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Abstract This article discusses how the concept of a fair finite lottery can best be
extended to denumerably infinite lotteries. Techniques and ideas from non-standard
analysis are brought to bear on the problem.
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1 Introduction: from the finite to the transfinite

Although a fair lottery over the natural numbers may not objectively exist, we have
strong intuitions about it. We may even give quantitative answers to questions such
as: “What is the probability that the winning number is odd?” We may answer “Fifty
percent”, by considering the probability of even and odd numbers in finite lotteries.

When forming an image of infinite mathematical objects, we rely on our experience
with finite objects (Lavine 1995). More often than not it is impossible to construct or
discover an infinite counterpart of a finite concept that fulfils all our intuitions con-
cerning the former. In such cases we have to choose which of those intuitions is most
dear to us and weaken or give up at least one other. An example from classical mathe-
matics would be the assignment of cardinalities to infinite sets by Cantor: he took the
existence of a one-to-one correspondence between sets as the guiding principle for
assigning equal sizes to them, but had to give up the intuition that the whole is always
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larger than the parts. If the infinite was like the finite in every relevant respect, then
it would not be so interesting. Giving up some of our intuitions and tacit assumptions
is just the price we have to pay if we want to study a new object. So it is with infinite
lotteries. We will have to give up some of our intuitions governing finite lotteries. The
question is: which ones, and to what extent.

In this paper, we consider a fair lottery in which exactly one winner is randomly
selected from a countably (or denumerably) infinite set of tickets. We intend to find
a description of such a lottery that is mathematically sound and philosophically ade-
quate, by examining our intuitions governing finite lotteries. It may be objected that
since there are no infinite lotteries in reality, it is not clear how we can have any intu-
itions about the concept. Real world lotteries are always finite, but—no matter how the
drawing is realized—the outcome can never be guaranteed to be random. Therefore
even the idea of a truly fair n-ticket lottery, where n is some finite natural number, is a
highly idealized concept, but one that is useful in analyzing a broad range of practical
situations. Allowing the lottery to have an infinite number of possible outcomes is
an additional idealization. The idea of a fair lottery on the natural numbers occurs in
probabilistic number theory (Tenenbaum 1995) and may be a useful approximation
for large lottery-like phenomena. This problem also goes by the name of ‘de Finetti’s
lottery’ (Bartha 2004) and ‘God’s lottery’ (McCall and Armstrong 1989). Although
we will never be confronted with a lottery consisting of an infinite set of tickets in
reality, it is valid to ask what probability can rationally be assigned to a ticket.

In the subjectivistic approach to probability, it has been argued (for instance in
Ramsey 1926 and de Finetti 1974) that our subjective probability assignments can
only be rational if they agree with Kolmogorov’s laws of probability (Kolmogorov
1933). Within Kolmogorov’s axiomatization however, there simply is no description
available for a fair countably infinite lottery. To describe this case, we have to formu-
late new axioms or at least change one of the assumptions or axioms of Kolmogorov’s
system. One solution, advocated by de Finetti (1974), is to relax the requirement of
countable additivity to finite additivity. In this article, we will develop a different
approach. We propose to replace the co-domain (or range) of the probability measure
by a non-standard set: this allows us to assign a non-zero, infinitesimal probability to
single tickets. In contrast to de Finetti’s solution, there will be a sense in which the
probability of a countably infinite union of events supervenes on the probabilities of
the individual events. This sense is captured by an additivity principle that is a close
analogue of the usual assumption of countable additivity.

The paper is structured as follows. In Sect. 2, we examine our intuitions con-
cerning finite and infinite lotteries. Inn Sect. 3 we review asymptotic density and a
generalization thereof by means of which a finitely additive, real-valued probability
measure can be obtained on the full power set of the natural numbers. In Sect. 4, we
introduce some central concepts of non-standard analysis. In Sect. 5, we construct a
hyperrational-valued probability measure (based on the concept of numerosity) and
show that it is hypercountably additive rather than countably additive. In Sect. 6, we
compare our hyperrational approach with the real-valued solution based on (general-
ized) asymptotic density, and with a hyperfinite lottery. In the final conclusion section,
we review the most salient features of the proposed hyperrational description of a fair,
countably infinite lottery.
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Regarding notation, throughout this paper we takeN to be the set of strictly positive
integers, {1, 2, 3, . . .}.Even will denote the set of even natural numbers and Odd that
of the odd natural numbers. We use 〈 〉-brackets to indicate an ω-sequence; if only
one element is given between the brackets, it will be the general element at a position
n ∈ N. We abbreviate ‘non-standard analysis’ as NSA, ‘finite additivity’ and ‘finitely
additive’ with FA, and ‘countable additivity’ and ‘countably additive’ with CA. The
‘H’ in HFA and HCA adds the prefix ‘hyper-’ to the former abbreviations.

2 Intuitions concerning lotteries

First we need to be precise about what we mean exactly with a finite lottery, give a
mathematical description of it, and make our intuitions about it explicit. Subsequently
we investigate to what extent these intuitions carry over to the infinite case, and what
has to be changed in the mathematical description to maximize the intuitive appeal
of it.

2.1 Finite lotteries

2.1.1 Probability measure

By a finite lottery we mean a process that assigns exactly one winner among a discrete
set of tickets in a fair way. By fair we mean that each ticket initially has the same
probability of winning. So this process can be modeled by a uniform, discrete func-
tion (given below in Eq. 1), which fulfills all of Kolmogorov’s axioms for probability
measures (Kolmogorov 1933).

The sample space is the set of tickets. The tickets may be numbered, but they need
not be: they may be characterized by other symbols with no apparent order. Since the
tickets are finite in number, say n ∈ N, they can be labeled with an initial segment of
the natural numbers, and this set of numbers {1, . . . , n} may be used as the sample
space instead.

The event space is a σ -algebra1 which contains all combinations of tickets to which
we can assign a probability. Since we may do so for any possible combination of tick-
ets, the event space is the powerset P({1, . . . , n}) of the sample space. The probability
values for an n-ticket lottery form the set {0, 1

n , 2
n , . . . , n−1

n , 1}. The co-domain of a
probability measure on a finite lottery with an unspecified number of tickets is there-
fore the set of all rational numbers in the [0, 1] interval: [0, 1]Q = [0, 1] ∩ Q. The
probability measure is given by the function:

Pn : P({1, . . . , n}) → [0, 1]Q
A �→ #(A)

n

(1)

1 An algebra is a family of subsets of the sample space that contains the sample space itself and is closed
under complementation and finite unions; a σ -algebra is closed under denumerable unions on top of that.
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where # is the counting function, that maps a finite set to its number of elements
(finite cardinality). Thus, Pn is a counting measure normalized by the total number
of elements in the sample space. # is the prototype of a CA measure, a property that
we will employ in the proof of the additivity of the non-standard measure that we will
construct.

