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1. I N T R O D U C T I O N  

In this paper I shall somewhat investigate several formulations of decision 
theory from a purely quantitative point of view, thus leaving aside the 
whole question of measurement. Since almost any foundational work on 
decision theory strives at proving nicer and nicer measurement results 
and representation theorems, I feel obliged to give a short explanation of 
my self-imposed limitation. The first and best reason for it is that I have 
not got anything new to say about measurement, and the second is that 
one need not say anything: 

It was hard work to convince economists that cardinalization is possible 
and meaningful. This was accomplished by proving existence and unique- 
ness theorems establishing the existence of cardinal functions (e.g. sub- 
jective utilities and probabilities) unique up to certain transformations 
that mirror ordinal concepts (e.g. subjective preferences) in a certain way. 
And surely, such theorems provide an excellent justification for the use of 
cardinal concepts. The eagerness in the search for representation 
theorems, however, is not really understandable but on the supposition 
that they are the only justification of cardinal concepts, and this assump- 
tion is merely a rather dubious conjecture. After all, philosophers of 
science have been debating about theoretical concepts for at least 40 
years, and, though the last word has not yet been spoken, they generally 
agree that it is possible to have meaningful, yet observationally undefina- 
ble theoretical notions.1 And the concepts of subjective probability and 
utility a r e  theoretical notions of decision theory. Thus if philosophers of 
science are right, they need not necessarily be proved observationally 
definable by representation theorems for being meaningful. 2 

For that reason I consider quantitative decision models fundamental 
for decision theory and measurement as part of the confirmation or 
testing theory of the quantitative models. Of course, the latter is impor- 
tant for evaluating the former, but there may be different (e.g. concep- 
tual) grounds for finding one quantitative decision model more satisfac- 
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tory than another. And this is all the more the case, if we confine 
ourselves, as we will do, to comparing decision models which agree on the 
core of decision theory by assuming the principle of maximizing expected 
utility. So, if one is convinced that this principle is essentially sound, it 
seems to be good strategy first to formulate quantitative decision model 
as satisfactory as possible that encorporates this principle and then to 
explore its empirical consequences. 

In this spirit, then, I will somewhat investigate the quantitative part of 
the, hopefully, most important variants of decision theory, namely those 
of Savage [12], Fishburn [5], Jeffrey [7], and Luce and Krantz [10]. As the 
title of the paper suggests, I will especially dwell upon the fourth, perhaps 
least understood variant. 

2. P R O B A B I L I T I E S  F O R  A C T S  

Before focussing attention on these four variants I will introduce a 
general decision theoretic principle that almost everyone complies with 
and finds so obvious that it scarcely needs mentioning, let alone justifica- 
tion. But since our evaluation of Jeffrey's decision model and that of Luce 
and Krantz rests essentially upon this principle, I will state it explicitly and 
provide some reasons for it which are independent of any special concep- 
tion of decision theory. The principle says: Any adequate quantitative 
decision model must not explicitly or implicitly contain any subjective 
probabilities for acts (except, perhaps, trivial conditional probabilities like 
P(HIH) = 1 for some act H or P(HIH') = 0 for two disjoint acts H and 
H'). 

Note that this principle requires acts to be things which are under 
complete control of the decision maker - though not in an absolute sense, 
but only relative to the decision model purporting to describe the decision 
maker. For instance, going from here to there is not under complete 
control of the decision maker in an absolute sense; there may be 
hindrances. But for the sake of simplicity, a decision model may take it to 
be under the agent's complete control by just not worrying about possible 
hindrances. If, however, the decision model would consider all the 
individual steps, going from here to there could not function as an act in 
the model, because the decision maker could have subjective prob- 
abilities for it conditional on various sequences of'steps. 
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Now, probably anyone will find it absurd to assume that someone has 
subjective probabilities for things which are under his control and which 
he can actualize as he pleases. I think this feeling of absurdity can be 
converted into more serious arguments for our principle: 

First, probabilities for acts play no role in decision making. For, what 
only matters in a decision situation is how much the decision maker likes 
the various acts available to him, and relevant to this, in turn, is what he 
believes to result from the various acts and how much he likes these 
results. At no place does there enter any subjective probability for an act. 
The decision maker chooses the act he likes most - be its probability as it 
may. But if this is so, there is no sense in imputing probabilities for acts to 
the decision maker. For one could tell neither from his actual choices nor 
from his preferences what they are. Now, decision models are designed to 
capture just the decision maker's cognitive and motivational dispositions 
expressed by subjective probabilities and utilities which manifest them- 
selves in and can be guessed from his choices and preferences. Prob- 
abilities for acts, if they exist at all, are not of this sort, as just seen, and 
should therefore not be contained in decision models. 

The strangeness of probabilities for acts can also be brought out by a 
more concrete argument: It is generally acknowledged that subjective 
probabilities manifest themselves in the readiness to accept bets with 
appropriate betting odds and small stakes. Hence, a probability for an act 
should manifest itself in the readiness to accept a bet on that act, if tl~e 
betting odds are high enough. Of course, this is not the case. The agent's 
readiness to accept a bet on an act does not depend on the betting odds, 
but only on his gain. If the gain is high enough to put this act on the top of 
his preference order of acts, he will accept it, and if not, not. The stake of 
the agent is of no relevance whatsoever. 

