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ABSTRACT. The aim of the paper is to explicate the concept of causal independence 
between sets of factors and Reichenbach’s screeningoff-relation in probabilistic terms 
along the lines of Suppes’ probabilistic theory of causality (1970). The probabilistic 
concept central to this task is that of conditional stochastic independence. The 
adequacy of the explication is supported by proving some theorems about the 
explicata which correspond to our intuitions about the expllcanda. 

1. INTRODUCTION 

The conjecture that there is a close connection between causal and 
probabilistic concepts is an old one dating back at least to Hume. Some 
frequentist interpretations of probability assumed outright that causal 
independence implies stochastic independence; a glance at textbooks of 
probability theory, in particular older ones, shows how widespread this 
assumption is or was. Or looking at multivariate analysis, we find people, 
albeit cautious in their claims, very eager to infer causal assertions from 
their probabilistic data. Recently there have been efforts to define causal 
concepts in probabilistic terms. Suppes (1970) is most explicit in this 
respect, giving a probabilistic explication of the notion of an event A being 
a cause of an event B. 

However, it is by no means obvious that such projects are basically sound 
and satisfactorily practicable. My aim here is to argue that they are, demon- 
strating this with a somewhat less difficult subject than Suppes’: namely 
the concept of causal independence between variables, factors, or whatever 
you may call it - and the distinction between direct and indirect or, more 
appropriately, shieldable and unshieldable causal dependence. (This is less 
difficult a subject, since we need not bother about positive and negative 
causal relevance.) 

In more detail, my program is the following: In Section 2 I shall first set 
out the formal framework I am working with and then define and charac- 
terize the notion of conditional stochastic independence, which will prove 
to be central. All this is preparatory and completely standard. 
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Section 3 works up to the desired explication. The strategy I have 
adopted there consists in accumulating as many probabilistic arguments 
for and against causal independence as possible; when we have taken into 
account all these arguments and ascertained that no new ones can possibly 
turn up, then we may fairly hope to have said all about causal independence 
that can be said in probabilistic terms. Likewise for shieldability. 

In Section 4 I shall derive some properties of the notions thus explicated 
and argue for the desirability of just these properties, intending thereby to 
support not only the adequacy of the explications, but also the probabilistic 
definability of causal concepts in general. The proofs of the theorems con- 
tained in the Sections 2 and 4 are deferred to the final section. 

I have tried to be mathematically as general as is possible, with two major 
exceptions: the whole paper is confined to a discrete time structure, and my 
explication will moreover work only for those probability measures which I 
shall call strictly indeterministic (cf. Section 2). These restrictions, which 
are actually interrelated, are technically required for my explication as it 
stands, which is therefore not yet applicable to most of the physical 
examples. But the considerations carried through here for a restricted case 
are definitely vital to the unrestricted case as well, which shows additional 
problems. These are however not really essential to the gist of my paper. I 
shall comment on these restrictions in more detail at the end of Section 4. 

2. CONDITIONAL STOCHASTIC INDEPENDENCE 

As I said, I am concerned here with independence between factors or 
variables, i.e., such things as the temperature in Munich at July 17th, 1977, 
10 p.m., the blood pressure of person X at time t, the color of car X at t, 
the ruling parties of state X at t, the number of drug addicts in Germany at 
t, the action of person X at t, etc. Of course, this is to be understood not as 
the actual temperature, blood pressure, etc. (these would be events), but 
rather as the set ofpossible temperatures, blood pressures, etc. Mathematic- 
ally, such variables or factors are represented either by random variables or 
by u-algebras or measurable spaces. Here I take measurable spaces, since 
stochastic independence of random variables is defined by the stochastic 
independence of the u-algebras generated by them. Hence, we are dealing 
with a (finite or infinite) collection ((Q’,B?)ier of measurable spaces 
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indexed by the index set I. Each L12’ may in turn be finite or infinite, but to 
avoid trivialities we assume that each fit has at least two elements. 

Of course, we have to combine these measurable spaces to form one big 
measurable space. This is done by forming the product space: Let s2 be the 
set of all functions w defined on I such that for all i E I o(i) E C2’. For 
every i E I the projection function ni from 52 into ai is defined by ni(w) = 
w(i) for all o E 52. For every JS I we denote by’& the u-algebra on 5l 
generated by the functions (ni)ieJ; in particular, we set21{i) 4li and 
aI =‘$I. (a,%) then is the desired product of ((Q2’,91i>)i~r- Thus, we may 
translate independence statements about single factors or about set of 
factors into independence statements about the’& (i E I) or about the 
2& (J C I). Since we shall often make such statements, it is convenient and 
simplifying notation to talk not of the u-algebras themselves, but of the 
indices or index sets representing them. Thus we will need a long list of 
variables for indices and sets of them:.1 shah use the letters i, j, k, and 1 as 
variables for elements of I, the letters J, K, L, and M as variables for sub- 
sets of I, and the letters A ,B, C, and D as variables for events, i.e., elements 
of%. This is to be understood with or without subscripts throughout the 
paper. Often I shall talk of an index i E I itself as a factor or variable. 

I will add the temporal structure here, though it does not yet become 
relevant in this section: to this end, we assume a set T of time indices 
representing points or intervals of time. Metric properties of time are not 
relevant here; so we only assume T to be linearly ordered by <. Of course, 
t~t’istomeanthattisnotlaterthant’;theexpressionst~t’,t<t’, 
t > t’, and t = r’ are selfexplanatory. As mentioned before, we want to 
deal only with discrete time; therefore we assume that T is order isomorphic 
to some subset of the set of integers. To complete the temporal structure, 
we have to associate with each factor i E I a time index ri E T at which i 
will realize; different factors may of course get the same time index (in 
this respect our framework is more general than the standard framework 
for stochastic processes). As a variable for elements of T I shall use the 
letter t with or without subscripts. Moreover, the following notation will 
prove to be convenient: For JC_ Z and t E TJGt is to denote the set of all 
i E J such that ri < t; J, t, J< i, J> *, and J= t, are defined similarly. 

Finally, let us not forget to assume a u-additive probability measure P 
on’+& then we have gathered all the working material we need. 

We have however mentioned a restriction on P, this is specified in 
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DEFINITION 1. P is strictZy indeterministic iff for all disjoint K, L G I and 
all A E3cK and B E21L the following holds: if P(.4 I& = 0, then P(A) = 0. 

Thus, a strictly indeterministic P does not establish any necessary connec- 
tion between contingent events belonging to disjoint set of factors (where 
“necessary” and “contingent” are of course to be understood relative to P). 
I call this strictZy indeterministic, because every probability measure is, in a 
sense, not deterministic. Wherever I suppose P to be strictly indeterministic 
I shall note this explicitly. (Actually, in a frame as general as ours, this 
definition will not quite do. But this is merely a technicality and need not 
worry us in the following. For details see the proof of Theorem l(e) in 
Section 5.) 