Thus, Pn is CA too, but only in a trivial sense: for each countable family of disjoint
subsets {A1, A2, A3, . . .} of the sample space, there will be a finite value k ∈ N such
that for all m ≥ k, Am is an empty set. Hence, in the countable sum

∑
m∈N Pn(Am),

all terms with m ≥ k will be zero and CA reduces to FA in this case.2

2.1.2 Intuitions

Now we list our intuitions governing a finite lottery. Some of these may seem highly
related, and they are—at least in the finite case—, but they need not be in the infinite
case, so we name them separately:

FAIR The lottery is fair.
ALL Every ticket has a probability of winning.
SUM The probability of a combination of tickets can be found by summing the

individual probabilities.
LABEL The labelling of the tickets is neutral with respect to the outcome.

The assumption FAIR embodies the thought that one ticket does not have a higher
probability than any other one: a fair lottery is governed by equiprobability. This
can only be implemented by the formal requirement that the associated probability
function is uniform.

The assumption ALL can only be implemented by the requirement that the proba-
bility of any possible combination of tickets is defined. In other words, the probability
function must be defined over the whole power set of the event space.

The assumption LABEL is motivated by the intuition that labelling is no more than
a convention inspired by the need for referring to specific tickets. It is implemented by
requiring of the associated probability function that it is invariant under permutations
of the domain.

The assumption SUM is motivated by the intuition that the probability of a set
containing the winning number supervenes on the chances of winning that accrue to
the individual tickets. The usual assumption of countable additivity (CA, sometimes
also called σ -additivity) is one attempt of making the intuition that is encapsulated
by SUM precise. We will argue, however, that this is not the right way to do it in
this case. In other words, we will argue that the implementation of SUM is not as
straightforward an affair as is commonly thought.

The constraints FAIR, ALL, and SUM jointly entail that every point event must be
assigned a non-zero probability. Thus in the context of infinite lotteries the so-called

2 k cannot be fixed in general, but depends on the family. Although at most n sets can be non-empty, k may
need to be larger than n, since a family of sets can consist of many empty sets ‘in between’ the non-empty
ones.
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principle of Regularity holds. This is not to say, however, that this principle must hold
in all probabilistic scenarios.3

These assumptions motivate the standard account of finite lotteries, and they are
jointly satisfied by the standard description given by Pn . Let us now briefly survey
how these assumptions fare in the context of infinite lotteries.

2.2 Infinite lotteries

The infinite counterpart of a finite lottery that we are interested in here is an infinite,
denumerable lottery, in particular a lottery that has N as its sample space.

For a start, suppose that we are very keen on the intuitions ALL and SUM, and
that SUM is formally cashed out as CA. There are (uncountably) many probability
distributions that satisfy these two constraints. However, it is easy to see that all of
them violate FAIR. But the assumption FAIR simply is non-negotiable. The intuition
of fairness is absolutely central to our concept of a lottery. Whereas real world lotteries
may never be completely fair, we are considering ideal lotteries. Indeed, when one
considers infinite lotteries at all, one is leaving the real world behind anyway.

The assumption LABEL might seem reasonable at first blush, but as a consequence
of Cantor’s theory of infinite cardinalities, it will have to be abandoned. Every infinite
subset of N is in one-to-one onto correspondence with every other infinite subset of
N. So if we insist on invariance under permutation, then every infinite subset ofNwill
receive the same probability. This immediately leads to a contradiction with the laws
of probability.4 Thus, whereas for finite sample spaces the labelling of the point events
is immaterial, in the infinite case it is of the essence. Giving up LABEL admittedly
gives rise to a feeling of discomfit. But if we have a naked choice between giving up
some of the laws of probability on the one hand, and giving up LABEL on the other
hand, then we should surely take the second option.5

The assumption ALL seems negotiable to some extent. For one thing, it is a well-
known consequence of the Axiom of Choice that there is no probability measure on the
whole of P(R) (Truss 1997, Chap. 11). If there are no probability measures on P(R),
then it should perhaps come as no surprise that there are no satisfactory probability
measures on P(N) in the context of infinite lotteries. In any event, we will require
of any solution to the infinite lottery problem that to the extent that we have strong
intuitions about probabilities of a subset A ∈ N, the solution takes the probability of
A to be defined and in agreement with our intuitions—or else the solution will have
to contain a winning story about why our intuitions are mistaken.

Like ALL, the assumption SUM is not so easy to assess. It is well-known that there
is no uniform probability function on P(N) that is CA (de Finetti 1974). So if we want

3 Skyrms (1980) and Lewis (1980) defend Regularity in general, whereas Williamson (2007); Hájek (2010),
and Easwaran (2010) argue that it cannot hold in all cases (even when infinitesimal probability values are
allowed).
4 By considering Even and Odd on the one hand, and their union N on the other hand, we see that all three
sets have the same measure, so FA fails.
5 For a discussion of the role of LABEL in assigning probabilities in the context of the realism debate, see
Douven et al. (2010).
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to preserve FAIR and ALL, and insist on SUM, then we must make it precise in a way
that is different from CA.

3 Asymptotic density: real-valued probability with finite additivity

3.1 Limiting relative frequency

Although all infinite subsets of the natural numbers have the same cardinality, there
are ways to discriminate the ‘size’ of Even from that of N for instance. In number
theory, the asymptotic density ad (or natural density) of a subset A of N is defined as
follows (e.g. Tenenbaum 1995, p. 270):

ad(A) = lim
n→∞

#(A ∩ {1, . . . , n})
n

if the limit exists (2)

Asymptotic density captures the idea that a lottery over N is obtained from a finite
lottery (Eq. 1) IN the limit of the number of tickets, n, going to infinity. Thus, for a
set A that has a defined asymptotic density ad(A) = limn→∞ Pn(A). Since Q is not
closed under the limit-operation, the co-domain of ad is the [0, 1]-interval of the real
numbers, rather than [0, 1]Q as in the finite case.

Asymptotic density gives rise to a FAIR probability assignment. However, it fails
ALL: since asymptotic density is not defined for all subsets of N6, it cannot be intro-
duced as a measure with P(N) as its domain (Tenenbaum 1995). The collection of all
subsets of N that do posses asymptotic density is not closed under intersection and
union, so it does not form an algebra.

