE would be excluded, if we would postulate that, rationally, players should go
for a strict DE, if there is one. However, we shall be silent here on rationality postulates
beyond maximizing conditional expected utility. Note also that the example shows the
missing part of Proposition 1, i.e., the independence of CE and DE. The DE of Figure 3
are not CE, and most of the CE offside the diagonal are not DE.

Finally, the mixed DE unfold in another family of DE, or in fact two families (Fig-
ure 4). For each admissible x, y takes two admissible values according to the ±. In all
these cases, the conditional expected utilities for both strategies are the same. Again,
we might ponder about an additional rationality postulate, namely that players should
choose a weakly Pareto-optimal DE. In finite games, they are guaranteed to exist. If there
are many, this postulate is of limited help. But in our case there is only one, and the
problem of equilibrium selection would be solved by this postulate (as with NE). Self-
similarity considerations (see Section 4.5) and team reasoning, as suggested by Sugden
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(1993) would come to the same conclusion in this case. However, as mentioned, we do
not treat the problem of equilibrium selection in this paper. It is a central, huge and
much treated problem for NE. Here, we can only observe that it looks still more pressing
for DE; but we have seen in Section 2.2 that it is also quite different.

Note also that mixtures of the pure NE of HL are CE, but not DE. This changes, how-
ever, when we consider HL with equal payoffs (this is the proper coordination game).
It is easily verified that in this case mixtures of pure NE are also DE. So, whatever argu-
ments and evidence speak for CE in these games (as capturing social norms – see Section
3.3), they also speak for DE.

The Prisoners’ Dilemma game (PD, Figure 5): This vigorously debated game is about
an alleged conflict between individual and collective rationality, or about an alleged im-
possibility of cooperation. It comes in many guises, also for n-person games, e.g., as
the free-rider problem or the tragedy of the commons. It is perhaps the most famous
example of game theory.

b1 b2

a1 2,2+ 0,3

a2 3,0 1,1∗,+

FIGURE 5. PD. Pure NE are marked with ∗,
pure DE with +.

p b1 b2

a1
x(1+x)

2
x(1−x)

2

a2
x(1−x)

2
(1−x)(2−x)

2

FIGURE 6. PD. 1st family of DE

p b1 b2

a1
(1−x)(1+x)

8
(1−x)(1−3x)

8

a2
(1−x)(1+3x)

8
(1−x)(1+x)

8

FIGURE 7. PD. 2nd family of DE

Not only is joint defection (a2, b2) the only NE and indeed the only CE; the force of PD is
that for each player defection strictly dominates cooperation.

By contrast, we have again two families of DE, a symmetric family (Figure 6) and
an asymmetric family (Figure 7). In the second family, a likely cooperator stands in an
unhappy dependence with a likely defector. However, the bias cannot get extreme. In
the extreme, the unhappy cooperator would receive payoff 0, but in a DE her expectation
can be no less than her security level 1, as guaranteed by Proposition 2.

The first, symmetric family is still more interesting. For x = 0 we get the NE of two
defectors. However, for x= 1 we get another pure DE of two cooperators. So, if we can ra-
tionalize DE, we can rationalize pure cooperation in PD, at least as a rational possibility.
Again, if we add the rule to rationally choose a Pareto-optimal DE among the available
DE, cooperation even becomes a rational necessity.

The invention of DE originated from this point. There are numerous attempts at
avoiding the dilemma and rationalizing cooperation. Most of them work by chang-
ing the game structure (e.g., through allowing binding preplay communication or exit
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moves) or by changing the utility functions (e.g., through sanctioning defection), or by
moving into an iterative or sequential context (e.g., in terms of sequential equilibria or
folk theorems). So, do we need another rationalization of cooperation? There is no point
now in entering a comparative discussion. Certainly, these attempts are all instructive.
Spohn (2003) (pp. 196f.), however, has expressed dissatisfaction with the existing ideas
and proposed to grab the problem at its root, the unaltered single-shot PD, and not
merely to dissolve it by altering the game. DE provide a way to do so. Insofar, DE offer a
novel treatment of PD.

There are various other attempts. E.g., constrained maximization, introduced and
defended by Gauthier (1986) results in joint cooperation in PD; but his account is
plagued by the issue of when and why to be a constrained rather than a straightforward
maximizer. Another idea establishing joint cooperation in the unaltered single-shot PD
is team reasoning; see Sugden (1993, 2011) and Karpus and Radzvilas (2018). However,
they also face the issue when to rationally recommend team instead of best-response
reasoning. In Section 3 we will find still further attempts. We could go on here for long.
In any case, our rationalization of joint cooperation in PD is only as good as the ratio-
nalization of DE themselves. We will attend to this issue more carefully in Section 4.

Let us finally look at a game which presents quite an artificial situation, but which
has attracted the attention of behavioral economists because it allegedly shows another
dramatic inadequacy of orthodox game theory.

The Ultimatum game (UG, Figure 8): We present a minimal version of it, in order to
keep to our format of 2 x 2 two-person games. The proponent can divide $4 either 3 to
1 in his favor or fairly 2 to 2. The respondent can accept the proposal or reject it; in the
latter case nobody gets anything:

b1 b2

a1 3,1∗,+ 0,0

a2 2,2+ 0,0

FIGURE 8. UG. Pure NE are marked with ∗, pure DE with +.

Of course, the only NE, and the only CE, is (a1,b1). The proponent takes $3 and the re-
spondent accepts. For both, this is even the strictly dominant choice.11 But the NE is
rarely observed in experiments. More often, the proponent offers a roughly fair divi-
sion (in a fuller version of the game), without accepting the charge of irrationality. So,
something seems wrong with NE, either as a recommendation or as a prediction. The
common conclusion is that orthodox game theory needs to be amended by something
like fairness considerations.

This conclusion is not imperative, though. For, what are the pureDE of UG? First, the
above NE. But also fair division: when the probability of rejection is high enough given

11UG is usually presented in extensive form. Then the respondent sees the proponent’s division. In the
normal form this feature of UG vanishes. As long as we do not extend the notion of DE to games in
extensive form, this slight misrepresentation is unavoidable.
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the unfair proposal and 0 given the fair proposal. So, given the players are in a suitable
dependence, fairness results from a DE. As in PD, we can establish the feasibility of a
satisfactory solution without adding any considerations extraneous to the game. This
deems us a virtue of our account. Note, however, that the emphasis on fairness is gen-
erated only by our minimal version with just one unfair and one fair outcome (besides
disaster). In a fuller version, there are many possible divisions of the amount in play,
and each division would constitute a DE. Still, (roughly) fair division is among them.

This discussion of some basic examples as well as the beginning of a theory in Sec-
tion 2.2 show that considerable changes are forthcoming when we build game theory on
the notion of DE instead of NE. The changes certainly call for further elaboration.

3. RATIONALIZATIONS

We have emphasized that DE firmly stand in the tradition of best-response reasoning.
Therefore, they are able not only to explain, but indeed to rationalize human behavior.
In this section, we want to elaborate on the rational justification of DE in the ways well-
established for NE. That is, in Section 3.1 we show how DE can be derived from common
knowledge assumptions, and, after necessary preparations in Section 3.2, we explain in
Section 3.3 how DE can emerge from evolutionary processes. So, the message is that
these well-known paths are not restricted to NE, but open to DE as well.

3.1 Dependency Equilibria within Epistemic Game Theory

As said, we maintain that DE can be defended from the perspective of individual ra-
tionality and not only from that of social desirability. So far we have tacitly shared the
common assumption that NE are sufficiently well justified from the individual perspec-
tive, and we have argued that DE are the most suggestive generalization of NE within
the context of entangled belief systems. And then we implied that the individual ratio-
nality of NE somehow transfers to their generalization to DE. In this section we want to
vindicate this implication.

The most common justification of NE is in terms of public advice. When one gives
public advice to players indicating which (mixed) strategies to choose, one can only rec-
ommend a NE; otherwise, the advice would be self-defeating. This argument about of-
fering a ‘public roulette’ was also used by Aumann (1974) (p. 84) to justify CE. If the
offer of playing out a joint probability distribution is not to be self-defeating, it must not
give any player a reason to deviate — in terms of posterior unconditional expected util-
ity. This suggests, however, that the very same argument applies to DE as well. If you
propose a joint probability distribution, it must be a DE. Otherwise, the proposal is self-
defeating because it gives positive probability to a strategy of at least one player that has
less than maximal conditional expected utility.

From epistemic game theory we have learned that the story about public advice is
not required for justifying equilibrium choice. The essential point about the publicity of
advice is that it generates common knowledge, as first explicated by Lewis (1969) (sect.
II.1). Common knowledge of players’ rationality and of their probabilities (as well as of
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the game structure and utilities) suffices for deriving a NE.12 Note that a NE is thereby
presented as an epistemic equilibrium among the mutual beliefs of the players about
each other. In this way, game-theoretic rationality is reduced to decision-theoretic ra-
tionality plus common knowledge assumptions. This was indeed the goal of epistemic
game theory. It does not matter how this common knowledge comes about. Public ad-
vice is one good way of establishing it. But there may be other ways as well. It may
sometimes be established by reasoning; there may be a joint learning history in the
background; etc. We will tell a story about how such common knowledge may at least
be approximated in Sections 3.2 and 3.3 on deliberational dynamics.

Let us transfer this well-known story to DE in formal detail. The first thing to fix
is the format of the players’ first-order beliefs. We take mutual knowledge of the game
structure and utility functions for granted. The first-order beliefs of player i about strat-
egy profiles split into two parts. There is, first, i’s indecision state pi ∈∆(Si) concerning
her own strategies. And there is, secondly, i’s assessment p−i(s−i|si) of the other players’
strategies s−i given her own choice si. These two parts combine into a full joint distribu-
tion p ∈∆(S). It will turn to be conceptually desirable to distinguish the two parts, when
we extend our study of deliberational dynamics to DE in Section 3.3. However, presently
it is less cumbersome to assume the first-order beliefs of player i just to consist in the
full distribution p ∈∆(S) without distinguishing its parts.