One might object that we often do speak of probabilities for acts. For 
instance, I might say: "It 's very unlikely that I shall wear my shorts 
outdoors next winter." But I do not think that such an utterance expresses 
a genuine probability for an act; rather I would construe this utterance as 
expressing that I find it very unlikely to get into a decision situation next 
winter in which it would be best to wear my shorts outdoors, i.e. that I find 
it very unlikely that it will be warmer than 20~ next winter, that someone 
will offer me DM 1000.-  for wearing shorts outdoors, or that fashion 
suddenly will prescribe wearing shorts, etc. Besides, it is characteristic of 
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such utterances that they refer only to acts which one has not yet to decide 
upon. As soon as I have to make up my mind whether to wear my shorts 
outdoors or not, my utterance is out  of place. 

It is not necessary now to discuss our principle any further, though it 

would be interesting to do so. In fact, I believe that it touches upon and is 
essential to very fundamental matters such as the concept of an act, the 
Newcomb paradox and our views of causality and, in effect, the whole 
field centering about freedom of will. 3 But even without embedding the 
principle into a broader  coherent picture, I hope I have given it support 
firm enough to make its consequences for decision theory acceptable 
even to those who had some doubt about it. 

I have still to note an immediate consequence of our principle that will 
prove important: If we do not allow probabilities for acts, we cannot allow 
unconditional probabilities for act-dependent events, either. For, if a 
certain event, A, is act-dependent,  i.e. if P(A IH) r P(A Iff-I) for some act 
H and its complement H, we could infer P(H) from P(A), since P(I-/) = 
P(A)-P(A fI)/P(A I/4)-P(A [/:/). Thus, if a decision model ascribes an 
unconditional subjective probability for an event to an agent, it thereby 
assumes that the agent considers this event to be independent of his acts. 

After these preliminaries we can turn to our main subject, the discus- 
sion of quantitative decision models founded on the principle of maximiz- 
ing expected utility. 

3. SAVAGE'S DECISION MODEL 

Without doubt, Savage's variant of decision theory is the most prevailing 
one and its structure is well known. It consists of a set /2 of possible world 
states specifying how the ~rcumstances relevant to the decision at hand 
might be; a set C of possible consequences which might result from the 
acts available to the decision maker;  for mathematical convenience and 
for reasons of measurability, a (r-algebra ~ of events over ~ and a 
or-algebra ~ over C; a set ~ of available acts; a function P on J 
specifying the decision maker 's subjective probabilities for events; a 
function V on C specifying the decision maker 's  subjective utilities for 
consequences; and a function U on o~ specifying the expected utilities of 
acts. The  characteristic feature of the Savage model is that it assumes the 
decision maker to associate exactly one consequence with each world 



S A V A G E ' S  D E C I S I O N  M O D E L  117 

state and act, and for that reason acts can be formalized as functions from 
the set of world states into the set of consequences. Thus we may define: 

DEFINITION 1: (/2, M, C, c~, ~,  p, V, L0 is a Savage-model iff 
(1) (12, M, P) i s  a or-additive probability space, 
(2) (C, ~)  is a measurable space, 
(3) ..~ is a non-empty set of M- C~.measurable functions from/2 into C, 4 
(4) V is a q-measurable function from C into the reals, 
(5) for every f ~  .~, V of  is P-integrable, 
(6) U is the function from ~ into the reals for which U(f )  = S V o [ d P  for 

every f ~ ~.5 

The defects of Savage-models are also well known, and I will sum- 
marize them in short. The representation of decision situations by 
Savage-models is restrictive in two ways: 

(1) The first restriction lies in the representation of the decision 
maker's motivational dispositions by a utility function solely defined for 
consequences. This is because the decision maker might also assess 
possible world states with utility. 6 There are two ways of getting around 
this objection. First, one could conceive possible world states as being 
components of possible consequences. Then the objection no longer 
applies. But this is not a nice solution, since it leads to a certainly 
unintended double representation of world states in Savage-models: first 
as world states proper and then as components of possible consequences. 
Secondly, one could argue that the decision maker's utilities for world 
states are not relevant to his decision. For the world states are conceived 
as being act-independent; there is nothing the decision maker can do 
about them. Therefore utilities for world states at most contribute a 
negligible constant to the expected utility of acts, and we can simply 
forget about them. But this argument is fallacious; it tacitly assumes 
world states and consequences to be utility-independent. Only then do 
utilities for world states add a negligible constant to the expected utilities 
of acts. So I take this to be the first restriction of Savage-models: They 
assume utility-independence between world states and consequences. 

(2) The more severe second restriction lies in the representation of the 
decision maker's cognitive dispositions by a probability measure solely 
defined for events. But that is not a fully correct statement of the 
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restriction; there are hidden act-conditional probabilities for conse- 
quences in Savage-models. For by representing an act f as a function from 
world states into consequences, Savage-models impute to the decision 
maker that he is sure that the consequence f(w) will result when world 
state to obtains and act f is chosen, or, in loose probabilistic terms, that the 
subjective probability of f(oo) conditional on f and oa is 1. And the image 
PI of the measure P relative to f ~  ~ defined by Pt(D) = P(f-~(D)) for 
every D ~ cr just expresses the decision maker's subjective probabilities 
for consequence-events conditional on the act f. Note that the expected 
utility U(f)  of an act [ can then be written as U(f) = ~ V dP t. 