3.2 A generalization

It is possible to extend asymptotic density to a measure that assigns a value to all subsets
of N (Schurz and Leitgeb 2008). This requires a generalization of the limit-concept,
that assigns a value to all bounded—convergent and non-convergent—sequences: the
Hahn-Banach limit (HB-lim) is a real-valued generalization, that equals the value
of the classical limit for convergent sequences.7 For any A ∈ P(N) the sequence
〈 #(A∩{1,...,n})

n 〉 is bounded (by 1). Therefore, the Hahn-Banach limit of this sequence
is defined on all of P(N), giving rise to the probability measure Pad :

Pad : P({1, . . . , n}) → [0, 1]R
A �→ HB-lim #(A∩{1,...,n})

n

(3)

6 ad is defined for all finite subsets of N, but not for all infinite subsets. An example of a set for which
ad is undefined is the set of numbers whose binary notation contains an even number of digits. A second
example comes for free: consider its complement, the set of numbers whose binary representation contains
an odd number of digits.
7 We will give a definition of HB-lim in the non-standard framework in Sect. 4.5.
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The great selling point of this construction is that probabilities are aligned with lim-
iting relative frequencies whenever these are defined. But again, the resulting measure
is only FA (Schurz and Leitgeb 2008). So even though ALL can be obtained, SUM
does not hold.

Pad can be thought of as giving precise content to a suggestion by de Finetti: by
weakening the requirement for CA to FA, all other axioms of classical probability
theory can be saved. This solution to the problem of the fair infinite lottery was advo-
cated by de Finetti (1974). It allows us to assign probability values to infinite subsets
ofN that correspond well to our intuitions (such as a probability 1/2 for Even as well
as for Odd). The solution does come with a major drawback, however. It amounts to
giving up on the intuition that the chance of a ticket from an infinite set winning is an
infinite sum over the chances of individual tickets from the set winning (SUM). As a
result, regularity fails, so we also have to give up on the intuition that each ticket has
a non-zero chance of winning.

4 Infinitesimals

With FA, we can save FAIR, ALL and a finite version of SUM. But it seems odd
that the measure of singletons can be exactly 0 while the measure of their union is
1. Now the question is: can we do better? So far, we have only looked at real-valued
probability functions, and we have seen that in that framework the answer is ‘no’.
Now we will reconsider the question. It seems that we can do better indeed, by assign-
ing an infinitesimal probability to the singletons, rather than 0. In the finite case, the
probability of a singleton is 1 divided by the number of elements in the sample space.
Since our sample space isN, with an infinite number of elements, we should assign the
inverse of an infinite number to the singletons. Cantor’s cardinalities are not suitable
for this, since they have no inverse. Non-standard analysis provides a consistent way of
working with unbounded or infinite numbers, which do have an inverse: infinitesimals.
So, non-standard analysis allows us to have a different co-domain for the probability
measure: ∗[0, 1]∗Q, which is the unit interval within ∗

Q, a non-standard extension
of Q.

We will give a short overview of some essential concepts in non-standard analysis
(NSA) (Robinson 1966). We do not aim at completeness here, but restrict our attention
to those ingredients that we will need in the course of this paper. The information of
this section is mainly based on Cutland (1983) and Benci et al. (2006).

4.1 The star-map and transfer

All approaches to NSA need a tool that maps any standard object, A (which can
be a number, set, function, …), to its unique non-standard counterpart or hyper-
extension, ∗ A. This function, called the star-map, should preserve a large class of
properties, which is ensured by the Transfer principle. In axiomatic approaches to
NSA, the Transfer principle is stipulated as an axiom; in other approaches such as the
ultrafilter-construction that we will employ here, it is a theorem.
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An important example is the star-map of an ω-sequence. This is a hypersequence,
i.e., a sequence that takes values on all of ∗

N, which is a nonstandard extension of
N. We introduce the notation 〈〈 〉〉 to distinguish a hypersequence from a standard
sequence; if only one element is given between the brackets, it will be the general
element at position N , with N ∈ ∗

N. (We will encounter the star-map of a sequence
of sets in Eq. 23.)

The star-map can be obtained using free ultrafilters; this requires the introduction
of equivalence classes determined by a free ultrafilter.

4.2 Equivalence classes based on a free ultrafilter

Consider the set of ω-sequences on a general set X (or the set XN of functionsN → X ).
The idea is to interpret a whole sequence as one entity, be it a non-standard one. Even
if X is a set of numbers, when XN fails to form a field, it does not provide a useful
number system. To this end, we need to make a choice of ‘which positions in the
sequence matter’. For instance, a difference in only finitely many positions should
not matter. Fixing a free ultrafilter on the label set, N, is a way to settle all these
choices at once.8 A nice introduction to ultrafilters can be found in Komjáth and Totik
(2008).

A free (or non-principal) ultrafilter, U , on N is a collection of subsets of N (U ⊂
P(N)), which fulfills four requirements:

1. ∅ /∈ U
2. (∀A, B ∈ U) A ∩ B ∈ U
3. (∀A ⊂ N) A /∈ U ⇒ N\A ∈ U (ultra)
4. (∀A ⊂ N) A is finite ⇒ N\A ∈ U (free)

Two sequences are equivalent (or equal ‘almost everywhere’) with respect to a free
ultrafilter just if the set of labels where their terms are exactly equal is an element of
the filter:

(∀〈xn〉, 〈yn〉 ∈ XN) 〈xn〉 ≈U 〈yn〉 ⇔ {n | xn = yn} ∈ U (4)

We may define the equivalence class of a sequence 〈xn〉 modulo the just defined
equivalence relation, [〈xn〉]U , as follows:

(∀〈xn〉 ∈ XN) [〈xn〉]U = {〈yn〉 ∈ XN) | 〈yn〉 ≈U 〈xn〉} (5)

The set of equivalence classes of sequences does provide a good basis for a number
system and may be interpreted as ∗ X , the hyperextension of X .

8 In general, non-standard analysis may be developed from considering a free ultrafilter on any infinite set,
but in this paper we will always use N as the index set.
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4.3 ∗
N and ∗

Q

To illustrate how the equivalence class of sequences can provide the star-map of a set
X , we consider the hyperextensions of X = N and X = Q.

∗
N is defined as the set of equivalence classes (determined by the choice of a free

ultrafilter on N) of elements of NN, [〈mn〉]U . The elements of ∗
N are called hypernat-

ural numbers. The equivalence class of a constant sequence [〈mn〉], with mn = m ∈ N
for all n ∈ N, can be written in short as ∗m and may be identified with the standard
natural number m: this embeds N in ∗

N. Because of the construction, ∗
N is called

a sequential extension of N: it consists of (equivalence classes of) ω-sequences of
standard natural numbers.