If we proceed with this format, we would have to somehow relate these first-order
beliefs to limDE. It is not clear, though, how to do so, since we have no epistemic inter-
pretation of the only mathematically motivated sequence of positive distributions con-
verging to a limDE. Hence, our discussion better proceeds in terms of lexDE. But then we
should rather conceive of the first-order beliefs of the players as a full Popper measure
P ∈∆∗

Popp(S), i.e., as something for which the notion of a DE is directly explained.
Next, we must assume a vector Q := (Q1, . . . ,Qm) of second-order beliefs of the play-

ers i ∈ I about the other players. If first-order beliefs are Popper measures, second-order
beliefs Qi should presumably be so as well. We shall see, though, that only the first mem-
ber of the corresponding lexicographic probability is relevant. Qi contains a distribution
over the first-order beliefs of j(j ̸= i), i.e., over the set of Popper measures Pj that j might
have. However, we assume that Q= (Q1, . . . ,Qm) has mutual knowledge of the Popper
measure P ∈∆∗

Popp(S) in the sense that for each i ∈ I , Pi = P and Qi(j has first-order
beliefs P ) = 1 for all j ̸= i. This avoids the potential complexity of second-order beliefs.
What does the Popper measure Qi say, given the null condition that j does not have
first-order beliefs P ? Here we might assume anything, even that it does not say anything
at all. It will turn out to be irrelevant.

What does mutual knowledge of rationality mean in the present setting? Well, si ∈ Si

is a best response to first-order beliefs Pi ∈∆∗
Popp(S) iff si maximizes i’s conditional ex-

pected utility with respect to Pi, i.e., iff
∑

s−i∈S−i
ui(si, s−i)Pi(s−i|si) is maximal within

Si.13 And Q = (Q1, . . . ,Qm) has mutual knowledge of rationality iff for each i ∈ I , Qi(j

12If one merely assumes common knowledge of rationality, one is automatically led to the notion of ratio-
nalizability; see Spohn (1982) (pp. 251f.), Bernheim (1984), and Pearce (1984).

13It may sound odd to call si a best response to the full Pi. It seems more appropriate to say that si is a best
response to the collection of all conditional probabilities Pi(s−i|s′i). However, we have concluded not to
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takes some best response to her first-order beliefs Pj) = 1 for all j ̸= i. Again, the ques-
tion arises: what do the Qi believe given another player does not choose a best response?
Again the answer turns out to be irrelevant. We may assume anything.

This simplifies. If Q = (Q1, . . . ,Qm) has mutual knowledge of the Popper measure
P , then each player i knows the first-order beliefs P of each other player j. And mutual
knowledge of rationality reduces to the fact that for each i ∈ I , Qi agrees with P in the
sense that P (sj) = 0 if Qi(sj is not a best response to P ) = 1 for all j ̸= i. Then we have:

THEOREM 2. If, in the game γ, Q= (Q1, . . . ,Qm) has mutual knowledge of rationality and
mutual knowledge of the distribution P ∈∆∗

Popp(S), then P is a lexDE.

PROOF. LexDE are defined by condition (5), which holds for all i ∈ I and s′i ∈ Si, because
only those strategies si of i which maximize conditional expected utility have weight
P (si)> 0 in the mixture on the LHS of (5).

This theorem is as trivial as in the case of NE. It does not present an exciting story. But
it shows that whatever rationale we have for NE, we can directly duplicate it for DE. We
could, it seems, develop epistemic game theory also in terms of DE. Of course, one might
object how unrealistic the mutual knowledge assumptions are. On the other hand, recall
how easily such assumptions are generated by public announcements. Be this as it may,
more realistic stories need not be bound to be radically different. In the next section we
shall work towards a bit more realism by putting DE into the context of evolutionary or
rather of deliberational dynamics.

3.2 Deliberational Dynamics and Nash Equilibria

Another justification of NE with less stringent presuppositions is provided by evolution-
ary game theory. There it is shown how the evolution of a population consisting of
boundedly rational agents using simple strategy revision protocols may converge to a
NE in a one-shot non-cooperative game (for a comprehensive overview of these results,
see Sandholm (2010)). Skyrms (1990) has offered a reinterpretation of these evolution-
ary dynamics in terms of an individual’s deliberational process. It will be introduced in
this section. In Section 3.3 we will show how this reinterpretation can be extended to
DE. We will study two kinds of revision protocols, excess payoff and best response. This
makes our investigation fairly representative. If it proves valuable, it may be extended to
other kinds of protocols.

Instead of representing evolutionary changes of shares of strategies in a population,
the deliberational dynamics suggested by Skyrms (1990) models players’ changing be-
liefs about their and other players’ strategies in a normal form game. The initial beliefs
are usually incoherent and hence need to be gradually modified according to the delib-
erational dynamic in question until the incoherence hopefully vanishes and the players
converge on beliefs that establish one of the possible NE of a game.14

separate these conditional probabilities from i’s indecision state in the representation of the first-order
beliefs of player i.

14The theory of introspective equilibria developed by Kets and Sandroni (2019) in order to account for the
phenomenon of homophily rests on a similar idea.
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One of the key conceptual differences between evolutionary and deliberational dy-
namics is the set of conditions used to characterise the stable outcomes of dynamics.
In evolutionary models, a population of players in a stable population state is expected
to resist perturbations in the numbers of players using different strategies, and hence
stable outcomes of evolutionary dynamics are expected to satisfy more stability require-
ments than are satisfied by each NE (see Sandholm (2010)). In deliberational dynamics,
by contrast, NE provide a sufficiently strong stability concept: if players privately revise
their beliefs about their own and their opponents’ strategies using solely a particular be-
lief revision algorithm, then players’ beliefs should never deviate from those prescribed
by the dynamic deliberation procedure. Thus, dynamic deliberation offers a novel and
conceptually unique justification of NE that relies on players’ private revisions of beliefs
in a one-agent decision problem.

Skyrms’s idea can be formally represented as a model in which a set of m≥ 2 players
I := {1, . . . ,m} are playing a normal form game. Each player i ∈ I has a finite set of
ni ≥ 2 pure strategies Si :=

{
s1i , . . . , s

ni
i

}
with a typical element ski , and a payoff function

ui : S → R, where S := ×i∈ISi =
(
s1, . . . , sN

)
is the set of strategy profiles with a typical

element sh and N :=
∏

i∈I ni is the number of strategy profiles in the game. The set of
possible opponents’ strategy profiles can be defined as S−i :=×j ̸=iSi .

Skyrms assumes that the players’ deliberational process retains all the independence
assumptions of standard game theory, and so the interacting players are represented as
believing that their strategy choices are causally and probabilistically independent. The
deliberation can thus be modelled as a process of gradual evolution of players’ beliefs,
where each player i updates her belief system bi ∈∆⊥ (S), i.e., a probability distribution
on the set of strategy profiles S, where bi

(
sh

)
∈ [0,1] is the probability of profile sh.

A belief system bi ∈ ∆⊥ (S), can be split up into two parts bii ∈ ∆(Si) and b−i
i ∈

∆⊥ (S−i). On the one hand, bii represents i’s probability distribution on her own set
of strategies Si. One may call bii i’s indecision state, i’s uncertainty about what to do. On
the other hand, i’s uncertainty about her opponents’ strategies can be represented by
the distribution b−i

i . Reversely, both together combine into i’s belief system bi.
Moreover, since every bi ∈ ∆⊥ (S) assigns a probability distribution on the set of

strategies of every player in the set I , we can define i’s belief about the profiles of strate-
gies of every player other than j ∈ I as b−j

i ∈∆⊥
(
S−j

)
, where b−j

i

(
s−j

)
is the probability

of j’s opponents’ profile s−j ∈ S−j , while i’s belief about the strategy choices of player
j can be defined as bji ∈∆

(
Sj

)
. We assume, however, that bji and b−j

i at the same time
represent j’s belief system, as i believes it to be. In other words, i assumes her belief
system bi to be mutual knowledge among the players. But this is still her private belief.
It is open whether bi is actually mutual knowledge. (But see below.)

Next, the expected payoff associated with each strategy skj ∈ Sj of player j relative
to player i’s belief system bi is represented with the Lipschitz-continuous payoff func-
tion vj : ∆⊥ (S) → Rnj that assigns, to every bi ∈ ∆⊥ (S), a vector of expected payoffs

vj (bi) :=
(
v1j (bi) , . . . , v

nj

j (bi)
)

, where vkj (bi) :=
∑

s−j∈S−j
b−j
i

(
s−j

)
uj

(
skj , s−j

)
is the

expected payoff of j’s strategy skj relative to i’s belief bi. The indecision state payoff
of player j given bi is defined by the function v̄j : ∆⊥ (S) → R that assigns, to each
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bi ∈∆⊥ (S), an expected payoff v̄j (bi) :=
∑

skj∈Sj
bji

(
skj

)
vkj (bi) =

∑
sh∈S bi

(
sh

)
uj

(
sh

)
.

Finally, the excess payoff vector for player j given bi is represented by a function
v̂j : ∆⊥ (S) → Rnj that assigns, to each bi ∈ ∆⊥ (S), an excess payoff vector v̂j (bi) :=(
v̂1j (bi) , . . . , v̂

nj

j (bi)
)

, where v̂kj (bi) := vkj (bi)− v̄j (bi) is the excess payoff of skj given bi.

We can define player i’s belief system as forming a NE among players’ strategies in
a way that is very similar to the definition of a population state establishing a NE in the
population.

DEFINITION 9. For any bi ∈∆⊥ (S), bi establishes a NE in the private beliefs of player i,
iff bi is such that, for each player j ∈ I and all skj ∈ Sj ,

bji

(
skj

)
> 0 entails skj ∈ arg max

slj∈Sj

(
vlj (bi)

)
. (6)

Note that so far the interacting players may hold different private belief systems es-
tablishing different NE of the game. We will comment on this point below.