So let us turn to conditional stochastic independence: Stochastic indepen 
dence between two factors or, more generally, between two sets K, L C_ I of 
factors (relative to P) of course means that%, andaL are stochastically 
independent, i.e., that for all A E’& and B E2JL P(A n B) = P(A)-P(B). 
I shall symbolize this by K 1 L. 

Conditional stochastic independence is a bit harder to define: First 
suppose, for expositive reasons, that 1 and every SZ2’ is finite. Thus, for every 
MC P& is finite and consists of 0, its atoms, and all unions of atoms. 
That K and L are stochastically independent conditional on M then means 
that for all A E21K, B E(UL and all atoms C ofVIM with P(C) # 0 

(2.1) P(A n B I C) = P(A I C)*P(B I C) 

holds, i.e., that any event in2IK is independent of any event in2.fL given 
any possible state the factors of M might be in (where this latter clause is 
just a circumlocution for the nonnull atoms of%M). 

If we allow some or all s2’ and I to be infinite, this definition does not 
work, however, sinceUM may be atomless for some MC I. We have then to 
resort to a more general mathematical concept, namely to the conditional 
probability P’of P with respect to some syb-u-algebra.23 of’%. Using this 
we may define: 

DEFINITION 2. For all K, L, M C I, K is stochastically independent of L 
conditional on M (relative to P), symbolized by_ K 1 L/M, if and only if for 
all A E91K and B E2I, 
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(2.2) P’~(A n B) = PM(A)-PM(B) P-almost surely. 

The reader unfamiliar with this concept of conditional probability may 
either look it up in the literature (e.g., in Loeve (1960), ch. VII) or assume 
finiteness of I and all ai throughout this paper and read every statement of 
the form (2.2) as equivalent to (2.1). 

The most important properties of the relation thus defined are compiled 
in the following 

THEOREM 1. For allJ,K,K’,L,L’,M,M’C_ Iwe have: 

(4 8 1 KIM; 

(b) if K 1 L/M, then L 1 K/M; 

cc> ifKlL/M,K’C Ku M,L’S L u M,and 
MGM’GMuKvL,thenK’lL’/M’; 

Cd) ifKlJfLuMandLlJ/M,thenKuLlJ/M; 

C-9 ifKuLlJ/MandKuMlJ/L,thenKuLuMlJ/LnM, 
provided that P is strictly indeterministic. 

(For the proof of Theorem 1 see Section 5.) For infinite I the following 
theorem is relevant, too: 

THEOREM 2. Let (M~)~E~ be a (possibly uncountable) family of subsets 
of I,@(A) the set of all finite subsets of A, and K, L, M E I such that 
M6 C M for every 6 C A. Then we have: 

(4 

@I 

cc> 

Cd) 

if for all f’ E@(A) &gr MS 1 K/L, then sgA Mh 1 K/L; 

ifforallT’E@(A) KlLfg~rMs,thenKlL16~~Ms; 

ifforallf’G5(A) KIL/s~rMd,thenKIL/s~~Ms; 

ifforall6EA KuM61L/M\Ms, then 
K ug & Mb 1 L/M\ 6 g4 M6, provided that P is strictly 
indeterministic (where “\” denotes set theoretic difference). 

In Theorem 2, as throughout the paper, we allow I to be uncountable. 
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In most applications, however, an uncountable Z will only be needed when 
time is continuous. Thus, this generality is redundant here; but since it 
makes no difference to any formulation or proof, we may admit it. Note 
also, that Theorem 2(d) is just an infinite version of Theorem l(e). 

Obviously, stochastic independence may not be identified with causal 
independence, simply because by being symmetric (Theorem l(b)) it dis- 
regards temporal relations. But there is also a deeper reason for this. Causal 
independence is a notion we may not be very clear about, but with which 
we are intuitively familiar. In fact, if we speak of two things being 
empirically independent, we usually mean somthing like causal mdepen- 
dence. This is documented by our strong inclination to recast phrases such 
as “is independent of’ and “depends on” into more clearly causal phrases 
such as “has no impact on”, “affects”, “influences”, etc. 

In contrast to this, conditional stochastic independence between sets of 
factors as disclosed by Theorem 1 seems to me to be a rather unintuitive 
and intricate relation (and this carries over to unconditional stochastic 
independence). In my view, the main reason for this is that stochastic 
independence misses an elementary property of intuitive independence 
notions, which we may call conjuncfivity : namely that, if x is independent 
of y and independent of z, then it is also independent of y and z taken 
together, and conversely that, if x is independent of z and y is independent 
of z, then x and y taken together are independent of z. 

Stochastic independence misses conjunctivity, because K 1 L and K 1 M 
do nor imply that K 1 L u M, it obeys more complicated laws instead. (By 
the way, this is one important reason for many troubles philosophers have 
with confirmation and relevance, one of which consists in the counter- 
intuitive fact that some evidence may be irrelevant to each of two 
hypotheses and yet confirm both taken together. Cf., e.g., Salmon (1973.) 
Intuitive notions of independence, however, do satisfy conjunctivity; this is 
supported by the fact that in saying that x is independent ofy and z we do 
not, and need not, distinguish between “y and z taken individually” and 
“JJ and z taken together”. (The same holds in the converse case.) This is 
why they are logically simple, and this in turn is the reason for their being 
intuitively manageable. 

This discussion shows that it is an important criterion for the adequacy 
of our explication of causal independence that it fulfill conjunctivity. We 
shall check this. (Let me add, that symmetry seems to me not to be 
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intuitively necessary for independence relations; else we would not need the 
phrase “is independent of”, which is not symmetric. And surely, we must 
not expect causal independence to be symmetric.) 

3. CAUSAL INDEPENDENCE AND 
SHIELDABILITY: EXPLICATION 

As just stated, stochastic independence must not be equated with causal 
independence. Nevertheless, knowing that one factor does or does not 
stochastically depend on another factor, we are strongly tempted to infer 
from this the corresponding causal statement, given the right temporal 
order. There are, however, three more or less well-known ways in which 
this temptation may lead us astray. Our explication will essentially consist 
in systematically avoiding these errors. Since my reasoning to this end will 
become somewhat abstract, it may be of help to illustrate these three types 
of error by examples: 

First, if confidential information is trustworthy, the Educational 
Department is worried about the high rate of regular Mickey Mouse readers 
among the eight to twelve year old children, which at present is 60%. So it 
ordered a study which revealed that among the children who have received 
an authoritarian education the percentage is even higher, namely 70%, 
while it is only 50% among the other children. Officials were therefore 
inclined to suspect a causal connection of educational style to consumption 
of Mickey Mouse. But then a more thoroughly conducted study brought to 
light a surprising fact: namely that 90% of those children whose parents 
were MM fans when young are regular MM readers, inspective of whether 
they receive an authoritarian education or not, whereas the rate among the 
other children is only 45%, again independent of educational style. So, 
officials accepted the fact that the popularity of MM inevitably spreads 
from one generation to the next (and they were additionally shocked on 
inferring from the data given that one half of all parents prefer an authori- 
tarian educational style, while as many as five out of six former MM fans 
do so). 