For probability values, the sequential extension of Q seems more appropriate than
∗
N. The set of hyperrational numbers ∗

Q can be obtained in several ways. Since the set
of integers, Z, can be introduced as the closure of N under substraction, and the set of
rational numbers, Q, can be introduced as the fraction field of Z,∗N can be extended
similarly to ∗

Z and ∗
Q subsequently. Alternatively, by considering sequences of inte-

ger or rational numbers, ∗
Z and ∗

Q can be constructed using ultrafilters in a similar
fashion as ∗

N. (As was already mentioned, the star-map returns the hyperextension of
any standard object, so also ∗

R and ∗
C can be obtained.)

4.4 R as an approximation to ∗
Q

To relate results of NSA to standard analysis, the standard part (or shadow) function, st ,
is a useful concept: st maps any non-standard number to the closets real value, which
is uniquely determined. Clearly, ‘taking the standard part’ comes down to rounding
up to infinitesimals.

For fair lotteries on finite sample spaces, the probabilities are fractions (rational
numbers). For infinite sample spaces, probabilities can be associated with ω-sequences
of rational values. Observe that both the construction of R from Cauchy sequences
and the above construction of ∗

Q start from ω-sequences of rational numbers. Only
the rule by which the whole sequence is associated with a new—real or hyperratio-
nal—number differs. Thus, for the range of a fair infinite lottery we seem to have a
choice between R and ∗

Q (rather than between R and ∗
R).

If we use the standard part function on ∗
Q, we can obtain any value of R. Thus,

from the non-standard viewpoint, real-valued probabilities can be seen as an approx-
imation of hyperrational numbers. If the real values give satisfactory answers, they
are all we need. If not, we may need to look at a more precise description in terms of
hyperrationals.

4.5 Limits

4.5.1 Alpha-limit

We may call ∗aα the ‘ideal value’ or the ‘alpha-limit’ of the sequence 〈an〉. It is equal
to the value of the hypersequence 〈〈∗aN 〉〉 at position N = α and also to the ultrafilter
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equivalence class of the sequence 〈an〉 (Benci and Di Nasso 2003a, p. 367):

∗aα = [〈an〉]U (6)

4.5.2 Classical limit

The definition of the classical limit of a real-valued sequence, limn→∞ an , can be
reformulated in NSA as follows (Väth 2007, p. 88): 〈an〉 converges with limit L ∈ R
if and only if

(∀N ∈ ∗
N\N) ∗aN − L is infinitesimal (7)

In particular for N = α, if limn→∞ an = L , then st (∗aα) = L . By Eq. 6, we find that:

lim
n→∞ an = st ([〈an〉]U ) if the limit exists (8)

4.5.3 Hahn-Banach limit

Hahn-Banach limits (HB-lim) are a real-valued generalization of the limit that is
defined for all bounded sequences and is equal to the value of the classical limit if the
sequence converges. In NSA, the Hahn-Banach limit of a real-valued sequence 〈an〉
is defined as follows (Väth 2007, p. 133): 〈an〉 is bounded with HB-lim(an) = L ∈ R
if and only if

L = st

⎛

⎝
H1∑

N=H0

hN
∗aN

⎞

⎠ (9)

for some H0, H1 ∈ ∗
N\Nwith H0 < H1 and for some internal sequence of hyperreals

hH0 , . . . , hH1 such that
∑H1

N=H0
hN = 1.

4.6 Internal and external objects

Not all non-standard objects are the image of some standard object by the star-map;
those that are, are called ‘internal’, the others ‘external’. This distinction is important
but not easy to understand immediately. As a first example,N is external; in fact, every
infinite countable set is external. It is also important to note that whereas the star-map
preserves most set-operations, it does not do so for the powerset: the operation ∗P
returns only the internal subsets of a given set, and so, for any infinite standard set
A: ∗(P(A)) � P(∗ A). The probability function we will construct will also turn out to
be external.
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5 Hyperrational valued probability

Let us now construct a non-standard valued probability measure to describe a lottery
on N. If we want to find a function that is formally similar to the probability measure
of a finite lottery, then we must find a way to ‘count’ finite as well as infinite subsets
of N and divide by the size it assigns to the whole sample space to normalize this
function.

The construction proceeds in four steps. (1) Every subset of N can be represented
as an infinitely long bit string by considering its characteristic function. (2) Then we
consider the sequence of partial sums of these bits. (3) By introducing a free ultrafilter
on N, we can interpret the whole partial sum sequence as one nonstandard (or hyper-
natural) number: its numerosity. (4) By a suitable normalization, we finally obtain a
hyperrational-valued probability measure on P(N).

After the construction we show that numerosities and probabilities based on them
are hypercountably additive (HCA). In fact, we shall see that it is perhaps more appro-
priate to call them hyperfinitely additive (HFA).

5.1 The construction

5.1.1 Step 1: Characteristic bit string

First, consider the indicator function or characteristic function of a subset A of N:
it tests whether a natural number is in the set A or not, where a positive answer
corresponds to 1 and a negative to 0.

χA : N→ {0, 1}
(10)

n �→
{

0 if n ∈ N\A

1 if n ∈ A

Now we can construct the function that assigns a characteristic bit string (CBS) to
any subset of the natural numbers:

C BS : P(N) → {0, 1}N
A �→ 〈χA(1), χA(2), . . . , χA(n), . . .〉 (11)

In shorthand notation, we can refer to a sequence by its n-th element only, so
C BS(A) = 〈χA(n)〉.

5.1.2 Step 2: Partial sums of characteristic bit strings

Now we consider the sequence of partial sums of characteristic bit strings of a subset
A of natural numbers, SumC BS(A).
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SumC BS : P(N) → N
N

A �→ 〈Sn〉 (12)

with

Sn =
∑n

m=1
χA(m)

(13)= χA(1) + χA(2) + · · · + χA(n)

So Sn has a value in {0, . . . , n} for all n. Alternatively, Sn can be written in terms of
the counting function #:

Sn =
n∑

m=1

χA(m) (14)

=
∑

m∈N

χA∩{1,...,n}(m) (15)

= #(A ∩ {1, . . . , n}) (16)

The sequence 〈Sn〉 seems to ‘point to a value at infinity’. If we interpret this sentence
in the framework of standard analysis, we should take the limit n → ∞. For infinite
sets A this results in limn→∞ Sn = ∞, which cannot be normalized. (If we consider
the sequence 〈 Sn

n 〉 instead and its limit n → ∞, we find asymptotic density again.) As
we have seen however, in NSA we may alternatively interpret the whole sequence as
one non-standard number.

5.1.3 Step 3: Numerosity as the equivalence class of the partial sum sequence

The equivalence class under a free ultrafilter of a sequence of partial sums of charac-
teristic bit strings is a hypernatural number that can be interpreted as the size of the
corresponding set, called its numerosity.

num : P(N) → ∗
N

A �→ [〈Sn〉]U
(17)

with Sn as before.
Any finite set has a finite numerosity (value in N, equal to #(A)), whereas any infi-

nite set has an infinite numerosity (value in ∗
N\N). As an example, consider A = N.