However, let us first see how players may reach a NE. One of the deliberational dy-
namics which guarantees that any convergence of beliefs will establish a NE in player’s
private beliefs is the excess payoff dynamic — a dynamic generated by an excess pay-
off revision protocol. In general, a revision protocol is a strategy assignment rule fixing
how players choose their strategies in each strategy revision round. An excess payoff re-
vision protocol is a specific strategy revision rule that, in every bi ∈∆⊥ (S), represents
the players as decision-makers who compare the excess payoffs of strategies in bi and
switch to strategies associated with higher excess payoffs than their current strategies.
This is how an excess payoff deliberational dynamic based on excess payoff functions v̂i
of some player i ∈ I is defined:

DEFINITION 10. An excess payoff deliberational revision protocol is a Lipschitz-
continuous map f : R̂ni →Rni

≥0 that assigns, to every excess payoff vector v̂i (bi) ∈ R̂ni , a

vector of the weights of strategies f
(
v̂i (bi)

)
:=

(
f1
(
v̂i (bi)

)
, . . . , fni

(
v̂i (bi)

))
∈Rni

≥0, such

that f
(
v̂i (bi)

)′
v̂i > 0 whenever v̂i (bi) ∈ int

(
R̂n

)
, where int

(
R̂n

)
is the interior of R̂n.

fk
(
v̂i (bi)

)
∈R≥0 is called the weight of strategy ski .

A desirable feature that an excess payoff protocol should satisfy is that a player
should assign a higher weight to a strategy only if it yields a strictly positive excess payoff.
This is satisfied by sign-preserving excess payoff revision protocols.

DEFINITION 11. The revision protocol f is sign-preserving iff, for each excess payoff vec-
tor v̂i (bi) ∈ R̂n and strategy ski ∈ Si, fk

(
v̂i (bi)

)
> 0 iff v̂ki (bi)> 0 .

The excess payoff deliberational dynamic generated by f represents player i’s be-
lief system revision process: in every belief revision period, player i assigns weights on
strategies according to protocol f to every distribution bji ∈∆

(
Sj

)
representing i’s be-

liefs about every player j ∈ I that is generated by i’s belief system bi. The deliberation
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dynamic represents a Markovian process, since player i’s belief system bi depends only
on the immediately preceding belief system b′i.

DEFINITION 12. An excess-payoff deliberational dynamic generated by a vector of ex-
pected payoff functions v := (v1, . . . , vm) and by a sign-preserving excess payoff revi-
sion protocol f is a Lipschitz-continuous map βv,f : ∆⊥ (S)→RN that assigns, to every

bi ∈ ∆⊥ (S), an output βv,f (bi) :=
(
βv1,f (bi) , . . . , β

vm,f (bi)
)
∈ RN , where βvj ,f (bi) :=(

β
vj ,f
1 (bi) , . . . , β

vj ,f
nj (bi)

)
∈ Rnj is the vector of the change rates of the probabilities of

strategies of player j ∈ I , and where the change rate of the probability of each skj ∈ Sj is
such that

β
vj ,f
k (bi) :=

fk
(
v̂j (bi)

)
− bji

(
skj

) ∑
slj∈Sj

fl
(
v̂j (bi)

)
Λi +

∑
slj∈Sj

fl
(
v̂j (bi)

) . (7)

We adopt the constant Λi ≥ 0 from Skyrms (1990), p. 31. It represents i’s index of cau-
tion: the higher Λi, the slower i increases the probabilities of players’ strategies yielding
higher than the indecision state expected payoffs.

We may now state the relation between the rest points of the excess payoff delibera-
tional dynamic βv,f and the set of belief systems establishing a NE in player i’s beliefs.

DEFINITION 13. For any bi ∈ ∆⊥ (S), bi is a rest point of βv,f iff β
vj ,f
k (bi) = 0 for every

skj ∈ Sj of every j ∈ I .

LEMMA 2. Let bd
(
R̂nj

)
denote the boundary of R̂nj . For any bi ∈ ∆⊥ (S), v̂j (bi) ∈

bd
(
R̂nj

)
for every j ∈ I iff bi establishes a NE in the private beliefs of i.

PROOF. For any bi ∈∆⊥ (S) and any j ∈ I , v̂j (bi) ∈ bd
(
R̂nj

)
, implies that, for each slj ∈

Sj , vlj (bi)≤ v̄j (bi), and so there exists κ ∈R, such that, for every slj ∈ Sj , vlj (bi)≤ κ and

every skj ∈ Sj with bji

(
skj

)
> 0, vkj (bi) = κ, where κ =maxslj∈Sj

(
vlj (bi)

)
. Thus, for each

bi ∈ ∆⊥ (S), if v̂j (bi) ∈ bd
(
R̂nj

)
for each j ∈ I , then bi establishes a NE in i’s private

beliefs.

LEMMA 3. For any bi ∈∆⊥ (S), if v̂j (bi) ∈ bd
(
R̂nj

)
for each j ∈ I , then bi is a rest point

of βv,f .

PROOF. For any bi ∈ ∆⊥ (S), such that v̂j

(
b−j
i

)
∈ bd

(
R̂nj

)
for each j ∈ I , sign-

preservation of f implies that β
vj ,f
k (bi) = 0 for each j ∈ I and skj ∈ Sj . Thus, β

vj ,f
k (bi) = 0

for each skj ∈ Sj and j ∈ I implies that bi is a rest point of βv,f .
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PROPOSITION 3. For any bi ∈∆⊥ (S), bi is a rest point of βv,f iff bi establishes a NE in the
private beliefs of i.

PROOF. Follows immediately from lemmas 2 and 3.

Let us turn now to our second paradigmatic dynamics, the best response dynamics
introduced by Gilboa and Matsui (1992). Under a deliberational interpretation of this
dynamic, each player i ∈ I revises her beliefs in every bi ∈∆⊥ (S) by assigning a higher
weight to each strategy that is a best response in bi. If more than one strategy is a best
response, the players split the weight equally among all such strategies. The deliberating
players are assumed to be cautious and thus only gradually increase the weight of their
best responses. As a consequence, strategies that are not best responses only diminish,
but do not entirely lose their positive weights.

DEFINITION 14. Let Bri (bi) :=
{
ski ∈ Si : s

k
i ∈ argmaxsli∈Si

(
vli (bi)

)}
⊆ Si denote the set

of pure best responses of i given bi. The cautious best response deliberational revision
protocol of player i is a map ri : Rni →∆(Si) that assigns, to vector vi (bi) ∈ Rni given

bi, a vector of relative weights of strategies ri
(
vi (bi)

)
:=

(
r1i
(
vi (bi)

)
, . . . , rni

i

(
vi (bi)

))
∈

∆(Si), where rki
(
vi (bi)

)
∈ [0,1] is the relative weight of i’s strategy ski , defined by

rki
(
vi (bi)

)
:=


bii
(
ski
)∑

sli∈Bri(bi)
bii
(
sli
) if ski ∈Bri (bi) ;

0 otherwise.

(8)

DEFINITION 15. A cautious best response deliberational dynamic generated by
the vector v of expected payoff functions and a vector of best response proto-
cols r := (r1, . . . , rm) is a map βv,r : ∆⊥ (S) → RN that assigns, to each bi ∈
∆⊥ (S), an output βv,r (bi) :=

(
βv1,r1 (bi) , . . . , β

vm,rm (bi)
)
∈ RN , where βvj ,rj (bi) :=(

β
vj ,rj
1 (bi) , . . . , β

vj ,rj
nj (bi)

)
is the vector of the rates of change of probabilities of strate-

gies of j ∈ I and β
vj ,rj
k (bi) ∈R is the change rate of probability of skj ∈ Sj defined by

β
vj ,rj
k (bi) :=

rkj
(
vj (bi)

)
− bji

(
skj

)
Λi +

∑
slj∈Sj

rlj
(
vi (bi)

) =
rkj

(
vj (bi)

)
− bji

(
skj

)
1 +Λi

. (9)

The relationship between the rest points of the cautious best response deliberational
dynamics and the NE of the game is straightforward.

DEFINITION 16. For each i ∈ I and bi ∈∆⊥ (S), bi is a rest point of βv,r iff β
vj ,rj
k (bi) = 0

for every skj ∈ Sj of every j ∈ I .

PROPOSITION 4. For any bi ∈∆⊥ (S), bi is a rest point of βv,r iff bi establishes a NE in the
private beliefs of i.
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PROOF. If bi is a rest point of βv,r , then it follows that, for each j ∈ I , vlj (bi) ≤ κ for

every slj ∈ Sj and, for every skj ∈ Sj , such that bji

(
skj

)
> 0, vkj (bi) = κ, where κ =

maxslj∈Sj

(
vlj (bi)

)
. Thus, for each bi ∈∆⊥ (S), if β

vj ,rj
k (bi) = 0 for every skj ∈ Sj of every

j ∈ I , then bi establishes a NE in i’s private beliefs.

However, so far each player has only private beliefs about herself and the other play-
ers. Whether she uses a sign-preserving excess payoff or a cautious best response proto-
col, her deliberational dynamics generates a solution trajectory that converges to one of
the game’s NE, her private NE, if it converges at all. So far, the players may be totally out
of sync. Of course, if the players’ initial uncertainty about themselves, others, and the
deliberational dynamics are mutual knowledge, then their deliberation will converge to
the same NE. Does this improve upon the mutual knowledge assumptions in Section
3.1? It does not seem so. However, this much mutual knowledge is not required in the
present case. If the initial beliefs of the players lead the players to the same NE under
some deliberational dynamics, then they will all converge to that NE without any shared
knowledge about each others’ initial private beliefs.