This causal state of affairs is well-known. A more familiar example is the 
falling barometer which predicts without causing the subsequent storm. And 
such is the way of epiphenomena in general. The mechanism is always the 
same: The observation that a factor i stochastically depends on a factor j, 
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formally that i li does not hold (where ri > rj), suggests that there is a 
causal influence from i on i, but this is invalidated when a third factor k 
with rk < ri is found conditional on which i and j are not stochastically 
dependent any more. Thus, the fact that i lj/k shows the influence to be 
only sp~tiotls, and the illusion is explained by k influencing both i and j 
correspondingly. (For similar examples see, e.g., Salmon (1971), pp. 33ff., 
53ff., and Suppes (1970), pp. 21-27. There is the corresponding phenom- 
enon of spurious correlation in multivariate analysis; cf. Van de Geer (197 1, 
p. 106.)) 

The second example is similar to the first one: Since 1963, every time 
the Rolling Stones have released a new album, a fan club has regularly 
determined how may Germans think them to be the greatest rock’n’roll 
band on earth; the rafe was always rather low, somewhere around 2%. But 
among those born between 1943 and 1953 the rate was considerably higher, 
oscillating between 10 and 15%. Thus, it seems that date of birth is causally 
relevant for Rolling Stones fanship. But the fan club also found out that 
always about 80% of those who were enthusiastic about their latest album 
held that superlative to be true, irrespective of date of birth. This is no 
reason for us now to deny a causal influence from date of birth to fanship, 
but it deprives the first of its direct causal access to the second, it screens 
off the first from the second, as Reichenbach (1956, p. 192) termed it. 

Such a phenomenon is well-known too. Observe that its probabilistic 
structure is the same as before. Again, we have a factor i (maintaining the 
superlative or not) and a factor i (born between 1943 and 1953 or not), 
such that not i li, and again we discover a third factor k (being enthusiastic 
about the latest LP or not), such that i lj/k. The difference lies in the 
temporal structure, for now the intervening k is temporally between the 
other two. Hence our differing conclusion that k only shows the influence 
of j on i to be shieldable, but not to be spurious. (For this type of argument, 
cf. also Suppes (1970, pp. 28ff).) 

The third case is in a sense just the opposite of the first two: A popular 
and often cited example in philosophical literature is that regarding a 
certain kind of neurosis the remission time after psychoanalytic treatment 
does not significantly differ from the spontaneous one. From this it is 
concluded that psychoanalytic treatment has no influence on remission 
time (and thus is of no use whatsoever for the patient). Some Freudian, 
full of wrath about this silly propaganda, has got to the bottom of the 
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matter, and this is what he has found out: One has to take into account the 
income of the patient. For, if a patient with low income underwent treat- 
ment, his remission time is, on the average, definitely shorter than the 
spontaneous one, whereas for wealthy patients remission time after treat- 
ment is considerably longer. This shows that there is an influence of 
psychoanalytic treatment on remission, though it is brought to light only 
by deeper analysis. 

Cases like this have the following structure: There are two factors i 
(remission time) and j (psychoanalytic treatment or not), the first being 
stochastically and therefore presumably also causally independent of the 
second. However, a third factor k (income of the patient), for which i.1 j/k 
is false, refutes this conjecture and suggests instead that there is a hidden 
influence of j on i. Note that the temporal position of k is not relevant to 
this argument if it is only earlier than i. This is particularly clear in a hypo- 
thetical example of Van de Geer (1971, p. 106f.): “We do not find a corre- 
lation between the amount of rainfall and the amount of wheat produced, 
measured over consecutive years, whereas the partial correlation after 
elimination of the effect of daily temperature is positive. That is, for years 
with equal temperature, there is a correlation between rainfall and amount 
of wheat produced, but this relation is contaminated by variation in tem- 
perature, since higher rainfall accompanies lower temperature, which is 
disadvantageous for wheat production.” And in this case, there is no telling 
which one is earlier, rain or temperature. 

In contrast to the first two types of reasoning, I could not find that this 
third type has received proper attention, if any at all, in the relevant philo- 
sophical literature. But it is of equal importance, and in particular the inter- 
play of these three types will turn out to be most interesting. (This neglect 
is, I think, largely due to the fact that the long debate about the symmetry 
of explanation and prediction has been settled with the acceptance of one 
half of the symmetry, i.e., that explanations could always serve as pre- 
dictions under appropriate pragmatic circumstances, or that a cause, if 
known, would be a reason for expecting the effect. Hidden causes and 
hidden causal dependence do not fit into this picture.) 

Thus, there are three ways - I know of no others - in which our infer- 
ences from probabilistic premises to causal dependence or independence 
between factors may be modified by further probabilistic data. What we 
shall do in the rest of this section, is simply to carry this through to its 
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logical consequence, to a point where no further modification of this sort 
is possible. This sounds simple, and in fact, it starts simply. Unfortunately, 
yet inevitably, as it seems to me, it will become somewhat intricate in the 
end. I apologize for this in advance. 

So let us return to the formal framework introduced in Section 2 and let 
us assume in the sequel that the underlying probability measure is strictly 
‘indeterministic, as it already was in our examples. At the end of Section 4 
I shall indicate, where things would go wrong without this assumption. 

We have first to add a further bit of notation: That K E I is causally 
independent of L E I (relative to P) will be symbolized by K I, L ; instead of 
“(iI I, (j>” we shall simply write “i I, j”. Similarly, K I, L is to mean that 
K is shieldable from L (relative to P). Moreover, I hope to improve the 
readability of the next pages by the following convention: In connection 
with a statement of the form K 1 L/M the expression “[,I” is to denote the 
set IG~\(K u L). Thus, “i lj/[rj]“, for instance, says the same as 
“i 1 j/IGTi\{i, j>“. As long as any expression of the form [t] is only related 
to that stochastic independence statement in which it occurs or which is 
spoken of in the very moment, this notation cannot lead to any misunder- 
standing. 

Another advisable move is to simplify matters in two respects, as we have 
already done in our examples: Firstly, we shall restrict the discussion to 
causal independence between single factors. Only after this has been cleared 
up can we explain causal independence between sets of factors. Secondly, 
we shall provisionally assume that every time index is associated with only 
one factor; we can thereby defer the question of how to determine causal 
dependence between different factors having the same time index. 

So, let i andj be any factors in I. Of course, we make the natural 
assumption that, if ri < rj, then i is cuusaZ2’ independent ofj; we are not 
attempting to account for the weird possibilities physics is facing today. 
And clearly, we would not be irritated by discovering that i is nevertheless 
stochastically dependent on j; j may furnish us with additional information 
about the earlier i. 

We therefore assume for the next paragraphs that ri > rj. When would 
we say that i causally depends on j, i.e., that i I, j is false? The first guess 
would be: “When i 1 j is false.” But we already know from our Mickey 
Mouse example that this answer is deficient; there might be a factor k E I 
with rk < rj such that i I j/k, showing the supposed influence of j on i to be 
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spurious. To exclude this possibility, we obviously have to require for causal 
dependence between i andj that not only not i lj, but also not i lj/k for 
every k E [Tj] = IcTj. But this is not yet sufficient, since the argument for 
spurious influence may still be raised in a more subtle way: There might be 
two factors k, 1 E [rj] such that i lj/{k, I}. In this case, k and I are, SO to 
speak, individually not strong enough to uncover spuriousness, but jointly 
they are. Continuing this line of reasoning, we seem to be driven to the 
condition that not i Ij/L for all subsets L of [rj]. 