Thus, more correctly, the second restriction lies in the rigid connection 
between world states and acts on the one hand, and consequences on the 
other hand, which results from representing acts by functions, or other- 
wise put: in the assumption that all act-conditional probability measures 
Pt for consequences can be represented as images of one single probabil- 
ity measure P for world states. And clearly, the decision maker's subjec- 
tive probabilities need not be of this special structure. There are many 
simple decision situations in which it is difficult, if not impossible to 
identify appropriate world states. 7 

Savage himself clearly recognized these difficulties and summarized 
them by asking: 

Is it good, or even possible, to insist, as this preference theory does, on a usage in which 
acts are without influence on events and events without influence on well-being? ([13], p. 
307f) 

4. F I S H B U R N ' S  D E C I S I O N  M O D E L  

Fishburn [5], Chapters 2 and 3, has proposed a very simple and natural 
way of overcoming both restrictions built in into Savage-models at one 
stroke. Just merge world states into consequences and let the decision 
maker have arbitrary act-conditional probabilities for the new conse- 
quences. 8 Formally this reads: 

DEFINITION 2: (C, cr ~-, p, V, U) is a Fishburn-rnodel iff 
(1) (C, cr is a measurable space, 
(2) o~ is a non-empty set; 
(3) P is a family of probability measures Pt(f ~ ~)  on cr indexed by o~, 
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(4) V is a function from C into the reals that is Pi-integrable for every 

f e ~  
(5) U is the function from ~ into the reals for which U(f)  = S V dP I for 

every f e ft. 

Of course, Savage-models can be embedded into Fishburn-models: 
Let (O, ~ ,  C, ~, ~, P, V, U) be a Savage-model. Set C' = O x C, cs equal 
to the o'-algebra over C' generated by {A x D I A  ~ ~ ,  D e cs and if' = ft. 
Let for each f e  ~P~ be the probability measure on cs for which P'I(A • 
D) = P ( A  ~ f  I(D)) for every A e ~ and D e c~,9 and let P' be the family 
of all P} ( re  ~'). Finally, let V' be defined on C' by V'(oJ, c) = V(c) for 
every ~o e .O and c ~ C, and put U' = U. Then, obviously, (C', c~,, ~, ,  p,, 
V', U') is a Fishburn-model. 

This embedding demonstrates particularly clearly in which ways 
Savage-models are restricted and how Fishburn generalizes them. For 
neither in actual life nor in Fishburn-models need utilities and prob- 
abilities to have the special structure of the V' and P' of the above 
embedding. 

Fishburn [5], pp. 53ff, has pointed out, however, that the reverse 
embedding is also possible by defining the Savage-set of possible world 
states as the set of all functions from the Fishburn-set of acts into the 
Fishburn-set of consequences. 1~ But this embedding is not a natural one, 
since these functions must be interpreted as conjunctions of subjunctive 
conditionals saying "if act f l  were chosen, consequence ci would come 
about, and if act f2 were chosen, consequence cj would come about, 
a n d . . . " .  I think we had better leave subjunctive conditionals and 
probabilities for them alone.11 

It seems therefore justified to say that Fishburn-models are a genuine 
generalization of Savage-models. Moreover, they are conceptually sim- 
pler. Indeed, I think that Fishburn-models are essentially the most 
natural and satisfactory quantitative decision models, and I suppose that 
everybody would happily concede this if they could forget about the 
indispensability of representation theorems; metrization of Fishburn- 
models seems to be a hopeless task. Constructing a utility function and a 
probability measure from preferences already looked like drawing a 
rabbit out of the hat, but to construct a utility function and a whole family 
of probability measures from preferences would mean pulling an 
elephant out of the hat. 
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Balch and Fishburn [1] even managed the latter trick, by using a very 
big hat, i.e. extraneous probabilities. And this constitutes an essentially 
weaker result, since the only thing that matters for decisions and prefer- 
ences are the decision maker's subjective probabilities. Therefore, the use 
of extraneous, objective probabilities only makes sense on the assumption 
that the decision maker's subjective probabilities are the same as the 
objective probabilities. Thus, metrizations using extraneous probabilities 
are in fact starting with a large number of imputed subjective prob- 
abilities, thereby failing to be fundamental. 

But from a purely quantitative point of view Fishburn-models seem to 
do an optimal job. Let us see whether we can gain new insights from later 
developed variants of decision theory. 

5. J E F F R E Y ' S  D E C I S I O N  M O D E L  

Jeffrey was not at all happy with Savage's strict separation of possible 
world states carrying subjective probabilities on the one hand and 
possible consequences carrying subjective utilities in the other hand. 
After all, cognitive and motivational dispositions refer to the same things, 
namely propositions or states of affairs. E.g. we might wish as well as 
believe that it will rain tomorrow. Thus Jeffrey proposed a holistic variant 
of decision theory, as he calls it, which operates with only one big 
~r-algebra of events comprising world states, consequences, and even acts 
as special events. Of course, these acts have to form a partition of the sure 
event. Subjective probabilities and utilities are then defined for these 
events. 12 It must be remarked, however, that these utilities already 
express expected utilities of the events. They must therefore satisfy a 
certain averaging condition stated below. Again for mathematical con- 
venience, the following definition considers the o--additive case: 

DEFINITION 3: (S2, ~r ~, P, U) is a Jeffrey-model if[ 
(1) 02, J ,  P) is a g-additive probability space, 
(2) ~ is a ~-measurable  partition of J2, 
(3) U is a function from ~r into the reals such that the following 

holds: If (Ai)i~1 is a countable family of mutually disjoint, non-empty 
events from ,~, A = Ui~lAi and P(A) # O, then 

(5.1) U(A) = E U(A,) .  P(A,[A). 
i e I  
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Unlike other models, Jeffrey-models do not contain a function V 
expressing absolute or non-expected utilities. But there is no real differ- 
ence here, as the following consideration shows: 13 Let (/2, ~ ,  ~r, p, U) be 
a Jeffrey-model. Define/x on ~ b y / z ( ~ )  = 0 and/x(A) = U(A). P(A). 
Because of (5.1) # obviously is a signed measure on ~/which is absolutely 
continuous with respect to P. Applying the Radon-Nykodym theorem for 
signed measures TM to that situation we get: There is an almost uniquely 
determined ~-measurable  function V from/2 into the reals such that for 
each nonnull A ~ ~ :  

(5.2) U(A)=p(1A~. IA VdP. 
And, of course, any function of the form (5.2) satisfies (5.1). Thus there is 
a sort of almost-one-to-one-correspondence between expected utility 
functions on d and absolute utility functions on J2. 