3.3 Deliberational Dynamics and Dependency Equilibria

The previous section treated the standard models of deliberational dynamics. Thereby,
we are well prepared to modify the deliberational models so as to accommodate prob-
abilistic entanglement or dependencies in players’ beliefs about each other’s strategy
choices. In this type of model the belief system of each player i ∈ I can be represented
as a probability distribution pi ∈∆(S), where pi

(
sh

)
∈ [0,1] is the probability of profile

sh ∈ S. Note we now drop the independence assumption of the previous section. Again,
i’s belief system pi splits into two parts pii and p−i

i . Firstly, i’s indecision state concern-
ing her own strategies is represented by the distribution pii ∈∆(Si). Secondly, i’s beliefs
about her opponents’ strategy profiles is represented by a conditional distribution p−i

i ,
where p−i

i

(
s−i|ski

)
represents i’s belief about opponents’ strategy profile s−i ∈ S−i con-

ditional on i’s strategy ski . Reversely, pii and p−i
i combine to the full distribution pi.

Given her indecision state, player i has not only conditional, but also unconditional
beliefs about the strategies of each player j ∈ I , which are represented by the distribu-
tion pji ∈ ∆

(
Sj

)
. Moreover, i’s belief system pi contains a conditional probability dis-

tribution p−j
i on the strategy profiles of all players other than player j conditional on

strategies of j. Thus, p−j
i

(
s−j |skj

)
∈ [0,1] represents i’s probability of j’s opponents’

profile s−j ∈ S−j given j’s strategy skj . As before, though, we assume that pji and p−j
i

constitute j’s belief system, as i believes it to be. That is, i again believes her belief sys-
tem to be mutual knowledge among the players, whether or not this is actually the case.

Relative to player i’s belief system pi, the conditional expected payoffs of player j ∈ I

can be represented by a Lipschitz-continuous expected payoff function υj : ∆(S)→Rnj

that assigns, to every pi ∈ ∆(S), a vector of conditional expected payoffs υj (pi) :=
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υ1j (p1) , . . . , υ

nj

j (pi)
)

, where υkj (pi) :=
∑

s−j∈S−j
p
(
s−j |skj

)
uj

(
skj , s−j

)
is the condi-

tional expected payoff of pure strategy skj ∈ Sj given pi. The indecision state pay-
off of j relative to any pi ∈ ∆(S) is defined as a function ῡj : ∆(S) → R that as-

signs, to any pi ∈∆(S), an indecision state payoff ῡj (pi) :=
∑

skj∈Sj

(
υkj (pi)p

j
i

(
skj

))
=∑

sh∈S p
(
sh

)
ui

(
sh

)
. Finally, the excess payoffs of j’s strategies are defined via a func-

tion υ̂j : ∆(S)→Rnj that assigns, to each pi ∈∆(S), a vector of excess payoffs υ̂j (pi) :=(
υ̂1j (pi) , . . . , υ̂

nj

j (pi)
)

, where υ̂kj (pi) := υkj (pi) − ῡj (pi) is the excess payoff of strategy

skj ∈ Sj given pi.
Having represented the players’ entangled belief systems according to the lights of

player i, the definition of pi ∈∆(S) establishing a DE in i’s private beliefs is structurally
identical to the definition of bi ∈∆⊥ (S) establishing a NE in the case where i believes
players’ strategies to be independent.

DEFINITION 17. For any pi ∈∆(S), pi establishes a DE in the private beliefs of i iff, for
all j ∈ I and slj ∈ Sj ,

pji

(
slj |ski

)
> 0 entails slj ∈ arg max

szj∈Sj

(
υzj (pi)

)
. (10)

Now we can generalize our previous results to entangled belief systems and their DE,
for both kinds of dynamics considered. First, the excess payoff revision protocol f can
be directly applied to the case of probabilistic dependence amongst players’ beliefs.

DEFINITION 18. An excess payoff deliberational dynamic generated by a vector of
expected payoff functions υ := (υ1, . . . , υm) and by the sign-preserving excess pay-
off deliberational revision protocol f is a map βυ,f : ∆(S) → RN that assigns, to

any pi ∈ ∆(S), an output βυ,f (pi) :=
(
βυ1,f (pi) , . . . , β

υm,f (pi)
)

, where βυj ,f (pi) :=(
β
υj ,f
1 (pi) , . . . , β

υj ,f
nj (pi)

)
is the vector of the change rates of probabilities of strategies

of player j ∈ I and where the probability change rate β
υj ,f
l (pi) ∈ R of strategy slj ∈ Sj is

defined as

β
υj ,f
l (pi) :=

fl
(
υ̂j (pi)

)
− pji

(
slj |ski

) ∑
szj∈Sj

fz
(
υ̂j (pi)

)
Λi +

∑
szj∈Sj

fz
(
υ̂j (pi)

) . (11)

DEFINITION 19. For any pi ∈ ∆(S), pi is a rest point of βυ,f iff β
υj ,f
l (pi) = 0 for every

j ∈ I and slj ∈ Sj .

Since the dynamics βυ,f and βv,f (Definition 12) are generated by the same protocol
f , it is straightforward to check that proofs that are structurally identical to proofs of
lemmas 2 and 3 can be used to derive an analogous result concerning the relationship
between the rest points of βυ,f and the set of dependency equilibria of the game.
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LEMMA 4. For any pi ∈∆(S), υ̂j (pi) ∈ bd
(
R̂nj

)
for every j ∈ I iff pi establishes a DE in

the private beliefs of i.

PROOF. Structurally identical to proof of Lemma 2.

LEMMA 5. For any pi ∈∆(S), if υ̂j (pi) ∈ bd
(
R̂nj

)
for every j ∈ I , then pi is a rest point of

βυ,f .

PROOF. Structurally identical to proof of Lemma 3.

THEOREM 3. For any pi ∈∆(S), pi is a rest point of βυ,f iff pi establishes a DE in i’s private
beliefs.

PROOF. Follows immediately from lemmas 4 and 5.

In the same way, we can transfer the cautious best response dynamic to the case of
entangled belief systems.

DEFINITION 20. A cautious best response deliberational dynamic generated by the
expected payoff function υ and the cautious best repsonse revision protocol r is
a map βυ,r : ∆(S) → RN that assigns, to each pi ∈ ∆(S), an output βυ,r (pi) :=(
βυ1,r1 (pi) , . . . , β

υm,rm (pi)
)
∈ RN , where βυj ,rj (pi) :=

(
β
υj ,rj
1 (pi) , . . . , β

υj ,rj
nj (pi)

)
∈

Rnj is the vector of the change rates of probabilities of strategies of j ∈ I and β
υj ,rj
l ∈ R

is the change rate of probability of slj ∈ Sj defined by

β
υj ,rj
l (pi) :=

rlj
(
υj (pi)

)
− pji

(
slj |ski

)
Λi +

∑
szj∈Sj

rzj
(
υi (pi)

) =
rkj

(
υj (pi)

)
− pji

(
slj |ski

)
1 +Λi

. (12)

DEFINITION 21. For any pi ∈∆(S) of any i ∈ I , pi is a rest point of βυ,r iff β
υj ,rj
l (pi) = 0

for every j ∈ I and slj ∈ Sj .

THEOREM 4. For any pi ∈ ∆(S), pi is a rest point of βυ,r iff pi establishes a DE in the
private beliefs of i.

PROOF. Structurally identical to proof of Proposition 4.

Both kinds of dynamics are, however, not ideally adapted to the nature of DE. For,
note that neither the excess payoff nor the cautious best response dynamics ensure the
preservation of player i’s belief that players’ strategies are correlated, because both dy-
namics are based on protocols that shift weights on each players’ strategies indepen-
dently. Thus, i’s belief revision procedure may gradually erode player i’s initial belief in
the probabilistic entanglement of players’ strategies. The correlations between players’
strategies can, however, be preserved by revision protocols that put positive weights on
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players’ joint strategies that satisfy one of the criteria of fitness represented by the stan-
dard revision protocols. This is most easily exemplified with the best response protocol.
Hence, let us, as a final consideration, modify the cautious best response protocol to
what we call a cautious joint best response protocol which represents a player as favor-
ing only strategy profiles that are constituted by best responses of all interacting players.

DEFINITION 22. Let υpi :=
(
υ1 (pi) , . . . , υm (pi)

)
denote the vector of interacting play-

ers’ expected payoff vectors relative to the belief system pi of player i, and let Br (pi) :={
sh ∈ S : sh ∈ argmaxsz∈S

(
pi (s

z)uj (s
z)

)
for every j ∈ I

}
=×j∈IBrj (pi) denote the set

of strategy profiles in which each profile contains only strategies that are best responses
of all players in I relative to pi. The cautious joint best response deliberational revi-
sion protocol, then, is a map χi : RN → ∆(S) that assigns, to any vector of players’
expected payoff vectors υpi , a vector of relative weights of strategy profiles χi (υ

pi) :=(
χ1
i (υ

pi) , . . . , χN
i (υpi)

)
∈ RN , where χh

i (υ
pi) ∈ R is the relative weight of strategy pro-

file sh ∈ S defined by

χh
i (υ

pi) :=


pi
(
sh

)∑
sz∈Br(pi)

pi (sz)
iff sh ∈Br (pi) ;

0 otherwise.

(13)

The label “joint" marks a distinctive change. The idea is not that a player indiscrim-
inately and proportionally favors all of her best responses (in the sense of maximizing
conditional expected utility). The idea is rather that she favors only those strategy pro-
files in which her best response is combined with best responses of the other players,
and she does so proportionally in case there should be several such profiles. In this
sense, it is still a best response protocol, but one discriminately favoring profiles of best
responses of all players.