However, this result looks a bit strong. So let us think over the opposite 
case. #en would we say that i is causally independent of j, i.e., that i 4 j 
holds? Again, we should not answer: “When i lj.” For there might be a 
third factor, as in our psychoanalysis example, revealing a hidden influence; 
that is, restricting the discussion for the moment to those possibly interfer- 
ing variables which are earlier than j, we might find a k E [rj] such that 
i lj/k does not hold. Therefore to require for i I, j that not only i lj, but 
also i 1 j/k for every k E [rj], is again not sufficient. There might still be 
two factors k, 1 E [rj] such that i lj/{k, Z> is false, and then we could not 
deny the presence of a particularly well hidden influence of j on i. And as 
before, we end up with the condition that i 1 j/L for all L C [Tj] is necessary 
for i I, j. 

The upshot of these two lines of reasoning is this: Whatever might be 
suggested about the causal independence of i from j by the truth or falsity 
of i 1 j/L for some L C [rj], it is refuted by the falsity or truth, respectively, 
of i 1 j/M for some larger M E [rj]. Hence, only the largest subset of [rj], 
i.e., [rj] itself, is decisive, that is; Whether i & j holds or not depends solely 
on whether i lj/[rj] holds or not. 

So far we have only considered factors earlier than j as possibily inter- 
ferring. But it is obvious from our second and third example that the factors 
temporally between j and i are relevant as well. So let us suppose that not 
i 1 j/[rj]; at the present state of discussion this suggests that not i I, j. Not 
surprisingly, there might then be a k EI with rj < rk < ri such that 
i lj/[rj] u {k). This, however, does not constitute an argument for the 
influence being spurious, because of the temporal relations assumed; rather, 
the situation is like that of our Rolling Stones example, and we have to 
conclude that the influence of j on i is still present, but screened off or 
shielded by k, i.e., that i L, j. 

Sticking for the moment to the concept of shieldability, we still have to 
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face the possibility that there is another factor I E I with Tj < rz < Ti such 
that not i lj/[Tj] u {k, r}. In this case we might perhaps still claim that k 
screens off the influence of j on i, but it does not do so effectively, since by 
taking I into account the hidden influence of j on i appears again; the screen 
erected by k is not stable, and therefore it would be inappropriate to say 
that i is shieldable from j. Again we are forced to consider larger and larger 
conditioning sets, coming thereby to the conclusion that the only stable 
screen which can in no case be overthrown consists of all factors in I tem- 
porally betweenj and i. Since [Tj] plus this maximal screen is equal to [ri], 
we have arrived at a first result: namely that 

(3.1) il,jiffilj/[Ti]. 

Now it is easy to complete the explication of causal independence. 
Before considering the factors temporally betweenj and i we conjectured 
that i I, j, if i lj/[rj]. But it is clear from the psychoanalysis example and 
the above discussion, that any L with [Tj] 5 L C_ [TV], for which i Ii/L is 
false, gives rise to an argument for the presence of a hidden influence of 
j on i and against i 1, j. The point now is that an argument basing on such a 
set L can no longer be refuted, since stochastic independence conditional 
on some larger set only indicates shieldable, but not spurious causal depen- 
dence, as we have just seen. Therefore we have to require that there is no 
such L, i.e., 

(3 .a i 1, j iff i 1 j/L for every L with [TV] G L C_ [TV]. 

Observe that according to (3.1) and (3.2) i 1, j implies i 1, j, as ought to 
be expected. If there is no influence whatsoever of j on i, there should all 
the more be no unshieldable influence of j on i. Of course, i 1, j is stronger 
than i 1, j. We might say, and I think this is also intuitively convincing, 
that causal independence holds when the empty screen is already stable. 

Let us pause for a moment and reconsider. Do we really have to face this 
almost endless moving to and fro between arguments for a spurious or 
shieldable influence and arguments for a hidden influence? I think, in 
principle there is no getting round that. In reality, this to and fro may be 
unlikely to occur more than two or three times, and relying on this it may 
be admissible to jump quickly from incomplete probabilistic data to causal 
conclusions. But the point is that this would be bound to be a risky jump 
and not a safe step. It is essential to recognize that there are not just the 
three types of argument we exemplified, but that they develop the charac- 
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teristic interplay shown above, which drove us to consider ever larger con- 
ditioning sets and finally to (3.1) and (3.2). 

But we may ask the opposite question: Have we really considered all 
conceivable probabilistic arguments for and against causal independence and 
shieldability? Strictly speaking, the answer is no for two reasons. Firstly, we 
have completely neglected the factors subsequent to i. But rightly so. If 
i 1 j/L does not hold for some L C Z which is not a subset of [rj], we would 
of course only conclude that the factors in L which are later than i are 
informationally relevant to i, but we would see no reason for changing our 
views about the causal relations between i and Z. 

Secondly, one might object, that we have not really considered all factors 
earlier than i, but only those contained in I. But this is no argument against 
our explication; this explication is of course relative to the given, well- 
defined conceptual framework ((Q2’,21i))iEr, and I see no way to avoid this 
relativity, I would not know how to get along with an indefinite set of 
really all factors. However, it might constitute an objection against a 
specific choice of a conceptual framework. In any application this choice 
might be so inadequate that unacceptable causal relations ensue within this 
choice. In fact, we have to reverse this: that the ensuing causal relations 
conform sufficiently to our preconceptions, be they pretheoretic or highly 
theoretic in origin, is an important criterion for the adequacy of our con- 
ceptual framework. One such preconception, e.g., is the principle of 
causality, which is still regulative for the most of science (and a weak form 
of which may be formulated within our frame as saying that each factor 
causally depends on its past). Or to give a more concrete example: When- 
ever we have discovered what we think to be the symptoms of some desease, 
we seek a factor (e.g., some bacterium or virus) causally responsible for 
these symptoms, though we may have not the slightest idea, what this factor 
consists in; and we do this simply because this factor must be there accord- 
ing to our medical knowledge. 

But let us return to our explication. We have still to free our findings 
(3.1) and (3.2) from the simplifying restrictions stated at the beginning of 
this discussion. So let us first admit that several factors are associated with 
the same time index. We then face two problems. The minor one is this: 
may a factor causally depend on itself? This is a strange question, and the 
simplest way to cope with it is, I think, to declare it meaningless. Thus, I 
shall stipulate that K I, L makes sense only if K n L = 8; the same applies 
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to I,, of course. However, other conventions might be adopted as well; 
nothing hinges on this issue. 