Are Jeffrey-models acceptable decision models? According to our 
principle from Section 2, the answer is obviously no: acts are part of the 
o--algebra of events for which P is defined, and therefore Jeffrey-models 
contain probabilities for acts. 15 

What can we do about this situation? Removing acts from the o-- 
algebra ~1 and considering the events in ~/ as act-independent is no 
solution. For then we would only have acts and world states in the sense of 
Savage, but nothing that could give us expected utilities for acts. 
Moreover, the appealing holistic character of Jeffrey-models would be 
lost. 

Rather, we must remove probabilities for acts and unconditional 
probabilities for act-dependent events from Jeffrey-models. As can easily 
be conceived, however, the resulting model would differ from Fishburn- 
models only in minor points. It would be a bit more holistic than 
Fishburn-models already are (which contain utilities as well as act- 
conditional probabilities for consequences); for in the resulting model 
acts would still be part of one big o--algebra of propositions or events. 
And it would be slightly more general than Fishburn-models in being able 
to deal with intrinsic utilities for acts (cf. Notes 6 and 8). 16 

Note also that the expected Utility function U of a Jeffrey-model would 
be affected by such a modification in the representation of subjective 
probabilities. If we eliminate all the unwelcome probabilities from a 
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Jeffrey-model and adopt a Fishburn-like probability structure, then there 
would be some events, e.g. unions of acts, to which one could not 
meaningfully assign expected utilities. The standard procedure of having 
both a function expressing absolute, non-expected utilities and an 
expected utility function for acts seems therefore preferable. 17 

6. C O N D I T I O N A L  D E C I S I O N S  

Finally we will examine the variant of decision theory which Luce and 
Krantz [ 10] have proposed and for which they have proved a representa- 
tion theorem (in [8], Chapter 8). This variant is all the more interesting 
because Luce and Krantz explicitly refer to Fishburn's suggestions ([10], 
p. 253); thus there is some hope that they have solved the metrization 
problem for a quantitative decision model equally general as the Fishburn 
model. 

This hope is dampened by the fact that at first sight their quantitative 
decision model looks similar to Savage's. Yet there are two novelties. The 
first consists in a new formal representation of the acts available to the 
decision maker and the second brings about a more general treatment of 
utilities. Ultimately both novelties are connected, but our discussion will 
be clearer if we separate them. So this section is devoted to the first 
novelty and the next to the second. 

The starting point of Luce and Krantz is the same as that of Fishburn. 
They, too, are dissatisfied with Savage's world states being act- 
independent. And they trace the cause of this drawback to the fact that in 
Savage-models acts are represented by functions defined for all world 
states. This representation does not account for the fact that acts may 
determine at least partially which events occur. For instance, if one 
decides to take the plane it is utterly impossible to have a car crash. 

Consequently, Luce and Krantz change Savage-models in the follow- 
ing way: Like Savage they assume a set ~ of world states, a o--algebra ~4 
of events over 12, and a (r-additive probability measure P on ~t expressing 
the decision maker's subjective probabilities.18 Further, they assume a set 
C of consequences to which I will add a o--algebra ~ over C on grounds 
of measurability. Finally, I shall for the moment disregard Luce's 
and Krantz' second novelty and assume a Savage-like utility function 
Von  C. 
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The crucial change against Savage lies in the representation of acts. To 
make allowance for the influence of acts on the events happening, Luce 
and Krantz represent acts by partial functions defined only for some, not 
necessarily for all world states. The idea behind this is the following: If an 
act has an influence on the events that happen, then some world states are 
impossible conditional on this act and the act can have consequences only 
in the world states compatible with it. Therefore, the act should be 
represented by functions into consequences defined only for these latter 
world states. Of course, these world states should form an event in ~r of 
non-zero probability. 

Luce and Krantz call such partial functions conditional decisions and 
refer the set of the conditional decisions considered with '@'. It is also 
convenient to follow their convention to fix the domain of such a 
conditional decision as an subscript on the function symbol, e.g. fa 
denotes a function from A ~ ~r into C. 

Accordingly, the expected utility of conditional decisions is calculated 
by a new formula stated in the subsequent 

DEFINITION 4: (/2, ~ ,  C, ~, ~; P, V, U) is a special Luce-Krantz- 
model 19 itI 
(1) (/2, ~ ,  P) is a o'-additive probability space, 
(2) (C, cr is a measurable space, 
(3) ~ is a non-empty set of ~4-~-measurable functions into C whose 

domains are nonnull events in ~,  
(4) V is a R-measurable function from C into the reals, 
(5) for every/A 6 ~  the integral ~A V~ dP exists, 
(6) U is the function from ~ into the reals for which 

1 
(6.1) U(fA)  = V( fA(o))  dP(oJIA) = P ( A )  VOfA dP. 