This protocol generates the following dynamics:

DEFINITION 23. The cautious joint best response deliberational dynamic generated by
the expected payoff function υ and a vector of cautious joint best response revision pro-
tocols χ := (χ1, . . . , χm) is a map βυ,χ : ∆(S) → RN that assigns, to any pi ∈ ∆(S), an

output βυ,χ :=
(
βυ,χ
1 (pi) , . . . , β

υ,χ
N (pi)

)
∈ RN , where each βυ,χ

h (pi) ∈ R is the change

rate of the probability of strategy profile sh defined by

βυ,χ
h (pi) :=

χh
i (υ

pi)− pi
(
sh

)
1 +Λi

(14)

Again, we have slowed down the responsiveness of the process by adding an a pri-
ori weight Λi. The simplest way to conceive of such a joint best response deliberational
revision protocol is a modified Brown-Robinson process. In the original process for two-
person games, each player makes a statistic of the actual or fictitious play of the other
player and uses the observed relative frequencies as her expectation of the other’s strat-
egy in the next play. Instead, though, we may conceive of the players as making a statis-
tic of the joint actual or fictitious play of strategy profiles and as basing their conditional
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expectations for the next play on this joint statistic, which will usually display dependen-
cies. Indeed, this seems to be the more reasonable statistic to record. Why be content
with a partial statistic when a full one is available? Thus, this modified Brown-Robinson
process offers a simple model as to how entangled belief systems might arise.

Once more, we arrive at the desired results:

DEFINITION 24. For any pi ∈∆(S), pi is a rest point of βυ,χ(pi) iff βυ,χ
h (pi) = 0 for every

sh ∈ S.

THEOREM 5. For any pi ∈∆(S), pi is a rest point of βυ,χ(pi) iff pi establishes a DE in the
private beliefs of player i ∈ I .

PROOF. If βυ,χ
h (pi) = 0 for every sh ∈ S, it follows that, for every j ∈ I and every sg ∈ S,

uj (s
g)pi (s

g) ≤ κ and, for every sh ∈ S, such that pi
(
sh

)
> 0, uj

(
sh

)
pi
(
sh

)
= κ, where

κ := maxsz∈S uj (s
z)pi (s

z). Thus, it follows that if βυ,χ (pi) = 0 for every sh ∈ S, then pi
establishes a DE in the private beliefs of i.

Theorems 3, 4, and 5 specify the relation between DE and rest points for the three
deliberational dynamics for entangled belief systems considered here. Convergence to
a rest point is not guaranteed, also not in the case of NE. But, if the deliberational dy-
namics converges, it must converge to a DE.

4. COMPARISONS

We have indicated in Section 1 that probabilistic dependencies between players’ strate-
gies have been previously countenanced by the literature in various ways, resulting in
a number of equilibrium notions which are similar to, but not identical with, the novel
notion of DE. We need a comparative section to sort this out. At the same time this is
intended as a plea for the significance of DE. In our view they deserve a central place in
this variegated field.

Of first importance is getting clear on the relation between DE and CE, for the sim-
ple reason that the syntactic difference between (2) and (3) consists in just one prime,
while we meet quite different constructions in the other comparisons. This is the task of
Section 4.1. Afterwards we turn to all the other comparisons.

4.1 Dependency and Correlated Equilibria

So far, we have grasped the difference between CE and DE only superficially, although
it proved to be dramatic in some of the examples. Still, the significance of the switch
from CE to DE may not yet be fully clear. To do better, we should attend to the other
and perhaps more important version of CE and ponder whether there is an analogous
version of DE. This will also deliver a possible reason for entangled belief systems.

Concerning Definition 2, Osborne and Rubinstein (1994) (p. 47) remark that CE thus
defined “may have no natural interpretation”, presumably because according to this def-
inition the players’ strategies are directly presented as correlated without any indication
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where the correlation comes from. Therefore they first define CE in the original way
of Aumann (1974) and merely derive our Definition 2 as an equivalent characterization.
The original idea is that the players make their choices dependent on what goes on in the
world, or rather on the private information they receive about the world, which may dif-
fer from player to player. Since there is correlation in the world, there is also correlation
in the information players receive and thus finally in their choices.

Formally, this goes like this: In addition to a game γ =
(
I, (Si)i∈I , (ui)i∈I

)
∈ Γ, we

assume a (finite) probability space (Ω, µ), where Ω is a set of states and µ a probability
measure on Ω. (Ω, µ) is assumed to be common knowledge among the players. The
literature usually goes on to assume an information partition Pi of Ω for each player i. It
is perhaps more perspicuous to directly structure the set Ω of states accordingly. That is,
without loss of generality we may assume that a state ω ∈ Ω is a vector ω = (ω1, . . . , ωn)

of private states, and each player i gets informed about her private state ωi ∈ Ωi in the
state ω. So, Ω=×n

i=1Ωi, and Ωi represents the information partition Pi of player i.
Now, each player i adopts a strategy σi for responding to the information ωi she

receives. That is, a strategy σi of player i is a function from Ωi into Si. To disambiguate,
let’s label σi an extended strategy, since we have called the elements of Si strategies as
well. Σi is the set of all extended strategies of i, and Σ = ×n

i=1Σi is the set of extended
strategy profiles, with a typical element σ = (σi, σ−i). Then we can define:

DEFINITION 25. An extended strategy profile σ ∈ Σ is a correlated equilibrium (CE+) of
the game γ extended by (Ω, µ) if and only if for each player i, each private state ωi with
µ(ωi)> 0, and each extended strategy σ′

i of player i

∑
ω∈Ω

ui (σ (ω))µ (ω) =
∑

ω−i∈Ω−i

ui (σi (ωi) , σ−i (ω−i))µ (ω−i | ωi)

≥
∑

ω−i∈Ω−i

ui
(
σ′
i (ωi)σ−i (ω−i)

)
µ (ω−i | ωi) . (15)

That is, after receiving private information ωi no player i can improve her situation by
changing to a different extended strategy.

On the one hand, this is a formally more complicated definition, since this extension
(Ω, µ) is part of a CE+. There are infinitely many structurally different CE+ for one and
the same game γ. On the other hand, it explains how the correlation of the players’
choices come about. There is some artificial or natural random device (Ω, µ) on which
the players make themselves dependent in drawing their private information from it. If
the random device is suitably chosen, all players can profit from this dependence.

It is a short way from Definition 25 of CE+ back to Definition 2 of canonical CE. We
may identify the state space Ω with the set S of strategy profiles. µ thereby turns into
a distribution over S itself. There is no additional structure beyond the game γ. The
random device thereby turns into a kind of oracle (or mediator ) informing each player
i about her personal result of the random device, i.e., telling her “choose strategy si”.
Myerson (1991) (p. 253) then assumes that each player still has a choice how to respond
to the oracle, i.e., each player i chooses an extended strategy σi which is now a function
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from Si into Si (where the first Si is interpreted as an information space and the second
as an option space). Thus, Myerson arrives at the definition that the distribution µ over
S and the extended strategy profile σ form a canonical correlated equilibrium if and only
if for each player i, each strategy si of i with µ(si)> 0 and each extended strategy σ′

i of i

∑
s−i∈S−i

ui(σi(si), σ−i(s−i))µ(s−i|si)≥
∑

s−i∈S−i

ui(σ
′
i(si), σ−i(s−i))µ(s−i|si) (16)

Again, no player can improve her situation by changing to a different extended strat-
egy. In a final step, Myerson proves that it is optimal for each player to follow the oracle,
i.e., to choose the extended strategy σi with σi(s) = si. Thus, (16) reduces to our first
definition of canonical CE given by (2).

Now, if canonical CE “may have no natural interpretation”, this verdict presumably
carries over to canonical DE as well. The urgent question hence is: Is there a similar
story for canonical DE which provides a derivation of (3) analogous to the one of (2)
from (16)? This story again extends a game γ by some state space Ω together with a dis-
tribution µ over Ω. But how are we to interpret the state space Ω now? It seems clear that
an ordinary state space representing a natural or artificial random device won’t do. If the
players make their actions dependent on such conditions, this can result only in a CE.
Given all the players’ private information or even the true state of Ω, the players’ choices
are independent, and given only player’s i private information, i’s choice becomes in-
dependent from the other players’ choices, which remain correlated due to lack of their
private information. This is not the idea of DE.

As indicated in Section 1, Spohn (2003, pp. 243ff.) suggested that the players’ mental
set-ups, their subjective views of their decision situations, may be causally entangled.
That is, they may not be merely causally connected by having a common cause in the
form of an information structure, of which each player gets her private glimpse. They
may be more intimately entangled, say, by having evolved in an interactive history of
joint belief and desire formation, e.g., in an evolutionary process, as we have begun to
study in Section 3.3. This causal entanglement then results in a probabilistic depen-
dence between the players’ mental set-ups. Let us not try to specify this in detail, as
Spohn (2003) has at least started. However, capturing this idea in the abstract will lead
us to a schematic story underlying canonical DE.

The idea now is that Ωi represents the set of possible decision situations or mental
set-ups of player i and that the state space Ω = ×n

i=1Ωi consists of profiles of possible
mental set-ups of all players. What do the players choose to do? We can’t say because we
have not further specified these mental set-ups. However, we may assume that the rules
of rationality determine what to do within any mental set-up (including a tiebreak rule, if
necessary). As above, we may say that player i has an extended strategy σi, i.e., a function
from Ωi into Si. However, now σi is not an object of choice varying across a space Σi of
possible strategies of player i. It is rather a fixed function from Ωi to Si determined by
the rules of rationality, which are not specified in our abstract model. As said, we would
have to provide the ωi ∈ Ωi with structure to specify these rules. Likewise for the other
players. So, we should assume a fixed function σ from Ω into S, which determines the
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outcome of the game according to the mental set-ups of the players. Let us call σ the
rational law pertaining to the state space Ω. This may sound strange. However, it is not
to say that the players don’t have a choice. In each decision situation they do have a
choice what to do. It’s only that the rational decision is determined by the unspecified
rules of rationality. The players are not denied their power to willfully deviate from these
rules, and they may be prone to error, but both only to their detriment.15

Additionally, we assume that the space Ω of mental profiles is governed by a proba-
bility measure µ which represents the social pattern governing the mental set-ups of the
players with all its potential dependencies. In fact, in order to cover the general case, we
must assume that µ is a Popper measure on Ω. Whose uncertainty does the distribution
µ express? The joint one of the players. As usual, we assume that µ is common or mutual
knowledge among the players. As discussed in Section 3.2, we may allow that each player
i has her subjective assessment µi of the situation. Correspondingly, we find the idea of
a subjective correlated equilibrium in the literature. But then each player would play
her subjective game, with unpredictable outcomes. Here, we assume that the players
conceive the game in the same way, and this requires mutual knowledge of µ.