But the main problem naturally is: Should we allow one factor to be 
influenced by another factor carrying the same time index? This is a delicate 
question, but I will not go into it with due thoroughness. Let it suffice to say 
the following: As far as I know, the question is still at issue, no unanimity 
has yet emerged. Moreover, notice that two factors may get the same time 
index without being strictly simultaneous; this is simply due to the coarse, 
i.e., discrete time structure we have assumed, and it suggests a liberal hand- 
ling of the case. In view of this, I take the liberty of choosing the technically 
more convenient ahemative, which turns out to be the liberal one. More 
precisely, for pi > 7i I take the factors k with rk < rj as relevant for judging 
an influence ofj on i as spurious, and those factors k with Tj < rk < 7i as 
relevant for judging an influence of j and i as shieldable. If we recall how the 
notation [t] was defined, we see that (3.1) and (3.2) are still appropriate 
for all i, j EZ with i #j and ri > rj. I must confess, however, that the 
theorems stated in Section 4 depend heavily on this ruling of the matter; 
without it the results holding when no two factors have the same time index 
could not be extended to the more general case considered now. 

As the last step of our analysis we have to explain our relations I, and I, 
generally for sets of factors. So let us first take up causal independence and 
deal with the special case of a single factor being independent of a set of 
factors. To simplify matters further, we shall focus on the statement 
i I, {j, k}. This brings in something new only if both j and k are not later 
than i and if rj f rk, since in case that rj = rk exactly the same reasoning 
as before may be carried through for (j, k} instead of j. Thus let us assume 
that rk < rj. Then two different ways of generalizing (3.2) to this case pre- 
sent themselves: namely that i 1, {j, k} is to mean that i 1 {j, k}/L either (a) 
for every L with [rk] C L E [ri] or(b) for every L with [rj] C_ L C_ [TV]. 
Unfortunately, neither possibility will do. 

(a) is too strong. For suppose that i 1 {j, k}/[Tk] does not hold. Would 
we accept this as conclusive evidence against i I, fj, k)? No; the apparent 
influence if j and k on i may be due to j and then still prove spurious when 
new factors between k and j are added to the conditioning set. Only if 
i 1 k/ [rk] does also not hold, would we conclude that at least part of the 
influence of j and k on i is due to k and that this part may only be screened 
off, but not proved spurious. 
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And (b) is too weak. For suppose that i 1 k/[rJ is false. Then, according 
to our earlier considerations, there is an influence of k on i; and condition 
(b) only asserts that this part of the influence of j and on i may be screened 
off, but it does not prevent it altogether. 

These considerations clearly show how to weaken (a) and to strengthen 
(b): namely by maintaining i I, {j, k) just in case that i 1 {j, k}/L for every 
L with [rj] C_ L C_ [ri] (this is identical with (b)) and i 1 k/L for every L 
with [T,J E L E [ri] (this is weaker than (a)). Generalized to arbitrary sets 
of factors, this means that for all i EI and K E I 

(3 -3) i 1, K iff for all r Q ri: i 1 KG t/L for every L with 
[t] C L C [Ti]. 

The converse case of a set of factors being causally independent from a 
single factor is quite similar. Again, let us first analyse the simple statement 
that {k, i> 1, j, where we may assume rk > 7i > Tj without loss of general- 
ity. As before, there are two obvious ways of generalizing (3.2): namely by 
understanding {k, i} I, j as saying that {k, i} 1 j/L either (a) for every L 
with [rj] C_ L C_ [TJ of(b) f or every I with [rj] E L C_ [Ti]. But (a) is too 
strong, since it requires i to be stochastically independent conditional on 
factors partly lying in the future of i. And (b) is too weak, since it does not 
exclude all possibilities for a hidden influence of j on k to show up. Again 
the remedy is clear: We have to require that (b) holds as well as a weakened 
form of (a), namely that k 1 j/L for every L with [ri] C_ L C_ [rJ. In full 
generality this means that for all j E I and J C I 

(3 -4) Jl,jiffforallt’>Tj:J~t~l j/L for every L with 
[Tj] C_ L C [t’]. 

If we finally combine (3.3) and (3.4), our efforts are rewarded by a first 
result: 

DEFINITION 3. For all J, K 5 I such that J n K = 8, J is causah’y indepen- 
dent of K, i.e., J 1, K, if and only if for all t, t’ E Twith t < t’ J>,s 1 K<,/L 
for every L with [t] C_ L C_ [t’] (that is, for every L with I<,\(J>,’ u KG,) C 
L C I<,~\(J>,~ u K,,)). 

For generalizing the concept of shieldability as fixed in (3.1), we may 
proceed in a similar fashion: The first step is quite straightforward and 
yields for i El and K C_ I: 
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(3.5) i I, K iff i 1 K<,,/[Ti]. 

Here we have neglected K,, and used the largest screen available, as we 
have done in (3.1). 

The other step does not run so smoothly. So let us consider the simple 
(k, i> I, i, where of course rk, ri > rj. If rk = ri, then (3.1) stated for (k, i> 
instead of i is still adequate; the former reasoning applies here as well. If 
rk > ri, however, we again face two obvious generalizations of (3.1): (a) 
(k, i> I, i iff (k, i> lj/[rJ, and (b) (k, i> l,Z iff (k, i> lj/[ri]- As before, 
both are inappropriate. (a) assumes i to be stochastically independent of j 
conditional on future factors (relative to i), and (b) provides only a possibly 
unstable screen for k. Since we have to employ the maximal screen for every 
temporal segment of the shieldable set (k, i), the only way out of this 
quandary is to require that (k, i} 1, j iff i lj/[ri] and k li/[rk]. The 
immediate generalization of this to arbitrary J E Z is: 

(3.6) Jl,~ifffOrallt~TjL~lj/[t]. 

Combining (3.5) and (3.6), we get our second result: 

DEFINITION 4. For all J, K C_ Z such that J n K = 8, J is shieldable from 
K, i.e.,Jl, K, if and only if for all t E T J=, 1 K4J[t] (i.e., 
J=t 1 K< t/Z<,\(J=t u K< &. 

You may complain that Definitions 3 and 4 are much too complicated to 
be grasped immediately. Granted, but this is, I think, partly due to the fact 
that causal independence (and shieldability) of arbitrary sets of factors is 
intuitively not so clear anyway. Moreover, I hope to have provided intuitive 
access at least to (3.1) and (3.2), and the definitions are merely con- 
sequential to (3.1) and (3.2), indeed uniquely consequential in my view. 
Additional support for our explication and further insight may be gained by 
turning to the theorems holding for the concepts so defined. 

4. CAUSAL INDEPENDENCE AND 
SHIELDABILITY: PROPERTIES 

The central properties of I, and 1, as defined by Definitions 3 and 4 are 
stated in : 
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THEOREM 3. Suppose P to be strictly indeterministic and let (Ja)aEa and 
(K& Eh be two (possibly uncountable) families of subsets of I, J = 6 gA Jh, 
and K =& Kh . Then we have: 

(4 ifforalljEJandkEK rj<rk,thenJl,K; 

@) ifJi,K,J’SJ,andK’GK,thenJ’l,K’; 

(cl ifforall6EA Jgl,K,thenJl,K; 

(d) ifforallSEA Jl,K6,thenJl,K; 

and the same holds for 1, instead of 1,. 