Now let us have a closer look at this decision model. Is the introduction 
of conditional decisions really convincing? I think not. The explanation 
given for them stated that an act should be represented by a function fA if 
that act is compatible only with the world states in A while excluding all 
others. But with which possible world states is an act compatible? 
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Obviously with only and all those world states in which this act is 
performed; accordingly the event formed by these world states is just the 
event of that act being performed. In short, A expresses that fA is 
performed. But in special Luce-Krantz-models a probability is assigned 
to A. Thus we are faced with the unpleasant fact that special Luce-  
Krantz-models contain hidden probabilities for acts. 

This argument can even be weakened. We do not really need to bother 
whether A expresses that fa is performed. It suffices to know that ~/ 
contains act-dependent events, since acts are supposed to have an 
influence on world states. But then the model should not contain uncon- 
ditional probabilities for these events, as was stated at the end of 

Section 2. 
That  is, if we want to interpret special Luce-Krantz-models  in accor- 

dance with the principle stated in Section 2, we have to conceive world 
states and events as being act-independent. Consequently, there is no 
point in representing acts as partial functions. Acts can no longer 
influence world states and have therefore to take into account all world 

states, i.e. acts must be represented by functions defined on the whole of 
12. Thus it seems that we are completely thrown back to Savage's position. 

But the situation is even worse. Luce and Krantz make heavy use of 
conditional decisions in proving their representation theorem. More 
concretely, to prove their theorem they must, of course, impose rather 
strong structural assumptions on the set @ of conditional decisions which 
imply the following: Let  ~ denote the set of all fa ~ ~ defined on the 
whole of/2. Then @ consists precisely of all restrictions of functions from 
@a to nonnull events in •.20 That is, to make sense of Luce's and Krantz' 
metrization we badly need a reasonable interpretation of conditional 

decisions. 
There exists one, though not as genuine acts. For it is still true that a 

conditional decision fA (A r J'2) is so to speak an act in a restricted 
possibility space. As we have seen, it was only necessary to give up the 
idea that the act itself induces this restriction. How else could it come 
about? Simply by the experience of the decision maker that A actually 
obtains. But the decision maker has not, or not yet, had that experience. 
Hence, the whole affair is to be understood in the following way: Let  
fA ~ 9. If A =/2,  then fa represents a genuine act. If not, then there is an 
fn ~ ~ a  for which fA ~--fn; this we have just stated, fn represents an act 
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available to the decision maker; and fA then represents exactly the same 
act on the hypothesis that the decision maker has learned that A obtains. 
That is, Luce and Krantz are asking the decision maker not only to 
preference-order the acts actually open to him, but also to reflect in his 
preference order how much he would like these acts if he had certain 
experiences; and here he has to consider all possible experiences. 

Luce and Krantz are well aware that there are a great many hypotheti- 
cal acts among the conditional decisions in @.21 But they took at least 
some partial functions as representing actually available acts. In my view, 
this is not correct; only functions defined on the whole of ~ can stand for 
available acts, as it is the case in Savage-models. 

Indeed, so far we have reached only a reasonable interpretation of 
special Krantz-Luce-models, but no progress whatsoever beyond Sav- 
age. Even the formula (6.1) for expected utilities of conditional decisions 
offers nothing new, since, having learned that A obtains, a Savagian 
decision maker would compute the expected utility of an act fA by (6.1). 
The only difference between Savage and Luce and Krantz so far lies in 
their respective metrization procedures, but I will not go into that now. 

We have completely neglected the second novelty introduced by Luce 
and Krantz, though, and this will bring about a genuine generalization of 
Savage-models, but at a somewhat unexpected place. 

7. T H E  E X P E C T E D  U T I L I T Y  F U N C T I O N  IN  

L U C E ' S  A N D  K R A N T Z '  D E C I S I O N  M O D E L  

In special Luce-Krantz-models we included a utility function V for 
consequences and then defined the expected utility function U by (6.1). 
This is not what Luce and Krantz do. Similarly to Jeffrey, they operate 
directly with an expected utility function defined for conditional deci- 
sions, which has, of course, to fulfill an averaging condition similar to 
(5.1). Again, I will state below this condition for the o'-additive case: 

DEFINITION 5: (/'2, ~r C, cr ~, p, U) is a Luce-Krantz-model iff 
(1) (S2, M, P) is a tr-additive probability space, 
(2) (C, cr is a measurable space, 
(3) @ is a non-empty set of ~r162 functions into C whose 

domains are nonnull events in sO, 
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(4) for every fA ~ @ there is an fa  e ~ with fA ~--fa, and if fa ~ ~ then 
every restriction of fa to a nonnull event in sr also is in ~,  

(5) U is a function from ~ into the reals with the following properties: 
(a) If (Ai)i~l is a countable family of mutually disjoint, nonnull 

events in ~ ,  A = ~.Ji~l Ai, fa, e ~ for all i 61 and f A  = UielfA, E 
~,  then 

(7.1) U(fA) = Y'. U(fA,)" P(A, IA), 
i e l  

(b) iffA, gB ~@ andfA(to)=gB(w) for P-almost all to c A  UB, then 

(7.2) U(fA) = U(gB). 

The first part of condition (4) reflects our new interpretation of 
conditional decisions, whereas the second part of (4) is not necessary for 
interpretation, but included for technical reasons. As noted earlier, 
condition (4) is implied by the structural assumptions Luce and Krantz 
impose on ~.  (7.1), of course, is the crucial averaging condition, and (7.2) 
is a rather obvious condition which must be explicitly stated, however, 
because it does not follow from (7.1). 22 

Now, of course, the question obtrudes with which right the function U 
of a Luce-Krantz-model may be called an expected utility function, i.e. of 
what U is the expectation. The remainder of the section will be devoted to 
this question. 