In that case, C BS(A) = 〈1, 1, 1, . . . , 1, . . .〉 and num(A) = [〈1, 2, 3, . . . , n, . . .〉]U ,
which is larger than any finite number. Thus we have shown that num(N) is an element
of ∗
N\N. We may call this new number, num(N), alpha (α).
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Using Eq. 14, we can transform the definition for numerosity given by Eq. 17 in
the following way:

num(A) = [〈Sn〉]U
= [〈#(A ∩ {1, . . . , n})〉]U
= [∗#(∗ A ∩ [〈{1, . . . , n}〉]U (18)

for all subsets A of N.9 Note that [〈{1, . . . , n}〉]U is a hyperfinite set, which
means that there is an infinite hypernatural number, N , such that this set is equal
to {1, . . . , N }. We can even be more precise, the hypernatural number N is equal
to [〈1, 2, 3, . . . , n, . . .〉]U , which we will call α (following the terminology of Benci
and Di Nasso). So we obtain:

num(A) = ∗#(∗ A ∩ {1, . . . , α}) (19)

Remark how similar this form is to the numerator of the asymptotic density function
in Eq. 2. Thus, Eq. 19 is very suggestive for a probability function: all we need to do
is normalize it.

5.1.4 Step 4: Non-standard probability

The construction is completed by normalization of the numerosity function. By divid-
ing it by the numerosity of the sample space, num(N) = α, we can introduce the
probability function of a lottery over N in a form that is similar to the probability
measure of a finite lottery (Eq. 1):

Pnum : P(N) → ∗[0, 1]∗Q

(20)
A �→ num(A)

α

Pnum takes values on the unit interval of ∗
Q and may be interpreted as a

hyperrational-valued probability function. It assigns an infinitesimal probability to
any finite set and a larger probability to any infinite set.

Since algebraic operations on non-standard numbers are equivalent to the term-
wise application of the corresponding operation on the underlying sequence, from our
construction we obtain:

Pnum(A) = num(A)

α
=

[〈
#(A ∩ {1, . . . , n})

n

〉]

U
(21)

9 The form on the second line makes it clear that our ultrafilter-based definition of the numerosity func-
tion is equal to that of the axiomatic approach developed in Benci and Di Nasso (2003b). In the exis-
tence proof given in that paper, numerosity is related to the ultrafilter-construction of NSA as follows:
num(A) = [〈#(A ∩ {1, . . . , n})〉]U (Benci and Di Nasso 2003b, p. 62), where U is a free ultrafilter such
that U = {A ⊆ N | α ∈ ∗ A} (Benci and Di Nasso 2003a, p. 374).
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which makes the analogy with asymptotic density complete.
Pnum is an external object, because its domain is P(N), which is an external set.

This means that the function cannot be obtained directly by taking a standard function
and applying the Transfer Principle to it.

5.2 Additivity of the probability function

In this section, we will investigate to what extent our proposal for Pnum satisfies SUM.
We will show that the numerosity function is hypercountably additive (HCA) rather
than countably additive (CA). It then follows directly that the probability measure
based on it is HCA too.

5.2.1 Addition on ∗
N

First we need to define finite addition on ∗
N. The sum of two hypernatural numbers is

defined as the star-map of the standard sum operation (on standard numbers) +: ∗+.
For any two sequences 〈an〉, 〈bn〉 we have: [〈an〉]U ∗+[〈bn〉]U = [〈an〉+ 〈bn〉]U . Since
it will be clear from the context whether we are summing standard or non-standard
numbers, we may drop the ∗ from the sum-symbol. Likewise, all finite sums are
defined.

The countably infinite sum
∑

n∈N is not defined for non-standard terms: since∑
n∈N = limm→∞

∑m
n=1 and limits are only defined for standard numbers. Another

way to see this is by taking into account thatN is an external set, and summations over
such sets are not defined.

An infinite addition that is relevant (always defined) for non-standard numbers is
the hyperfinite sum: the equivalence class of a sequence of finite sums. We may also
consider the summation over all of ∗

N—a hypercountable sum
∑

N∈∗N—since the
latter is an internal set.

5.2.2 num is not CA

CA relates a property of the domain of a measure to a property of its range. First of
all, the domain has to be a σ -algebra, ensuring that the union of any countably infinite
family of sets in the domain is also in the domain. Secondly, countable sums have to
be defined on the range. CA then links the two by requiring that the measure of the
union of a countable family is equal to the countable sum of measures of the each of
the members of the family.

The domain of the numerosity function is P(N), which is indeed a σ -algebra.
The range of the function however is the set of hypernatural numbers, for which the
countably infinite sum is undefined. Therefore, the numerosity function cannot be
countably additive. The same argument applies to any function that maps P(N) to a
set of non-standard values.
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5.2.3 num of a sequence of sets

So far, the numerosity function is only defined for individual subsets of N (Eq. 17).
Now, we define the numerosity of a sequence of disjoint subsets as follows:

num(〈An〉) = ∗#
(∗(〈An〉) ∩ {1, . . . , α}) (22)

The goal of this section is to find an equivalent form of the above definition, that gives
us more insight in the additivity of this function.

First, consider a sequence of (possibly empty) subsets of N:

〈A1, A2, . . . , An, . . .〉 = 〈An〉n∈N

The star-map of this sequence is a hypersequence of internal subsets of ∗
N:

∗ (〈An〉n∈N) = 〈〈∗ AN 〉〉N∈∗N (23)

with ∗ AN = AN for N ∈ N.
Define the intersection with and the hypercounting function of a hypersequence of

subsets of ∗
N componentwise:

(∀S ∈ ∗(P(N))
) 〈〈∗ AN 〉〉 ∩ S = 〈〈∗ AN ∩ S〉〉 (24)

∗#(〈〈∗ AN 〉〉) = 〈〈∗#(∗ AN )〉〉 (25)

By applying Eqs. 23–25, the definition given in Eq. 22 is transformed to:

num(〈An〉) = 〈〈∗#
(∗ AN ∩ {1, . . . , α})〉〉 (26)

Thus, the numerosity of an ω-sequence of sets is a hypersequence of hypernatural
numbers; we may refer to its N-th element as

(
num(〈An〉))N .