Again, the uncountable case is somewhat superfluous in view of the 
discrete time assumed; but that does not matter. The most obvious facts 
about the connection between 1, and 1, are stated in: 

THEOREM 4. For all J, K C_ Z we have: 

(4 if Jl, K, then J 1, K; 

@I ifJl,KandifforalliEZ\(JuK),~EJandkEKr~~rj 
and either ri < rk or rj < Ti, then J 1, K. 

Theorem 5 will establish a more subtle connection between I, and 1,. 
How desirable are the properties of 1, and 1, expressed in Theorems 3 

and 4? Did we expect more? Well, the properties 3(a) and 3(b) are utterly 
indispensible for both 1, and 1,. 3(c) and 3(d) relate to our discussion at 
the end of Section 2; they state that conjunctivity does indeed hold for 1, 
and for I,, as demanded by that discussion. Thus, 1, and 1, have the simple 
properties that are intuitively required. 

In fact, in the light of Theorem 3 we could have chosen another 
approach to Definitions 3 and 4. We could have extended (3.1) and (3.2) 
to sets of factors simply by assuming conjunctivity outright, i.e., by 
defining J 1, K to mean that for all j E J and all k E K i 1, k (and likewise 
for I,). Theorem 3 then says that this definition is equivalent to ours. This 
way would have been easier to grasp, but it cannot give us a proof of con- 
junctivity. Ultimately, I think, it is a matter of taste which way one chooses. 

Theorem 4(a) is of course a must, and 4(b) may be read in an intuitively 
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quite compelling way, namely as saying: if .Z can be screened off from K 
and if there are no factors in the temporal region occupied by .Z and K 
except those of .Z and K themselves, then it must be just the empty screen 
which screens off .Z from K; and as remarked previously, the stability of the 
empty screen amounts to causal independence. 

Is there some property missing? If any at all, it will probably be transit- 
ivity of causal dependence. (I can think of nothing else.) At least it should 
be true, one might say, that if i is not shieldable from j and j is not shield- 
able from k, then i causally depends on k. But even this weak transitivity 
does not hold (as simple numerical counterexamples show). That this 
transitivity cannot be expected within a probabilistic framework is well- 
known (cf., e.g., Suppes (1970, pp. 58f.)), and there is a simple general 
reason for this: Define the causal range of a factor i to be the set of the time 
indices of all the factors which causally depend on i. Within a strictly deter- 
ministic framework it may be reasonable to expect the causal range of a 
factor to extend infinitely into the future. But within a probabilistic frame- 
work this is not plausible at all, simply because it may happen that more 
and more randomizing elements superpose such that the causal influence of 
a factor blurs more and more, until it fades entirely. Hence we must reckon 
at least some factors to have a finite causal range, and this contradicts 
transitivity of causal dependence. 

So far we have always stressed that stochastic and causal independence, 
though interrelated, are very different relations. The following consideration 
will bring them closer together again: 

It is well known from the construction of product measures, that, 
roughly speaking, a probability measure on some product u-algebra 
partitions this u-algebra into stochastically independent sub-u-algebras, 
between which there is no probabilistic dependence whatsoever (and that it 
can be reconstructed from its restrictions to these sub-u-algebras). To be 
precise, let us define: 

DEFINITION 5. (.I& Ed is a l-partition ofZ if and only if (J&)6 Ed is a 
partition of Z (i.e., Jh # 9, Js n J, = 9 for 6 # y, and sgA Jh = I) and if for 
allFEA J,lZ\J,. 

Of course, it is tempting to look for the causal analogue, and it is clear 
how it is to be defined with respect to causal independence as well as to 
shieldability: 
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DEFINITION 6. (.Z ) 8 6 EA is a l,(l,)-partition ofZif and only if (.Z6)6 Ed 
is a partition ofland if for all 6 E A Jh l,f\J6(J~ l,I\Jh). 

Naturally, we are interested in the relationships between these different 
kinds of partitions, This interest is exhaustively answered within our 
restricted frame by: 

THEOREM 5. If P is strictly indeterministic, the following three statements 
are equivalent : 

(4 (Jh)hE= is a l-partition of I; 

@I (J&E* is a &-partition of I; 

(4 (Js)~ Ed is a &-partition of I. 

Hence all three kinds of partitioning amount to the same thing. Actually, 
the equivalence of(b) and (c) should have been expected, as the following 
consideration shows: Define two factors i and j to be causally connected 
if and only if there are factors k,, . . . , k, such that kl = i, k, = j, and 
either not k,, 1 l,k,ornotk,l,k,+,foreverym=1,...,n-1. 
Obviously causal connectedness is an equivalence relation within I, and with 
the help of Theorem 3 it can be easily checked that the equivalence classes 
of this relation form a &-partition, in fact the finest &-partition, of I. In 
this reading Theorem 5 affirms the intuitively felt fact that it makes no 
difference to causal connectedness whether it is based on bare causal 
dependence or only on direct, unshieldable causal dependence. This also 
reconciles us perhaps a bit to the fact that even weak transitivity of causal 
dependence in the above sense does not hold. 

As to equivalence of (a) and (b), intuition is more neutral. I think; all 
the more, it is welcome. It establishes a simple and useful connection 
between causal and probabilistic concepts, partly justifying, partly explain- 
ing their careless interchange. 

It may be illuminating to apply our results to two of the most widely 
discussed situations in probability theory: sequences of independent 
random variables and discrete Markov processes. Let N be the set of all 
positive integers. In both cases we have to deal with a sequence (Xn)nEN 
of random variables defined for some probability space. This means that we 
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may put I = T = N. In the case of independent random variables each X,, is 
stochastically independent of all others, i.e., in our terms we have 
n IN\ {n} for all n EN. Hence, Theorem 5 applies, and we may infer that 
in this case, and only in this case, the X, are also causally independent from 
each other. This in a sense justifies the frequentists mentioned in the intro- 
duction, who, attempting to establish a frequentist view of probability with 
the help of the law of large numbers for sequences of independent random 
variables, needed some nonprobabilistic grounds for assuming stochastic 
independence of the random variables and hence inferred stochastic from 
causal independence only in the case sanctioned now. 

In the case of a discrete Markov process, the distribution of any X, con- 
ditional on its immediate past is the same as the one conditonal on its entire 
past, i.e., in our terms we have n + 1 l(1) . . . , n - l}/n for all n EN. This 
means according to our explication that in a Markov process each Xn+, is 
shieldable from {Xi, . . . , X,-i}, and that is exactly what Markov processes 
are designed for, as is also indicated by the usage of paraphrasing Markov 
processes as “memoryless” or “nonhereditary” or as characterized by the 
“absence of aftereffect”. No general statement is possible about causal 
independence within a Markov process, but usually every X, will causally 
depend on every X,,, with m < n. 