A first hint is that functions of the form (6.1) satisfy (7.1) and (7.2). But 
definition 5 by no means implies that there is a function V from C into the 
reals such that U can be represented by (6.1). This indicates that 
Definition 5 indeed generalizes Definition 4. 

As Luce and Krantz have pointed out, however, there are additional 
assumptions entailing that U is of the form (6.1). 23 To this purpose they 
have utilized the observation that constant decisions play an essential role 
in Savage's construction of a utility function V on C from preferences for 
acts. Since from now on we will make permanent use of constant 
decisions, it is convenient to introduce the following notation for them: 
For each c c C and each nonnull A ~ sr we define CA to be that function 
on A for which CA (0~) = C for all to ~ A. Luce and Krantz have then proved 
the 

T H E O R E M  1: Let (g2, ~r C, ~, ~, P, U) be a Krantz-Luce-model. 
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Suppose that for every c ~ C there is a CA ~ ~ and that U(CA) = U(CB), if 
CA, C8 ~ ~. Then there is a uniquely determined function V from C into 
the reals such that (6.1) holds for all fA ~ ~ with countable range. 

Hint of proof: Set V(c)= U(CA); V is thereby well defined. Next, 
partition fA in countably many constant decisions and compute U(fa) by 
(7.1) and (7.2). 

Theorem 1 tells us which assumptions carry us from Luce-Krantz- 
models back to special Luce-Krantz-models or to Savage-models. Note 
also that these assumption can be stated in qualitative terms, as Luce and 
Krantz actually do. 

In a similar fashion the expected utility function of Luce-Krantz- 
models specializes to that of Jeffrey-models: 

THEOREM 2: Let (g2, M, C, c~, ~, p, U) be a Luce-Krantz-model. 
Suppose that U(fA ) = U(gA) for every fAga C ~. Then there is a uniquely 
determined function W from {A ]P(A) ~ 0} into the reals satisfying (5.1) 
such that U(fa) = W(A). Moreover, this function W has the property: 

(7.3) If P ( A ) # 0 ,  P ( A \ B ) = P ( B \ A ) = O ,  then W(A)= W(B). 

Again, the assumptions of Theorem 2 can be formulated qualitatively. 
The representations of U given in Theorems 1 and 2 are of a rather 

special kind. One would like to know whether there are more general 
representations. Now it would be convenient to combine Theorems 1 and 
2 additively, i.e. to represent U by a function V according to Theorem 1 
and a function W according to Theorem 2 such that for all fA ~ ~ with 
countable range: 

(7.4) U(fA)= W(A)+pTA)" fA VofA dP. 

As Luce and Krantz themselves have pointed out ([10], p. 262), functions 
of the form (7.4) satisfy (7.1) and (7.2). But they did not specify conditions 
implying that U is of the form (7.4). This gap is filled by the next 

THEOREM 3: Let (12, M, C, g, 9, P, U) be a Luce-Krantz-model. 
Suppose there is a c o ~ C such that for every d e C there is an A e ar with 
c ~ dA ~ 9. Suppose further that for all CA, CB, dA, dB ~ 

(7..5) U(CA)+ U(dB)= U(CB)+ U(dA) . 
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Finally let there be a function ha ~ ~a  with countable range. Then there is 
a function V on C and a function W on {AlP(A) ~ 0} fulfilling (5.1) and 
(7.3) such that (7.4) holds for all fA ~ ~ with countable range. Moreover, 
if the same is true of two other functions V' and W', then there is a real a 
such that V'(c)= V(c)+c~ for all c e C and W'(A)= W ( A ) - a  for all 
nonnull A r ~t. 

Proof: Choose V(c ~ arbitrarily. For d e c  define V(d)= 
U ( d a ) - U ( c ~  V(c ~ for some A assumed to exist. (7.5) guarantees 
that V is well defined on C. Define further W(A)= U(dA)-  V(d) for 
some d ~ C if it exists. Again, (7.5) assures that W is well defined on 
~ *  = {A Ida ~ ~ for some d e C}. Also, W satisfies (5.1) and (7.3) on ~t* 
because of (7.1) and (7.2). Now we extend W onto {A [P(A) ~ 0} in the 
following way: According to our assumption there is a ha e ~a  with 
countable range {c ~li 6 I}. Put Ai = h ~1 (c i). Then we have c ~, e ~ for all 
nonnull A~ (because of condition (4) of definition 5). Now, take any 
nonnull A ~ sO. Then we also have CA~oA ~ ~ for all nonnull A~ c~ A. Thus, 
W is already defined for all nonnull A~ n A. Hence we can define W for A 
by applying (7.1) and (7.2). An easy consideration shows that W is 
thereby well defined for all nonnull events and satisfies (5.1) and (7.3). 
The uniqueness claim of theorem 3 can be seen to be true by the fact that 
in the definition of V and W only the value of V(c ~ could be chosen 
arbitrarily. Finally, take any fA e ~ with countable range and partition it 
into countably many constant decisions. A simple computation applying 
(7.1) and (7.2) then shows that (7.4) holds for fA. 

Theorem 3 has the unpleasant feature that its assumption (7.5) cannot 
immediately be translated into qualitative terms. The next theorem 
remedies this defect. 