5.2.4 num and Pnum are HCA

Now we arrive at the main result of this paper: the numerosity function is hypercount-
ably additive. To prove this, we need to show that for any family of disjoint subsets of
N, {An | n ∈ N}:

num

(
⋃

n∈N

An

)

=
∑

N∈∗N

(
num (〈An〉) )

N (27)

As an essential step in the proof, we will use that the hyperextension of a count-
able union of a countable family of sets is equal to the hypercountable union of the
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hyperextension of the family (by Transfer, cf. Rubio 1994, p. 104):

∗
(

⋃

n∈N

An

)

=
⋃

N∈∗N

∗ AN (28)

Proof

num

(
⋃

n∈N

An

)

= ∗#

(

∗
( ⋃

n∈N

An

)

∩ {1, . . . , α}
)

[By definition of num in Eq. 19]

= ∗#

(
⋃

N∈∗N

∗ AN ∩ {1, . . . , α}
)

[By Eq. 28]

= ∗#

(
⋃

N∈∗N

(∗ AN ∩ {1, . . . , α})
)

[Distributivity of intersection over union + Transfer]

=
∑

N∈∗N

∗#(∗ AN ∩ {1, . . . , α})

[CA of counting function + Transfer]

=
∑

N∈∗N

(num(〈An〉))N

[By Eq. 26 + remark below it] ��

Since the numerosity function is HCA, so is the probability function obtained from
it (provided that we first define Pnum of a sequence of sets, as a normalized version
of Eq. 22). In particular, for the entire sample space N, the infinitesimal probabilities
of the countably infinite family of singletons do add up to unity. The idea behind the
proof is visualized in Fig. 1 for the specific case of the countably infinite family of
singletons of N.

It is apparent from the example in Fig. 1 that the lottery on N is HCA in a very
specific sense10: for each family, there can always be found a hypernatural number,
K ∈ ∗

N (α in the example, but possibly larger in other cases), such that the hypercount-
able sum decomposes in a hyperfinite sum and a hypercountable tail with zero-terms
only. Thus we may call num and Pnum hyperfinitely additive (HFA).

10 This is completely analogous to the argument, given in Sect. 2.1, showing that a finite lottery is only CA
in a trivial sense.
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Fig. 1 Illustration of the proof for the hypercountable additivity of the numerosity function. In this example,
we consider the countably infinite family of singletons of N, whose union is N. The numerosity function of
a single set requires the extension of sequences (SumCBS) into hypercountably long ones (*SumCBS) and
their validation at position alpha. To determine the numerosity of a countably infinite union by addition,
the countable family of standard sets has to be extended to a hypercountable family of non-standard sets.
By looking at the last horizontal line, we see that the numerosity of

⋃
n∈N An (here

⋃
n∈N{n} = N) is

determined as ∗#(∗(
⋃

n∈N An) ∩ {1, . . . , α}), here ∗#(∗N ∩ {1, . . . , α}) = ©α. In this case, the values in
the column with number M = α add up to ©α too. For each case, a similar table can be made, and the
proof states that the same value is always obtained from comparing the αth position of the last row with
the hypercountable sum of the αth column

6 Discussion

In this section, first we evaluate some consequences of our use of free ultrafilters
to construct generalized probability functions for infinite lotteries. Subsequently we
investigate the relation of a lottery on N to a different type of infinite lottery: the
hyperfinite case. We also compare the non-standard description of a lottery on N to
the best available real-valued approach, that of generalized asymptotic density; we see
that SUM is lost in the latter as a result of an accumulation of rounding errors.
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6.1 Non-constructiveness

Our approach may be criticized on mildly constructivist grounds. The existence proof
for free ultrafilters uses Zorn’s lemma and thus depends on the acceptance of the Axiom
of Choice. Thus a hyperrational-valued probability measure requires free ultrafilters,
which depend on the Axiom of Choice (AC).

To this objection we may reply that the more common solution based on FA, asymp-
totic density (Sect. 3) requires an extension of the limit concept measure that involves
a free ultrafilter too. Therefore, this generally accepted solution is non-constructive
too, as has been pointed out by Lauwers (2010). To those who are unwilling to accept
the Axiom of Choice, no measure is available that does any justice to the intuitions
underlying fair lotteries. To the rest of us who have no objection to the Axiom of
Choice, the HCA, hyperrational probability function is no less acceptable than the
FA real-valued one. But there is something to be said in favour of the hyperrational
probability function: it gives the SUM-intuition its due.

6.2 Non-uniqueness

Elga (2004) has remarked that there are often too many non-standard solutions: if we
can use any infinite hypernatural number to model a problem, why should we prefer
one rather than another? One answer is given by alpha-theory, which develops NSA
from the idea of adding a new ideal number, α, to N. This α can be interpreted as the
numerosity of the set N (Benci and Di Nasso 2003a, p. 357). Since numerosity theory
introduces α as the size of the natural numbers, and constructs the other hypernatural
numbers around it, α has a clear interpretation that is hardwired into the theory. It
gives us a point of reference among the infinite number of infinite hypernaturals.

We have started from the ultrafilter-construction of ∗
N and then considered the

equivalence class of the sequence [〈1, 2, 3, . . .〉]U , which we interpret as α (consistent
with the axiomatic approach). So, in the present context the accusation of arbitrariness
boils down to the choice of a free ultrafilter U . A different choice of free ultrafilter
produces a different value of α and hence a probability function with the same standard
part but infinitesimal differences.

To come back to the Even versus Odd example: the odd tickets always have a
head-start compared to the even ones, for the simple reason that 1 comes before 2.
Within our framework, it should not come as a surprise that the weight of this very
first ticket may result in an infinitesimal advantage for the whole set of odd tick-
ets. After all, our approach is based on the idea that even in an infinite lottery each
ticket has a non-zero probability. For all finite cases with an odd number of tick-
ets, Pn(Odd) = 1

2 + 1
2n > 1

2 and Pn(Even) = 1
2 − 1

2n < 1
2 , whereas Pn(Odd)

and Pn(Even) are exactly 1
2 for all finite lotteries with n even. Since the probability

assignment in both cases is different for all finite lotteries, it leads to two different
infinite lotteries as well: one in which the odd numbers are in the ultrafilter, such that
Pnum(Odd) = 1

2 + 1
2α

and Pnum(Even) = 1
2 − 1

2α
, and one in which the even numbers

are in it, such that Pnum(Odd) = 1
2 and Pnum(Even) = 1

2.
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It may look as if we can favour the second solution: a good probability measure
should at least respect the limiting frequencies, and they are exactly 1

2 for Even and
Odd. Take into account however, that limiting frequencies are real-valued, and that
our two non-standard solutions have exactly the same standard part, so they are both in
accordance with this 1

2 & 1
2 solution: limiting frequencies do not rule out one of both.

By observing that Even = {n ∈ N | n mod 2 = 0} and Odd = {n ∈ N | n
mod 2 = 1}, the above analysis generalizes: for each m ∈ N, m different scenario’s
emerge (corresponding to the issue whether {n ∈ N | n mod m = k} is in the ultrafilter
for either 0, 1, . . . , or m − 1).