Is this to say that a player is uncertain also about her own mental set-up? This would
fly in the face of game theory as it is usually understood. But we need not see it this
way. Discussing a similar worry, Aumann (1987) (p. 8) argues that his model rather
describes the point of view of an outside observer. Likewise here: the outside observer
may indeed be uncertain about all the players. He just observes the social pattern µ.
Player i may well grasp in which decision situation ωi ∈ Ωi she ends up. It would be
odd to say, though, that she thereby receives differential information. It’s not like having
exclusive access to, say, a weather report. She is in the state ωi, and she is aware of it.
Awareness is exclusive, but not ordinary information.

If everything is fixed by the pattern µ and the rational law σ, what else is there to say?
Well, we may ask the players whether they are content with the social pattern thus fixed.
Player i may have a global discontent. She may wish society to be entirely different from
what it is. It is clear, though, that we cannot comment on this global question. Let’s
only ask whether i can be content with her local part in the pattern. In this pattern, her
expected utility is

ui :=
∑
ω∈Ω

ui(σ(ω))µ(ω) =
∑

ωi∈Ωi,ω−i∈Ω−i

ui(σi(ωi), σ−i(ω−i))µ(ω−i|ωi)µ(ωi). (17)

She will not be content if she could receive less than ui with positive probability. Those
set-ups ωi should be avoided and have probability 0. And she will not be content if op-
portunities to receive more than ui are excluded and have probability 0. They should be
allowed by µ and σ. Such local discontent concerns only the µ(ωi) and must leave the
µ(ω−i|ωi) untouched. That is, potential discontent is measured by the conditional ex-
pected utilities of the various σi(ωi). So, to resume, i would have reason to be discontent

15Aumann (1987) (p. 8) discusses the same worry with respect to his conception of the state space and
concludes that “‘freedom of choice’ is not an issue”.
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if and only if any set-up ωi with less than maximal conditional expected utility would
have positive probability. The idea then is that the pattern µ and the rational law σ form
a dependency equilibrium (DE+) if all players are locally content in this sense.16 In a
DE+ the pattern is stable. In formal terms:

DEFINITION 26. The Popper measure µ over the state space Ω is a dependency equilib-
rium (DE+) relative to the rational law σ iff for all players i, for all set-ups ωi ∈ Ωi with
µ(ωi)> 0, and all ω′

i ∈Ωi∑
ω∈Ω

ui(σ(ω))µ(ω) =
∑

ω−i∈Ω−i

ui(σi(ωi), σ−i(ω−i))µ(ω−i|ωi)

≥
∑

ω−i∈Ω−i

ui(σi(ω
′
i), σ−i(ω−i))µ(ω−i|ω′

i).
(18)

We may now take the same formal move as above and identify the state space Ω with
the set S of strategy profiles. And instead of quantifying over all set-ups ωi ∈Ωi it suffices
to quantify over all strategies si ∈ Si. It is obvious that these two moves reduce (6) to (3)
and DE+ to canonical DE.

Note that these considerations partially remove the veil of ignorance from the ra-
tional law σ. Even though we have not specified the law, it must be consistent with
maximizing conditional expected utility relative to the pattern µ.

Aumann (1987) (p. 8) writes about understanding “personal choice as a state vari-
able”: “The chief innovation in our model is that it does away with the dichotomy usually
perceived between uncertainty about acts of nature and of personal players.” If we are
right, we better observe the dichotomy; the two kinds of uncertainty work in different
ways. Our model does not assume that a player first receives partial information about
the other players by observing her own (mental) state and then makes a choice. Rather
her (mental) state, which implies her choice, is embedded in a social pattern generating
causal and probabilistic dependence amongst the states of the players (represented by a
distribution µ over Ω), which may or may not maximize her conditional expected utility.

Note that talking of choice here is ambiguous. The choice may be the chosen ac-
tion/strategy, or it may be the decision situation in which there is a choice. In the latter
sense, personal choice is a state variable, as Aumann and we have assumed here. And
the probabilistic dependence between the players’ choices in this sense may well be due
to their causal entanglement. This entanglement needs to be unfolded in detail, but it
is not a causal mystery. And as described, it entails a probabilistic dependence between
the players’ choices in the first sense without thereby implying any causal dependence
between them. This implication would indeed offend a standard assumption of nonco-
operative game theory. However, it rests upon a fallacy, as explained in Section 1.

Let us finally clarify the relation of our DE+ to the observations of Brandenburger
and Friedenberg (2008) about intrinsic correlation. In intrinsic correlation, the players’

16We have seen in Section 2.2 that there are also ‘bad’ DE, with which players should not be satisfied at all.
However, then satisfaction is measured by other criteria than simply conditional expected utility.
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belief states themselves are correlated and not some external events on which the play-
ers depend. This seems to resemble DE+. However, in intrinsic correlation each player
still considers herself to be independent from the other players; the correlation is only
among the other players’ belief states. So, an equilibrium under intrinsic correlation is
still a CE+, and the case of intrinsic correlation does not alter our general comparison of
CE+ and DE+.

This may suffice as an explanation of the difference between CE+ and DE+. In the
rest of the paper, we shall neglect the extension of the underlying game γ by some state
space Ω and focus exclusively on canonical DE.

4.2 On Conventions and Social Norms

We had emphasized the significance of Theorem 2. Let us slightly expand on this sig-
nificance by considering social norms. A crucial purpose of social norms is to establish
at least a Pareto-optimal social state in circumstances where individual rationality is ap-
parently unable to do so (though, of course, Pareto-optimality as such is still blind to fair-
ness and justice). The main tool for achieving this is to install a system of sanctions. The
expectation of sanctions then rationalizes compliance with the norm. Bicchieri (2006)
has developed a detailed account of social norms along these lines.

However, this means changing players’ utility functions, i.e., the game.17 We may in-
stead hope to be able to give an account of social norms without changing the game. In-
deed, it was Lewis (1969)’s original intention to give an account of conventions solely in
terms of mutual expectations (which may entail a practice of sanctions when the expec-
tations are disappointed). However, he did so only in terms of mutual unconditional ex-
pectations, and this led him to the idea that conventions are NE in coordination games.

Vanderschraaf (1995) and Gintis (2009) (ch. 7) observed correctly that conventions
or norms are rather characterized by a system of mutual conditional expectations: “I
follow norm X if and only if you do so, too; and I expect you to reciprocate.” Hence,
they proposed to use CE instead of NE for explicating conventions or norms. This works
nicely in pure coordination games, in which the sole interest of the players is that they
all make the same choice (in the relevant sense). Such games have multiple pure NE,
and any mixture of them is a CE — and also a DE, as we have seen in discussing Hi-Lo
in Section 2.3. These CE, and DE, embody the strongest form of dependence, insofar as
the relevant conditional probabilities (of “you do b if I do a”) are all either 1 or 0.18

However, this move still does not guarantee Pareto-optimality of outcomes outside
the realm of coordination games. Sometimes, CE come closer to Pareto-optimality than

17This is explicit in Bicchieri (2006) (pp. 2f.) who distinguishes conventions, which solve coordination
games, and social norms, which solve ’mixed-motive’ games and do so by transforming mixed-motive
into coordination games. Since DE apply across the board, there is no immediate need here to reproduce
this distinction.

18The strong dependence seems to disappear in a pure NE. However, this is a deception, created by the
fact that in standard probability theory events having probability 1 or 0 are independent from all other
events. Instead, the strong dependence present in a proper mixture of pure NE may be preserved in the
limit converging to a pure NE, when probabilities are conceived lexicographically. So, perhaps the pure
NE embody independence only superficially and in fact hide maximal dependence.
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NE. Often they do not, e.g., in PD. In this case, the CE approach to norms and conven-
tions is unhelpful. But we certainly have social norms demanding cooperation in PD
and other public good games. Theorem 2 in Section 2.2 does better in this respect by
showing that any kind of Pareto-optimal outcome can be reached through mutual con-
ditional expectations.

Section 4.1 indeed suggested that DE are a better model for explaining social norms
than CE. It seems odd to say that social norms work in the way of CE+, by providing an
information background on which players can correlate or even coordinate. It seems
more adequate to conceive of social norms as directly governing the mental set-ups
of the players and generating useful dependencies. Hence, we suggest building social
norms and conventions on mutual conditional expectations as described by DE or DE+.

4.3 Binmore’s Appeal to Folk Theorems

Binmore (1998), Section 3.3, still defends the suitability of NE for describing social
norms. In Binmore (2010), he explicitly warns not to confuse the NE in artificial labora-
tory situations with NE in real life. In real life, he says, we are continuously in the midst
of playing repeated games. In such contexts, equilibrium behavior is better described
by folk theorems about in(de)finitely repeated games, which have very many equilibria.
E.g., he reminds us that even the rejection of a proposal in an ultimatum game can thus
be understood as equilibrium behavior (Binmore (2010), p. 147).