THEOREM 4: Let (S2, ~ ,  C, qg, ~,  P, L0 be a Luce-Krantz-model. 
Suppose there exist e 1, e2e C and disjoint and nonnull El, E2 ~ sr such 
that e ~ j ~  (i,] 1,2), U(e~,)~ U(e~,), ' ' U(eEI) ( i= 2), and = = U(eE~) 1, 

1 2 1 2 U(eE~ w eel) = If for CA, U(eE2 u eE,). then CB, dA, da e ~ there exist fE1, 
rE2, gel, gE2c~ such that U(fE,) = U(CA), U(fE2) = U(cB), U(gm) = 
U ( d A )  , and U(gE2) = U(dB), 24 we have: U(fE1 w gE:) = 
U ( f ~  u gE,) if[ U(CA ) + U(dB) = U(cB) + U(da ). 

Proof: Theorem 4 looks complicated, but is in fact quite trivial. The 
point of the first assumption is to assure the existence of two disjoint 
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events E, and Ez such that P(EllE1 u E2) = P(E2IE1 u E2) = ~. And then 
the rest is clear. 

It must be added that we can combine (5.2) and (7.4) getting thereby a 
slight modification of Theorem 3: Under the assumptions of Theorem 3 
there exists a real-valued function V1 on 12 and a real-valued function V2 
on C such that 

1 
(7.6) U(fa) = - -  

P(A) 

1 

P(A) IA VI + V2 ~ fA dP 

V2o fA dP 

for everyfA ~ 50 with countable range. Moreover, if the same holds for V~ 
and V~, then there is a real a such that V'~ = V 1 - a  almost everywhere 
and V~= V2+a. 

Have we already reached the most general representation of U as an 
expectation? Not nearly. For if U is represented additively by (7.4) or 
(7.6), it still has a rather special form which is implied only by rather 
subtle assumptions about constant decisions. But we can get along 
without any such assumptions, as the following theorem shows, which 
probably yields the most general representation of U. 

THEOREM 5: Let (12, ~r C, % @, P, L0 be a Luce-Krantz-model. Let 
50* be the set of functions which results when we enrich 50 by all 
restrictions of functions from 50 to null events. Now suppose there is a 
possibly uncountable partition ~___50" of tA50 *2s with the following 
property: For every fa E 50a there is a countable subset %0 of % and a null 
event B from ~/such that the restriction offa to [2 \ B  is a subset of U ~o- 
Then there is a function V from tO50* into the reals almost uniquely 
determined (in a sense to be inferred from the proof) such that for each 

fA C50 
(7.7) U(fA) = e(a---5" v( o,/A de( , , ) .  

Proof: Define O on 50* by O(fA)=P(A) for allfa ~50" and ~ on ~* 
by 

[IZ(fA)={U(fA)'Q(fA) fo r  fA~_50 
0 for fA e50" \50  " 
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For h ~ ~ let further 9 "  = {fa ~ ~*[[A ~ h), and let Oh and/-th, respec- 
tively, be the restriction of Q and/z to 9* .  Then ~*  is a o--algebra over h, 
Qh is a finite measure on 9 "  and, because of (7.1),/~h is a finite signed 
measure on ~*.  Moreover, /Zh is absolutely continuous with respect to 
Qh. According to the Radon-Nykodym theorem for signed measures 26 
there is a Qh-almost uniquely determined, ~*-measurable function Vh 
from h into the reals such that for all fA ~hld~hffa) =Sfm Vh dQh. 

Finally, we put V = U h ~  Vh. Since g is a partition of U ~*,  V is a 
function from 13 ~*  into the reals. 

Now, take anyfA from ~. Then there is some fa ~ ~n with fA -----fa and, 
according to our assumption, a countable subset g0 of g and a null event 
B such that the restriction of /a  to/2 \ B  is a subset of O ~0. Let A h be the 
domain of fAn  h(h ~ go). For A ' =  UhE~o Ah w e  therefore have A'  ~ A  
and P(A\A ' )=O,  and for the restriction fA" of fa to A '  we have 
fA,=Uh~,ofm nh. Hence: 

I.~(fA)=IZ(fa') = ~, lZh(fa nh) 
hefgo 

= E I/~ VhdQh 
hefgo c~h 

= y, IA V(c~176176 
h ~ o  h 

= Ia ' V(aJ, fA'(t~176 IA V(tO, fA(tO))dP(to). 

This completes the proof, since/z (fa) = U(fA)" P(A). It remains to note 
in which sense V is determined almost uniquely: If, for all h c g, we 
change the restriction of V to h on some Oh-null set, then the resulting 
function satisfies (7.7) too. And every function satisfying (7.7) can be 
obtained by such a change. 

It has also to be mentioned that every expected utility function of the 
form (7.7) satisfies (7.1) and (7.2). 

Let me finally remark that the crucial assumption of Theorem 5 is 
stated in purely qualitative terms. That is, if we also had some qualitative 
continuity condition assuring the o'-additivity of the probability measure 
P and of the expected utility function U (in the sense of satisfying (7.1) in 
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the denumerable case), Luce's and Krantz' representation theorem and 
Theorem 5 could be combined to form another representation theorem 
which would mirror the preference relation among conditional decisions 
in a numerical order of expressions of the form (7.7). 