It is possible to impose additional constraints on the ultrafilter, such that the set
corresponding to m mod 0 is in the ultrafilter for all m ∈ N, or equivalently: such
that α is a multiple of any finite number (Benci and Di Nasso 2003b; Mancosu 2009).
However, we see at present no convincing reasons for endorsing any particular con-
straints of this kind. We already remarked that the infinite lottery violates LABEL.
Here we encounter another difference with finite lotteries: the solution is not unique.
The problem stated as “Find a probability measure on all of N that satisfies FAIR,
ALL and SUM” is highly underdetermined: there are as many different ways to draw
a random number fromN in a fair way as there are free ultrafilters, and the probability
function Pnum given in Eq. 20 should be seen as a whole family of solutions, all of
which are, as far as we can presently see, equally relevant.

6.3 Lotteries on N versus hyperfinite lotteries

In non-standard measure theory, the emphasis lies on internal measures: measures
that can be obtained as the star-map of a standard function. Since N is an external set
within ∗

N, no internal measure is appropriate to describe the probabilities concerning
a lottery over N.11 The probability measure we propose in this paper is indeed an
external function, but it is closely related to an internal one: the probability function
of a hyperfinite lottery.

Consider the finite set An = {1, . . . , n}. Then [〈An〉]U = {1, . . . , α} is a hyperfinite
set: an internal set and an initial sequence of ∗

N. Let us consider this hyperfinite set
as the sample space of a lottery. The probability measure for this hyperfinite lottery
can be obtained by Transfer of the standard measure of a finite lottery, given in Eq. 1.
Thus we obtain the following internal probability measure:

∗ Pα : ∗P({1, . . . , α}) →∗ [0, 1]∗Q

∗ A �→ ∗#(∗ A)
α

(29)

Since this probability measure is obtained as the star-map of a standard probability
measure on a finite sample space, which is FA, ∗ Pα is HFA by Transfer.

As such, ∗ Pα cannot be regarded as a satisfactory solution to the problem of denu-
merably infinite lotteries. The order type of the event space will be vastly different

11 With Loeb measures it is possible to transform the non-standard co-domain to a standard one (Cutland
1983), but this still leaves us with a non-standard domain instead of P(N).
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from the order type of N. Thus, to use terminology introduced earlier, this probability
function operates at best with a relabelling of the natural numbers. We have seen in our
discussion of LABEL that probability functions on infinite event spaces simply can-
not be taken to be invariant under relabelling. So the “internalization” of the problem
of infinite lotteries in the non-standard universe does not solve the original problem.
Instead, it is a solution to a different problem.

Note that although N is a subset of {1, . . . , α}, it is an external one (cf. Sect. 4.6),
so it is not part of the domain of ∗ Pα . Therefore we cannot use conditionalization on
∗ Pα to define a probability measure on the sample space N.

If not by conditionalization, what is the relation between the hyperfinite lottery on
{1, . . . , α} and the hyperrational probability measure on N? Any subset A of N has
a hyperextension ∗ A ∈ ∗P(∗N); the intersection of ∗ A with {1, . . . , α} is an internal
subset of {1, . . . , α} and thus can be assigned a probability value by the internal mea-
sure ∗ Pα . This is precisely the inner working of Pnum : a three-step-process that can
be read off from Eq. 19.12

6.4 Non-standard probability and asymptotic density

All frequencies that are experimentally accessible concern finite sequences of trials
only, and they can be expressed as rational numbers. Limiting frequencies are an
infinite idealization of observable frequencies resulting in real-valued probabilities.
Our approach is a different idealization that leads to hyperrational probabilities. We
will show that its standard part is exactly equal to the limiting frequency. Therefore it
is impossible to favour one solution over the other on mathematical or experimental
grounds. So we are addressing a question of epistemology: the approaches encapsu-
late a different vision on probability and it is up to us to decide which one is most in
concord with our intuitions.

6.4.1 Co-domain R versus ∗
Q

For a finite lottery, the probability measure takes values onQ. However, this co-domain
is not closed: a limit of a rational sequence is not always defined in Q, but it is in R.
In general, the sample space may be infinite; to this end the range is extended to R. In
contemporary presentations, probability theory is usually introduced as a special case
of measure theory (e.g. Dudley 2004); in this context, the idea that a probability mea-
sure is real-valued—which originally was part of an axiom (Axiom III in Kolmogorov
1933, p. 2)—is so basic that it remains a tacit assumption.

Using NSA, the natural extension of the co-domain is ∗
Q rather than R. In order to

assign sizes to all finite subsets ofN, we already need all ofN (and zero), and to assign
probabilities to all finite lotteries, we need all numbers in [0, 1]Q. Thus, in order to
assign sizes to all subsets of N, finite as well as infinite, a larger set is required, which
can be obtained using NSA: we consider ∗

N (and zero), or at least an initial part of

12 Our construction of Pnum can be seen as a specific instantiation of the general suggestion made in Benci
et al. (2008, Sect. 5).
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it, {0, 1, . . . , α} with α ∈ ∗
N\N. To assign probabilities to a countably infinite lottery

(or all hyperfinite ones), we need [0, 1]∗Q as the range.
Although NSA can be introduced axiomatically, for instance using alpha-theory,

and thus need not be intrinsically more difficult than learning standard analysis, the
latter was developed first and is still much more common. There are at least two reasons
why mathematicians generally prefer the standard framework of classical analysis over
the framework of nonstandard analysis. Firstly, nonstandard analysis was rigorously
developed much later than standard analysis. So, even though it is not intrinsically
more difficult to learn nonstandard analysis, it has the disadvantage of unfamiliarity.
Secondly, because of the Transfer Principle, non-standard analysis does not yield any
new information about the standard real numbers. However, the concept of a fair infi-
nite lottery simply begs for the co-domain of the sought-for probability functions to
be modelled using standard numbers. Thus the Transfer Principle cannot be used here
to transport us back to the familiar shore of the standard real numbers. But we do
stress that the standard but ultimately unsatisfactory R-solution can be interpreted as
the standard part of any suitable ∗

Q-function.

6.4.2 Standard valued approximations and the failure of SUM

As we know from Sect. 3, asymptotic density is only FA. Admittedly, CA is not
achieved by the ∗

Q approach either, but the latter tells us why this is not so: the exten-
sion of FA for finite lotteries to the countably infinite case does not lead to CA, but
rather to HFA (or HCA in a trivial sense). Or, put differently, this solutions shows
us that we can extend our finite SUM intuition to HFA. We now investigate how this
relates to the FA of asymptotic density.