It is interesting to compare Theorem 144.3 of Osborne and Rubinstein (1994), Sec-
tion 8.5, their basic folk theorem, and our Theorem 2. They almost agree in their lowest
upper bound: Any Pareto-optimal payoff profile above a threshold can be reached by a
DE in the single play as well as by a NE in the indefinite repetition (where the threshold
is any other DE in the case of DE and the greatest lower bound in the case of NE). They
slightly differ in the greatest lower bound: For DE it is the profile of the maximin payoffs
of all players, and for NE in the indefinite repetition it is the profile of minimax payoffs
of the players. This difference is due to the fact that folk theorems exploit punishment
that may go as far as oppressing a player to her minimax payoff, while DE are about what
a player can secure for herself, which is her maximin payoff. Finally, there is a great dif-
ference in between. There are very many DE between their boundaries, but they don’t
form a convex set, while every payoff profile in the convex hull of the boundaries for NE
can be an NE in the infinite repetition.

Presently, the relevant — and most pleasing — point is only that both accounts reach
all Pareto optimal payoff profiles (above a certain threshold). However, Binmore’s posi-
tion has its costs. Folk theorems apply to an enormously idealized scenario, and they
fail to hold under more realistic assumptions. Moreover, Binmore represents players as
being concerned about their infinite or indefinite future. What their concerns and at-
titudes are regarding the present or any single play remains unclear.19 By contrast, DE
represent single plays and players’ states of mind within them. So, why should we take

19For a more substantial criticism of the idea of referring to folk theorems for an explanation of the evolution
of cooperation see Bowles and Gintis (2003) (pp. 433f.).
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recourse to a highly involved idealization with questionable informative value concern-
ing single plays? Why not try to capture the effect of the long history of repetitions of a
game through an entangled belief system, which rationalizes reciprocal and cooperative
behavior in the single play directly and without appeal to this idealization? The social
steady state may well be captured by a DE.

4.4 Kantian Equilibria

Quite a different, but related comparative perspective is suggested by so-called Kan-
tian economics, as proposed by Laffont (1975), who proceeds from the assumption that
“we have changed the ethics of the typical agent so that when he maximizes his utility
function he assumes that everybody behaves as he does” (p. 433). On this basis, Roe-
mer (2019) has developed a detailed theory of ‘Kantian optimization’, the core notion of
which is that of a ‘Kantian equilibrium’. Roemer emphasizes that he thereby proposes
to directly change the decision rule of the players. They follow a “quasi-moral norm . . .
that is motivated by wanting to do the right thing”, where “the ‘right thing’ is defined in
large parts by what the others do” (p. 9). And for him, cooperation is precisely such a
quasi-moral norm. He does not specify the epistemic make-up of the players, but if one
did, one would have to assume the players to be involved in entangled belief systems.

A severe restriction is that Roemer’s Kantian equilibrium applies only to (roughly)
symmetric games. Roemer specifies ways to loosen it. Still, these ideas do not work
for arbitrary utility profiles. By contrast, we have seen that DE can reconstruct these
ideas, while maintaining full generality. Still, DE are entirely different in spirit. The label
“Kantian” may suggest an orientation toward social optimality, irrespective of a basis
in individual rationality.20 However, this is not the idea of DE. As explained in Section
4.1, DE are grounded in best-response reasoning and thus firmly rooted in individual
rationality. If they can rationalize ‘Kantian’ behavior, all the better.

4.5 Self-Similarity Reasoning

Roemer’s Kantian equilibria have a normative feel. However, in a more descriptive spirit,
they may also be subsumed under what is known as self-similarity reasoning according
to which players tend to think that other player(s) will choose in a way similar to their
own. E.g., when you and I are playing the PD, I assume that you are similar to me. If I
choose to defect, you are likely to do so as well, and likewise for cooperation. To simplify,
the choice is only between joint defection and joint cooperation. And if this is the only
choice, then it is clear that joint cooperation is the only rational solution.21

However, this kind of reasoning is not well reputed in economics. Ross et al. (1977)
already studied it under the label “false consensus effect”. Rubinstein and Salant (2016)

20As we understand it today; for Kant, practical reason was insight into the moral law, in the first place.
21This is the mirror principle of Davis (1977), which he proposed for rationalizing cooperation in PD. It

works only for symmetric games. Davis’ argument reappears in Hofstadter (1983)’s account of superra-
tionality.
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have reconfirmed its presence in a sophisticated experiment. It is clear from those pa-
pers, though, that the authors think that this way of reasoning is a case for social psy-
chology and not for a theory of rationality. Note, though, that psychology is full of exam-
ples where the behavior of people has appeared irrational according to received stan-
dards of rationality, but can be construed as rational relative to alternative standards.22

Daley and Sadowski (2017) treat the same phenomenon under the label of magi-
cal thinking, which refers to a “cognitive error”, namely to “the belief that one’s action
choice influences one’s opponent to choose the same action” (p. 913). Thus, they, too,
infer causal from probabilistic dependence, a move we have criticized in the introduc-
tion. Still, they give an axiomatic equilibrium analysis of the observed behavior, which
they argue to be empirically more adequate than other accounts. Due to their quite
different set-up there is no straightforward comparison. In any case, their account is
developed for PD and then generalized to symmetric two-person games only. It is con-
fusing that the symmetric Pareto-optimum in symmetric games is allegedly supported
either by pure (super-)rationality, by moral considerations, or by a cognitive error.

4.6 Program Equilibria

We might also think of computer programs as being susceptible to self-similarity rea-
soning, in particular when they are produced by the same programmer. However, as-
sumptions about what the other players do need not result from guesswork, they may
be due to direct information about the decision program they apply. This leads to the
idea of a program equilibrium of Tennenholtz (2004). More precisely, the idea is that
players do not directly choose strategies in the underlying game. Rather, they play a
metagame: Each player chooses a program and submits it to the other players. Here,
the program chosen is a function assigning a possibly mixed strategy to all possible sub-
missions from the other players.23 By submitting a program a player is committed to it.
Thus, each program at the same time functions as a kind of commitment device. In this
way, each player knows the programs, the minds, as it were, of the other players, and
from the choices of the programs a certain possibly mixed strategy profile results.

Which programs should the players choose? The recommendation is to choose a
program equilibrium, which is defined as a NE in the metagame (indeed a pure one;
mixing programs can only be done by a further program). The NE in the metagame may
result in a large variety of strategy profiles of the underlying game. Tennenholtz (2004)
(p. 369) proves that any feasible individually rational payoff vector can be reached by a
program equilibrium, where such a vector is one that gives each player at least her min-
imax payoff. (For a generalization see Peters and Szentes (2012).) Thus, as Tennenholtz
emphasizes, cooperation in PD and indeed any Pareto optimal strategy profile can be

22A famous example is Wason’s selection task, initiating a huge discussion within cognitive psychology. In
this task, the majority of people made elementary mistakes in deductive logic (by ‘affirming the conse-
quent’), while their inferences are perfectly intelligible in terms of Bayesian reasoning. See Evans (2016).

23This sounds circular. How can a function apply to itself, or something of the same set-theoretic type, as
an argument? Well, such programs must be computable, and then such self-application is feasible after
some encoding, e.g., a Gödel numbering, of the possible computable programs.
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reached by a program equilibrium. Hence, as Tennenholtz observes (p.370), program
equilibria behave in the same way as NE in in(de)finite repetitions of a game regarding
lower and upper limits and—as we may observe now—similar to DE. Still, the underly-
ing construction is obviously different. DE are silent on the way entangled beliefs come
about and allow any kind of cause. They do not appeal to any metagame construction.
Program equilibria, by contrast, are tailored to that specific construction, which deeply
involves them in the theory of computable functions.

4.7 Translucent Equilibria

As explained, program equilibria assume full knowledge not only of the actions, but of
the mental states, i.e. the programs, of the players. This is an unrealistic assumption.
Reversely, in game theory, “typically, players are assumed to be opaque, in the sense that
a deviation by one player in a normal-form game does not affect the strategies used by
other players” (Capraro and Halpern (2019), p. 372). This is unrealistic as well, a point
that was our original motivation for introducing DE. Hence, Halpern and Pass (2018)
model games with ’translucent’ players, which informally means that the players’ minds
are partially translucent to the other players. In their approach this means in particular
that “a player may believe that if he switches from one strategy to another, the fact that
he chooses to switch may be visible to the other players” (Capraro and Halpern (2019),
p. 372). They cite facial and bodily clues for such transparency. This corresponds to our
idea mentioned in the introduction that prior to the players’ actions there may be plenty
of causal interaction between the players’ mental set-ups.

So, the starting point is very similar. The formal implementation, however, is very
different. Halpern and Pass (2018) assume, for each player, a structure of counterfactual
beliefs about what the other players would do, if she were to switch her strategy. They
further assume what they call common counterfactual belief of rationality, i.e., that it
is common knowledge that each player i believes the other players would be rational
(in the sense of maximizing unconditional expected utility) even if i were to switch her
strategy. Very roughly, they go on defining that a strategy profile constitutes a translu-
cent equilibrium iff there exists an appropriate counterfactual structure in which it is
known that the players play this profile while having the common counterfactual belief
of rationality. And they show that a strategy profile is a translucent equilibrium iff each
player’s strategy is individually rational (i.e. at least as good as her maximin strategy)
within all minimax rationalizable strategy profiles, as they call them.

Our account is much simpler by assuming only the rationality of players in the sense
of maximizing conditional expected utilities as well common knowledge of such ratio-
nality. Our approaches resemble in motivation and substantially differ in conceptual
structure. Still, the extent to which they arrive at similar results may be worth checking.

4.8 Evidential Reasoning as Heuristics

A neutral and more general stance is taken by Al-Nowaihi and Dhami (2015). They allow
for evidential reasoning, as they call it, represented by so-called social projection func-
tions (SPFs) by which a player assigns probabilities to the other players’ actions con-
ditional on her choice of a mixed strategy. These SPFs may take any shape and work
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for any game in normal form. Al-Nowaihi and Dhami carefully avoid a causal interpre-
tation of these SPFs. Somehow, my choice is just evidence for what the others do. For
them, causal reasoning, which they take as standard in game theory, is the special case in
which SPFs are constant and players’ choices are probabilistically independent from one
another. Al-Nowaihi and Dhami subsume their approach under the influential heuris-
tics and biases program in cognitive psychology. They take SPFs as simple heuristics for
resolving uncertainty about the other players’ actions, which is used instead of complex
higher-order mutual best-response reasoning as captured in standard game theory.