Let us finally discuss the two restrictions governing this paper and first 
take up strict indeterminateness of P. Its mathematical origin is clear; 
without it Theorem l(e) would not hold, and from there it spreads to the 
causal theorems, i.e., to be precise, to Theorem 3(d) for I, and for I, and, 
less importantly, to Theorem 3(c) for 1, and Theorem 5 only in case there 
are several factors with the same time index. 
But there is, I think, also good intuitive reason for assuming it. If we were 
to generalize our explication to probability measures that are not strictly 
indeterministic or, as we might say, weakly deterministic, all sorts of 
awkward things would happen, all of which relate to the invalidity of 
Theorem 3(d). The basic case is this: Suppose there are three factors i, j, 
and k such that rk < rj < ri, i lj/k, and i 1 k/j. This means according to our 
explication that i is causally independent of i (because of k) and that i is 
shieldable from k (by i). Normally we would say that, if k is shielded by 
something causally independent, this must be a trivial case of shielding 
where k itself is causally independent. And this is exactly what follows 
if P is strictly indeterministic. But for weakly deterministic P, i 1 (j, k) 
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may nevertheless be false. Imagine, e.g., that Bi, . . . , B, and Ci, . . . , C, 
are the atoms of’8j and21k, respectively, that for alI m = 1, . . . , n, 
P(B, 1 C,) = P(C, 1 B,) = 1, and that i somehow stochastically depends on 
j, and on k in the same way. This case is not clear regarding its causal 
relations, and it therefore gives no hint as to how to modify our definitions 
for weakly deterministic P. 

But this unclarity is not surprising, I think, since it seems to me that this 
modification, whatever it may look like in detail, cannot be carried through 
within the standard probabilistic framework. For how would we judge the 
causal relations in the example above? We should somehow know the 
probabilities of the states of i given that C, and nevertheless B, (where 
4 # p) has occured. If these probabilities are the same as those conditional 
on C, alone irrespective of B, , we would suppose j to be causally irrelevant 
to i; and if these probabilities only depend on B, , i is presumably shieldable 
from k. But the point is that standard probability measures cannot give us 
these probabilities, because probabilities conditional on null events are not 
defined. This is the deeper reason for our restriction to strictly indetermin- 
istic probability measures: Only then do we have all the conditional prob- 
abilities needed for safely inferring causal relations. But this also leads me 
to suspect that we have to resort to something like Renyi’s conditional prob- 
ability spaces (cf. Renyi (1973)) for handling the weakly deterministic case. 

What is there to say about the restriction to a discrete time structure? 
Note firstly that it is pragmatically implied by the strict indeterminateness 
of P; that is, in almost all interesting cases with continuous time the prob- 
ability measure involved will be weakly deterministic. This is so simply 
because scientists have found that applications of a continuous stochastic 
process require, in general, that almost all of its paths be almost everywhere 
continuous; and such a process can only be described by a weakly determin- 
istic probability measure. This is not to say that to cover continuous time 
we only have to solve the weakly deterministic case. If this were so, our 
theorems would have to hold for continuous time as well. But they do not; 
discreteness of time proves to be essential for Theorem 4(b) and for 
Theorem 5. 

Again, the mathematical source of trouble is clear: By repeated appli- 
cation of Theorem 1 (d) we can roll up any discretely ordered set of factors; 
for instance, if we have J=, 1 K/J, t for all, discretely many t, we may infer 
J 1 K. But this does not carry over to the continuous case. 
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Intuitively, I cannot find anything wrong with our explication of causal 
independence nor, concerning shieldability, with (3.1) and (3.5). But (3.6) 
cannot be sustained if time is continuous. Consider, e g., a continuous 
Markov process (X,),,,. According to (3.5) every X, (t > to) is shieldable 
from {Xtl t < to}, as it should be. But if (3.6) would be correct, then the 
whole {X,1 t > t,,} too would be shieldable from {X,1 t Q to}, and this is 
obviously wrong. 

However, I will not speculate now about feasible adjustments of (3.6) 
to the continuous case. It is all too clear, that all the problems touched 
upon in the last paragraphs call for a separate, careful study. 

5. PROOFS 

The proofs given here are somewhat succinct. In particular, not all 
applications of Theorem 1 are explicitly mentioned. But I think the exist- 
ing lacunae may be filled without difficulty. Let me also note at the outset 
that in every proof the notation of the corresponding theorem is employed 
unless otherwise stated. 

As to Theorem 1: I did not find it stated in just this form, but it will 
only require reformulating well-known things. So I may confine myself to 
giving some hints starting from what may be found in usual textbooks such 
as Loeve (1960): Denoting the conditional probability of P relative to’i& 
simply by PM instead of P’M, a first thing to note is that for all K, L, ME I 
the following holds, as Loeve (1960, Section 25.3A), shows: 

(5-l) 

iff 

(5.2) 

PM@ II B) = P”(A)*PM(B), P-a.s. for all A QIK and B E21L 

PLUM(A) = PM(A), P-a.s. for all A ET&, 

Then, by stating premises and conclusions in the form of (5.2) and, if 
necessary, by applying the smoothing properties of conditional expectation 
(cf. Loeve (1960, Section 25.2)), Theorem l(a), (b), (c), and (d) prove to 
be trivial. 

Proof of Theorem I(e). Using the equivalence of (5.1) and (5.2), the 
premises say that for all A E‘&, PKULUM(A) = PM(A) P-a.s. and 
PK ULUM(A) = PL(A) P-a.s. Now, if there exists an2fLnM-measurable 
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version of PM@)), we have PM(A) = PLnM(A) P-a-s. and thus 
PK”L”M(A) =pLnM(A)p. a.s. as desired. We have therefore to show that 
there is an21LnM-measurable version of PM(A): 

Let D = {PM(A) #PL@)). Obviously, we have D E21LUIM and P(D) = 0. 
Let QLnM be the set of the restrictions of all o E s2 to L n M, 
N = (L u M)\(L n M), and for each o E QLnM D, the section of D at o; 
clearly, D, E&,, for each w E SZLnM. Moreover, (assuming PLnM to be 
regular - this is an additional premise) we have 0 = P(D) = 
J [PLnM(Du)](u) dP(o) (cf. Loeve (1960, Section 8.2 and 8.3)); hence 
[PLnM(DU)](u) = 0 for P-almost all u EQLnM. 

Now, strict indeterminateness of P comes in. It implies that for each 
nonnull E E21N, PLnM (E) > 0 P-a-s. As indicated immediately after 
Definition 1, we must slightly strengthen strict indeterminateness so as to 
have a null set F E21LnM such that for all nonnull E E’&, PLnM(E) > 0 
outside F. (There would have been no point in introducing this more 
complicated definition in the non-technical parts of the paper.) P being 
strictly.indeterministic in this strengthened sense, we may infer that 
P(D,) = 0 for P-almost all w E fiL n M. 