Theorem 5 probably is in need of some intuitive explanation. As to the 
crucial premise of Theorem 5, there is nothing much to explain. It is just a 
rather unintuitive, but technically required structural condition on the set 
of conditional decisions. Very roughly, it demands that the conditional 
decisions (in @a) be not too strongly interlaced with one another. But I 
think it is a rather weak structural assumption. For example, it is always 
fulfilled if 12 or ~ is countable. In fact, it could only be violated if there 
were uncountably many conditional decisions in ~ a  each having 
uncountably many, non-empty and mutually disjoint intersections with 
other conditional decisions from ~a.  And that is, I think, a rather unlikely 
situation. It seems to me, however, that this assumption cannot be 
essentially weakened without losing all hope of generally representing 
the expected utility function of Luce-Krantz-models as an expectation of 
something. 

Now, how is the function V appearing in Theorem 5 to be understood? 
It is defined on U @*, i.e. on a special subset of 12 x C. For U @* contains 
precisely the realizable pairs (to, c)6 12 x C. That is: If (to, c) is not in 
U ~*,  then it is impossible, whatever act is chosen, that the world state to 
obtains and the consequence c results. Therefore V is a function expres- 
sing the utility not of consequences, but of combinations of world states 
and consequences, provided they are jointly realizable. 

This is the point where Luce and Krantz generalize Savage's variant of 
decision theory. They remove Savage's restrictive assumption of utility- 
independence of world states and consequences, z7 And Theorems 3 and 
4 state qualitative conditions yielding this independence, i.e. the additive 
decomposability of V into two functions V1 on 12 and Vz on C such that 
v(to, c)= vl(to)+ V2(c). 

Thus, our discussion of Luce-Krantz-models took an unforeseen turn: 
Luce and Krantz hoped to improve Savage's restrictive representation of 
the decision maker's subjective probabilities by introducing conditional 
decisions. Yet conditional decisions failed to do the job they were 
supposed to do; even in Luce-Krantz-models only functions defined for 
all world states can be interpreted as representing available acts. But then 
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we found progress at another place; utilities were more generally rep- 
resented than in Savage-models. 

It must be noted, however, that from a purely quantitative point of 
view, Luce-Krantz-models are less satisfactory than Fishburn-models. 
As to utilities, Fishburn-models are equally general as Luce-Krantz- 
models. But only Fishburn-models overcome the crucial restrictions in 
the representations of subjective probabilities. 

Universitdt Miinchen 

N O T E S  

I For a survey of this debate d .  Stegmfitler [16]. 
2 Where we take, for simplicity, preference relations to be observable concepts, though, 
strictly speaking, they are not. 
3 For a more detailed discussion of these topics see my [15]. 
4 Of course, we need not assume that o~ is the set of all such functions. Savage needed this 
assumption only for metrization purposes. 
s This definition obviously is a reformulation of Savage's own definition in usual measure- 
theoretic terms; there is no essential change except perhaps in assuming tr - instead of finite 
additivity of P. But we need not bother about that in this context. 
6 He might even assess the acts themselves with absolute, intrinsic utilities besides their 
expected utilities derived from their consequences. Though this may be a minor point, I find 
it surprising that almost no one worried about it. In fact, only Jeffrey [7] is able to handle it 
within his system. 
7 Cf. [5], p. 54, and [7], Section 1.5. 
s This measure, however, does not remove the restriction stated in note 6 unless one is 
prepared to represent acts double in Fishburn-models as acts proper and as components of 
consequences. 
9 Existence and uniqueness of P} is assured by the Carath6odory extension theorem. Cf. for 
example [9], p. 87. 
x0 See also [1], p. 58. 
11 I do not mean to imply therewith that it is a wholly absurd thing to attempt to describe 
decision situations with the help of subjunctive conditionals. Indeed, [6] suggests that such a 
description might be superior to the standard one. (For a discussion of this claim, see [15].) 
But I do mean that we should not resort to such obscure things as subjunctive conditionals 
unless we run into inextricable problems with the standard means. 
a2 With the one exception that no utility is assigned to the impossible event. 
13 Taken from [3], p. 337. 
a4 Cf. for example [9], p. 132. 
15 I take this objection to be at the basis of Sneed's criticism [ 14] of Jeffrey, especially of pp. 
279f. 
16 For a formulation of a decision model along these lines, where, moreover,  propositions 
are linguistically based according to Carnap [4], see my [15]. 
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17 This, however, is not the whole truth. In fact, when Savage's small worlds ([12], pp. 82ff) 
are taken seriously, it seems that a more sophisticated picture has to be made of utilities. For 
details see my [15]. 
~s Strictly speaking, they only assume ~ to be an algebra and P to be finitely additive. I am 
only conforming to my former usage. 
a9 I call them 'special' because they still neglect the forementioned second novelty. 
2o Actually, Luce and Krantz [10] require that if fA, gB ~ for disjoint A and B, then 
fA W gB ~ ~, and if fA @ ~, B ~ A, and P(B ) ~ O, then the restriction of fA to B is in ~ (p. 
256, axiom 1). Together with the assumption that ~ n  is not empty which follows from their 
axiom 9 (p. 256), this implies the stated property of ~. 
21 Cf. [10], pp. 257f and [11]. 
22 This is due to the fact that the domain of conditional decisions must be nonnull. In 
Jeffrey-models where the expected utility function was also defined for non-empty null 
events such a condition was not needed. 
23 Cf. [10], p. 263, and [8], pp. 391f. 
24 The existence of these latter functions is in fact entailed by axiom 9(i) of Luce and Krantz 
[101, p. 256. 
25 Here, as in the following, it is essential to conceive functions as set of pairs. 
26 Cf. for example [9], p. 132. 
z7 Recall Section 3 of this paper. 
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