Now, each player maximizes conditional expected utility according to her SPF, and
these optimal strategies together with the SPFs are defined to form a consistent eviden-
tial equilibrium (CEE) (p. 646) precisely if each player’s SPF is correct in the sense of
predicting the others’ optimal strategies given her own optimal strategy. With causal
reasoning, i.e., constant SPFs, CEE reduce to NE.

CEE look very much like DE. Among the surprisingly many non-standard equilib-
rium notions known to us, CEE come closest to DE. In fact, in the case of two-person
games the two notions are identical.24 However, they come apart for ≥ 3-person games.
This is so because an SPF expresses expectations about each of the other players individ-
ually and thus treats them as independent. DE make no such assumption. For this rea-
son, a collection even of consistent SPFs can never be common knowledge in ≥ 3-person
games (unless they are constant), because the probabilistic dependence one player sees
between her and the others’ strategies cannot be replicated by the other players. By
contrast, DE are entailed by such common knowledge, as shown in Section 4.1. This
difference reflects the difference in interpretation. Still, the rich examples and compar-
isons with which Al-Nowaihi and Dhami intend to display the explanatory force of CEE
may carry over to DE; indeed, they fully carry over for 2-person games.

4.9 Evidential Decision Theory

Philosophers have much less difficulty in seeing others’ actions or other states of the
world as probabilistically, though not causally, dependent on one’s own actions. This
is so because since Nozick (1969) philosophers have intensely discussed Newcomb’s
problem (NP) and the ensuing and still hotly debated distinction between causal and
evidential decision theory (CDT and EDT), a distinction that had little impact within
economics.

In NP, you have the choice between taking an opaque box containing either nothing
or a million dollars and taking this box together with a second containing a thousand
dollars. The problem posits that the opaque box has been filled long before your choice
by a very reliable predictor. If he predicted that you would take only the opaque box,
he has filled it with the million, and if he predicted that you would take both boxes,
he has left it empty. CDT recommends that you choose the dominant action of taking
both boxes because your choice can’t influence a temporally prior prediction. Following

24Apart from the technical difference that DE use probabilities conditional on pure strategies, while SPFs
assume probabilities conditional on mixed strategies, and these probabilities need not be the corre-
sponding mixtures of the probabilities conditional on pure strategies.
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dominance or causal reasoning, you are likely to end up with a thousand dollars only.
EDT, by contrast, recommends taking only the opaque box, because doing so is at least
evidence for the predictor having put the million into it and thus maximizes conditional
expected utility. Following evidential reasoning, you are likely to end up with a million
dollars.25 Maybe CDT is not so reasonable after all.26

If such evidential relations hold only in fantastic cases like NP, then one might well
set them aside. However, our various points about social norms, self-similarity con-
siderations etc. suggested that such evidential relations are a perfectly mundane phe-
nomenon easily arising in the social world between human agents with a common back-
ground.27 Constantly, we are mutual predictors of one another, not very reliable ones
perhaps, but certainly better than random ones, and thereby generate entangled belief
systems. One might say that the only rational way of predicting rational people is via
standard game theory. Clearly, though, this would beg the question. We better accept
such entangled belief systems as a relevant fact and study their rational consequences.

Just as CDT pairs with game theory based on NE, game theory based on DE naturally
corresponds with EDT. However, this should only be taken as an offer to the philosophi-
cal adherents of EDT. We hope to satisfy the adherents of CDT and standard game theo-
rists as well, namely by providing the causal explanation of entangled belief systems laid
out in in Sections 1 and 4.1. We need not take a stance on the debate between CDT and
EDT in this paper.

4.10 Summary

To wrap up: Game theorists have offered a surprising variety of accounts, matched with
nonstandard equilibrium notions, that try to come to terms, descriptively or norma-
tively, with various phenomena which are difficult to account for within standard game
theory. It seems to us that DE should take a central place in this field. More detailed com-
parisons would certainly be desirable, but space is lacking. Let us only add: As we have
mentioned, the various accounts offer variegated empirical and experimental evidence.
DE were not considered in these experiments. It seems that often such experiments are
unable to discriminate between the hypothesis actually confirmed and a similar hypoth-
esis couched in terms of DE. That is, existing evidence for these alternative equilibrium
notions could also be interpreted in favor of DE. Again though, it would go much too far
to start a detailed analysis of all the relevant material in order to gain a comprehensive
assessment of the empirical standing of DE.

25According to a survey from 2020, 39% of 1071 philosophers accepted or leaned towards taking two boxes
in NP and 31% accepted or leaned towards one-boxing. It is unlikely that the latter are simply confused.
See: https://survey2020.philpeople.org/survey/results/4886. In the end, though, the philosophical dis-
cussion is more complicated. Quite a few philosophers challenge the common identification of EDT with
one-boxing and CDT with two-boxing. See, e.g., Spohn (2012).

26However, after Jeffrey (1965/1983) developed EDT and challenged CDT, CDT required more explicit state-
ments, as delivered, e.g., by Gibbard and Harper (1978), Skyrms (1980) (part IIC), and Lewis (1981). The
real challenge of the issue is, of course, to get clear about the relation between causation and probability
in the context of decision theory, which is not fully explicit in Savage (1954), denied by Jeffrey (1965/1983),
and contested since. As mentioned, the leading paradigm here is the interventionist theory of causation,
as presented, e.g. in Pearl (2009).

27Already Brams (1975) has observed that PD is just a symmetricized version of NP.
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5. CONCLUSION

Our goal has been to present a conceptual generalization of NE to DE and to vindicate
the significance and plausibility of this move. Our main accomplishment in this regard
has been to show that major branches of game theory such as epistemic game theory
and evolutionary game theory (in its deliberational reinterpretation) can just as well be
developed on the basis of the concept of DE, yielding intriguing consequences that often
deviate from standard game theory and merit further exploration. We thus hope to have
laid the foundations for a novel and worthwhile research program.

APPENDIX

In Section 2.2 we claimed that the limit definition 4 and the lexicographic definition 7
of a DE are essentially equivalent. In order to explain this, we first have to clarify the
relation between sequences of probability distributions in ∆(S) and Popper measures.
This is stated in:

LEMMA 6. Let the sequence (pr)r∈N of distributions pr ∈∆(S) be such that for some T ⊆
S limr→∞ pr(A|B) exists for all A,B ⊆ S with B ∩ T ̸= ∅. Then P defined by P (A|B) =

limr→∞ pr(A|B) for all such A,B ⊆ S is a Popper measure for S. Conversely, for each
Popper measure P for S there is a sequence (pr)r∈N of distributions pr ∈∆(S) and T ⊆ S

such that P (A|B) = limr→∞ pr(A|B) for all A,B ⊆ S with B ∩ T ̸= ∅.

PROOF. The first claim is trivial, because each pr has the properties characteristic of a
Popper measure, which are preserved in the limit. Regarding T , observe the last asser-
tion of Lemma 1. Reversely, let λ = (λ0, . . . , λq) be the lexicographic probability corre-
sponding to P . For each ϵ > 0, let p′ϵ =

∑q
j=1 ϵ

jλj , and let pϵ be the normalization of p′ϵ .
Then, P (A|B) = limϵ→0 pϵ(A|B).

Now we can state the essential equivalence between lexDE and lim DE:

THEOREM 6. If P is a lexDE, then p = P (.|S) is a limDE. Reversely, if p is a limDE, then
there is a P ∈∆∗

Popp(S) such that p= P (.|S) and P is a lexDE.

PROOF. Let P be a lexDE. Then as shown in Lemma 2, there is a sequence (pr)r∈N of dis-
tributions pr ∈∆(S) such that P (A|B) = limr→∞ pr(A|B) for all A,B for which P (A|B)

is defined. Let p= limr→∞ pr . Then p is a limDE, because

lim
r→∞

∑
s∈S

ui(s)pr(s−i|si)pr(si) =
∑
s∈S

ui(s)P (s−i|si)P (si) and (19)

for all s′i ∈ Si lim
r→∞

∑
s−i∈S−i

ui
(
s′i, s−i

)
pr

(
s−i|s′i

)
=

∑
s−i∈S−i

ui
(
s′i, s−i

)
P
(
s−i|s′i

)
. (20)

Reversely, assume that p is a limDE. Thus, there is a sequence (pr)r∈N with pr ∈∆+(S)

that converges to p, as required. Without loss of generality, we may assume that also
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limr→∞ pr(A|B) exists for all A and B with B ∩ T ̸= ∅ for some T ⊆ S for which T ⊆
{si} × S−i) for all si ∈ Si and i ∈ I . Why? This is not guaranteed in general. However, if
the limit limr→∞ pr(A|B) does not exist, a limit inferior and a limit superior must exist
in any case, and hence we find a subsequence (pr)r∈M of (pr)r∈N for some an infinite
subset M of N) for which limr→∞ pr(A|B) exists. We may repeat the procedure finitely
many times for all A and B concerned. Thus, for some infinite M ⊆ N there is a subse-
quence (pr)r∈M of (pr)r∈N for which limr→∞ qr(A|B) exists for all A and B ̸= ∅. Hence,
we may assume that (pr)r∈N itself is such a suitable sequence. According to Lemma 2, it
converges to a Popper measure P . Indeed, p ∈∆∗

Popp(S), due to the assumption about
T . And this P must be a lexDE, because equations (19) and (20) apply again.

Note that there may be many different lexDE corresponding to one limDE, but not
vice versa. Note also that not each sequence (pr)r∈N converging to a limDE converges
to a Popper measure that is a lexDE.
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