Take now any such D,, and let for each x E [0, l],E, E%L\M be the 
section of (PL(A) <x> at w and C, EaM\ L the section of (PM(A) > x> at 
w. Thus, for each x E [0, I], B, n C, c D, and P(B, n C,.) = 0. Hence, by 
strict indeterminateness again, either P(B,) = 0 or P(C,) = 0 for each 
x E [0, 11. This implies that the section of PM(A) at o is P-a.s. constant and 
might therefore be chosen completely constant. From this it follows at last 
that there is an’$ILnM-measurable version of PM(A). Cl (I.e., end of proof.) 

So we may turn to Theorem 2; in its proof we shall denote &gr M6 by 
Mrforallrc A. 

Proof of Theorem 2(u). The premise says that for all r E@(A) and 
A E-Q., PK”y4) = PL(A)P -a.s. But it is clear from the construction of 
infinite product u-algebras that this holds then even for all A E%&ra. 0 

Proof of Theorem 2(b). The premise says that for all I E@(A) and 
A E’21K, PLu Mr(A) = P”r(A) P-a.s. Now we may conceive of 
(P Mr(A))rE~(~) as a martingale indexed by the directed index set@(A). 
Theorems for martingales with a directed index set (cf. Neveu (1972, pp. 
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95-100)) then tell us that this martingale converges to P%$) in mean. 
But by assumption, the P LUMr(A) form the same martingale. Therefore it 
also converges to P L uMA(A) in mean. Hence P L”“A(A) = P”A(A)P-a.s. Cl 

Theorem 2(c) may be proved like 2(b) by using the corresponding 
theorems for reversed martingales (cf. Neveu (1972, pp. 115-l 19)). Finally, 
Theorem 2(d) may be easily obtained from Theorem l(c), l(e), and 2(c). 

Moving to the causal theorems, we see first that Theorem 3(a) is com- 
pletely trivial for I, and I, as defined in Definitions 3 and 4. Theorem 3(b) 
for I, follows immediately from Theorem I(c). The only non-trivial part of 
Theorem 3(c) for I, is the case where all J6 assemble at one single time 
index; but in this case 3(c) for 1, is a straight application of 2(d). And 
Theorem 3(d) for both, 1, and I,., is an equally direct consequence of 2(d). 

Proof of Theorem 3(b) for 1,. Let I, t’ E T such that t < t’. Then the 
premise says that J2 t’ 1 KG t/L for every relevant L. (It is not necessary 
always to write out the somewhat tedious condition for these L.) From this 
we want to conclude that J; t’ 1 K; ,/Af for every M relevant to the con- 
clusion of 3(b). But since for every such M there is an L relevant to the 
premise such that L E ME L u J2 t 1 u KGt, we get this immediately by 
applying Theorem 1 (c). Cl 

Proof of Theorem 3(c) for 1,. By definition, we have as premise that 
for all t*, t** E T with t* < t**, all 6 E A, and all relevant L 

(5 *3) (Jd>t** lK<t*/L. 

Choose now t’, t” E’T and MC_ I arbitrarily such that t’ < t” and 
IGtA(J>p u K<,t) E MC_ IGt”\(Jatft u KGt#). Then we have to show 
that J2 t” 1 KG ,3/M: Abbreviating (J& by J6, t for all t > t”, we have 

According to Theorem 2(a) it suffices therefore to prove that for all finite 
sequences Js,, t,, . . * 3 J 6n.t” 

and this may be done in the following way: 
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Let us take any such sequence, where we may assume without loss of 
generality that tr < . . . < c,, and let us for the moment write J, instead of 
the tedious J6,,t, (r = 1, . . . , n). By (5.3) we have Jr 1 KG tl/M, of course. 
Planning a proof by induction, we now suppose that 

An appropriate specialization of (5.3) (namely t* = t’ and t** = tm+l) 
gives us 

J m+l lK<t~/Mu r!l Jr. 

Both together imply 
m+l 
U Jr 1 Kqtl/M 
I-=1 

by Theorem l(d). This completes the proof. Cl 

Theorem 4(a) is completely trivial. 

Proof of Theorem 4(b). Since time is discrete, we may assume that there 
is a smallest t E T such that Jet # 8. (Otherwise K = 8, and nothing has to 
be proved.) So let t, , i,, . . . be just those t E T for which J=, # 0, where 
t, < t,, for m < n. Because of our assumptions about J and K our premise 
may be written in the form: 

n-1 

J=t, lKlV< t, \(J u 0 u mvl J=t, 

for all n. By successively applying Theorem l(d), we get from this 

;I Jztm 1 K/fGt, \(J u K) 
m=l 

for all n, and from this J 1 K/I< t, \(J u K). (If J extends over infinitely 
many time indices, we have to use, Theorem 2(a) for the last step.) And 
using Theorem l(c) this implies that J 1, K. 0 

Proof of Theorem 5. (a) * (b) is obvious on account of Theorem l(c); 
(b) * (c) is assured by Theorem 4(a). The final part, (c) * (a), is a bit 
harder: Let us assume that T is order isomorphic to the set 2 of all integers, 
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i.e., that T = {t, In E Z), where t,,, < tn iff m < n. (If T is finite or order 
isomorphic to the set of either all positive or all negative integers, the same 
proof applies, as will be evident.) The premise is that for all S E A, Js I, I\J, . 
Hence with Theorem 3(b) for all 7,6 E A with 7 # 6, J, I, J6 , and from 
this with Theorem 3(c) I\ Js I, J6. According to Definition 4 this means 
thatforall6EAandnEZ 

(5 -4) tJd=t, 1 VJ& t,/(Jd< t, 
and 

(5 3 (r\Js)=t,l(JG)rCt,l(Z\JG)<t,. 
Take now any 6 E A and define K, = (Ja)< t, and L, = (Z\Jh)< t,. Then 
(5 A) and (5.5) say that for all I EZ: 

(5 -6) 

and 

K,\K,-, 1 WG-, 

(5.7) L,.\L,-, 1 K,IL,-,. 

Our next step is to prove by induction that for all m, n EZ with m > n 

(5 -8) K,\K, lL,IK,. 

Form = n + 1 (5.8) says the same as (5.6). So assume that (5.8) holds for 
some m >n. From this and (5.6) for r = m + 1 we get with Theorem l(c) 
and (d) that 

(5.9) Kn+,K ~4nIKn. 

(5.7) for r = m + 1 implies that L,+,\L, 1 K,+,\K,IK, u L, and hence, 
with (5.9) and Theorem l(b) and (d), that K,+,\K, 1 L,,, IK,, i.e., that 
(5.8) is true form + 1 too. Thus we have (5.8) for all m, n EZ with m >n. 
From this we easily obtain with Theorem l(c) that for all m, n, r E Z with 
n <r Cm, K,\K, lL,/K,. Hence, with Theorem 2(c), K,\K, IL, for 
all m, r E Z, and, with 2(a), K, 1 L, for all m E Z. Thus finally, K,,, 1 L, 
for all m, n E Z, and with 2(a) first J6 1 L, for all n E Z and then 
J6 IN,. q 

Universitcit Miinchen 
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NOTE 

* I am indebted to the referee for his most valuable report and to the editor for taking 
more trouble than usual, I fear. 
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