Let us approximate the hyperreal-valued probability measure (up to infinitesimals)
by a real-valued measure. To this end, NSA provides the standard part function, st
(Sect. 4.4). First, we will illustrate this by three examples concerning the lottery onN:

– Single ticket: A = {n} for some n ∈ N. Then Pnum(A) = num({n})/α = 1/α.
Since α is an infinite hypernatural, its inverse is an infinitesimal with standard part
zero: st (Pnum(A)) = 0.

– All but one ticket. B = N\{n}. Then Pnum(B) = num(B)/α = (α − 1)/α =
1 − 1/α. So st (Pnum(B)) = 1.

– Consider an arbitrary m ∈ N. For all k ∈ {0, 1, . . . , m − 1}, let Ck be the set {n | n
mod m = k}. Then st (Pnum(Ck)) = st (1/m) = 1/m for all k.

In the examples, the standard part of the hyperrational-valued probability measure
Pnum equals the real-valued asymptotic density. This close connection should not
come as a surprise, since Pnum and Pad are, respectively, the ultrafilter equivalence
class (or alpha-limit) and the Hahn-Banach limit of one and the same ω-sequence.
In fact, what we have observed in the examples holds in general:13

st ◦ Pnum = Pad (30)

13 This is true for any Pnum in the family of solutions corresponding to the freedom of choice in the free
ultrafilter.
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Proof Fix an arbitrary A ∈ P(N). We need to show that st (Pnum(A)) = Pad(A).
We know that Pad(A) is the Hahn-Banach limit of 〈an〉 = 〈 #(A∩{1,...,n})

n 〉 (Eq. 3).
From Eq. 9, we know that in order to proof that st (Pnum(A)) is the Hahn-Banach limit
of this sequence, we need to find H0, H1 ∈ ∗

N\N with H0 < H1) and an internal
sequence of hyperreals hH0 , . . . , hH1 such that

∑H1
N=H0

hN = 1 and:

st (Pnum(A)) = st

⎛

⎝
H1∑

N=H0

hN
∗aN

⎞

⎠

First transform the left hand side using Eqs. 6 and 21:

Pnum(A) =
[〈

#(A ∩ {1, . . . , n})
n

〉]

U
= ∗aα

Then we see that the above equality is equivalent to:

st (∗aα) = st

⎛

⎝
H1∑

N=H0

hN
∗aN

⎞

⎠

which holds if we choose H0 < α, H1 ≥ α, hN = 0 for all N �= α and hα = 1.14 ��
This relation elucidates why (generalized) asymptotic density has poorer additiv-

ity properties than the non-standard measure: each time the standard part function is
applied, a rounding-off error (up to infinitesimals) is introduced. When adding a finite
number of rounded values this still only introduces an infinitesimal error, but when
adding an infinite number of approximated terms, the total error may be appreciable.
In particular, when summing over the family of all singletons, we see SUM fail most
dramatically: the total error is as high as α · 1/α = 1, which is 100% error in case of
probabilities.

7 Conclusion

In this article we have argued that fair infinite lotteries can best be described using
tools and concepts of non-standard analysis. We have constructed a uniform proba-
bility measure which is defined on the full power set algebra of N, and which takes
its values in the non-standard extension of the [0, 1]Q-interval. The construction is
closely related to that of asymptotic density measures. The resulting probability mea-
sure is uniform, it gives a non-zero probability to the event that a given ticket wins,
and it is not just finitely but also infinitely additive.

Lewis (1986) argued that every possibility should be assigned a non-zero proba-
bility. This has been taken by him and others as a reason for advocating probability

14 For the special case where 〈an〉 converges, st (∗aα) = limn→∞ an (Eqs. 6, 8). Thus the proof for that
case boils down to: st (Pnum (A)) = limn→∞ an = Pad (A)
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functions that take their values in a non-standard [0, 1]-interval. We do not advocate
the principle of Regularity in general. But we have seen that in the context of the
lottery on the natural numbers, it follows from desiderata that we are committed to
on independent grounds. So it was natural for us to try to work out a non-standard
approach in some detail.

Proposals to construct non-standard measures on infinite sample spaces have been
made in the literature (Cutland 1983). But instead of taking the natural numbers as
their domain, these probability functions operate on a non-standard extension of the
natural numbers. This entails that they do not provide a genuine solution to the problem
of lotteries on the natural numbers; instead, they change the problem. The probability
measure that we have constructed is of mixed origins. It stands with one leg in the
classical universe, and with its other leg in the non-standard universe.

Asymptotic density and our probability measure are based on the same sequence of
partial fractions, and both look at its behavior ‘at infinity’. Only the formalization of
this statement is achieved differently: by (a generalization of) classical limits (Schurz
and Leitgeb 2008) in the first case, and by free ultrafilter-based equivalence classes in
the second. Asymptotic density takes values in the standard [0, 1]-interval. The price
for this is that such probability functions can only be finitely additive for fair lotteries
on N.

The solution that we propose meets the conceptual and intuitive requirements con-
nected with a lottery onN: it is fair, uniform, defined on the whole power set algebra of
N, and infinitely additive. We have seen that we do not end up with a unique solution.
The probability functions that we propose are only determined up to the choice of an
ultrafilter. As far as we can presently see, no choice of ultrafilter is superior to any
other. We do not exclude that when more intuitive constraints are imposed, the class
of satisfactory probability functions can be narrowed down further. But at present we
see no way of doing so.

The most notable feature of our solution is that whereas it is infinitely additive, its
additivity behavior is not adequately described by summing over the natural numbers,
but by summing over a non-standard extension of the natural numbers. One might
naively expect the relevant sum generally to be an ω-sum of non-standard weights.
But it emerged that the probability of an ω-length family of events will be a sum of a
much longer order type. In this context, it should be recalled that even Kolmogorov, the
discoverer of the classical σ -additivity axiom, emphasized that the condition is merely
a useful assumption of idealization but is not contained in the meaning of probabil-
ity.15 It turned out that in the context of lotteries on the natural numbers, σ -additivity
is not the right idealization.

The obvious next step would be to consider larger, nondenumerable lotteries, such
as lotteries onR. The description of fair lotteries onR is a mathematically significantly
more difficult affair, and will be left for future work.

15 Kolmogorov (1933, p. 15) states: “Infinite fields of probability occur only as idealized models of real
random processes. We limit ourselves, arbitrarily, to only those models which satisfy Axiom VI.” (Emphasis
in the original.) In Kolmogorov’s paper, ‘field’ means ‘algebra’ and ‘Axiom VI’ refers to the ‘Axiom of
Continuity’ which, together with FA, automatically leads to CA in cases where the algebra is a σ -algebra.
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