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Uncertainty and Artificial Intelligence. They show that while much has been
accomplished, much remains to be done to fully integrate Uncertainty
Technology with Al

It has been said that the research in Artificial Intelligence revolves around
five basic questions asked relative to some particular domain: (1) what
knowledge is required, (2) how can this knowledge be acquired, (3) how can
it be represented in a system, (4) how should the knowledge be manipulated
in order to provide intelligent behavior, and (5) how can the behavior be
explained. The early volumes in this series concentrated on manipulation of
the uncertainties associated with other knowledge in a system and often
implied, at least in a general way, associated data structure.

In this volume we can observe all five of the fundamental questions of Al
being addressed. Some of the papers address all five questions. Other papers
address only one or several of the questions, with intelligent manipulation still
being the most popular.

From the perspective of the relationship of uncertainty to the basie questions
of Artificial Intelligence, this volume divides rather naturally into four sections
which highlight both the strengths and weaknesses of the current state of the
relationship between Uncertainty Technology and Artificial Intelligence.

The first section contains papers describing paradigms that seem to be on the
same level as the Expert System Paradigm. It is in this sense that these
papers address, at least implicitly, all five basic questions. In most cases the
papers themselves do not take such a bold stance, but it is difficult to not
understand them in this sense. All these papers seem to use the notion of
causality as an organizing principle in much the same way that Expert
Systems use heuristic knowledge as an organizing principle.

The second, and by far the largest section addresses specific means of

representing and intelligently manipulating uncertainty information. How
these representations and manipulations are to be integrated into an
intelligent system is left largely to the creativity of the reader. This section
naturally divides into two parts: one on manipulating uncertainties, and a
second which evaluates or compares one or more representation/manipulations
technologies. These papers range from ones which are specifically presented
as possible solutions to well known AI problems (e.g. the problem of
monotonicity) through improved computational techniques to philosophical
discussions of the possible meanings of uncertainty.

The third, and regrettably the smallest of the sections (containing only two
papers!) addresses the basic questions of knowledge acqusition and
explanation. These questions must be addressed if intelligent systems
incorporating uncertainty are ever to be widely accepted. These questions
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seem to provide almost virgin territory for research. It may be significant
that both of the papers in this section come from the group which did some
of the earliest research in Expert Systems, the group which did the original
MYCIN work.

The final section reports on applications of uncertainty technology.

We hope that readers of this volume will be encouraged to work on explicit
connections between Uncertainty Technology and ongoing work in mainstream
AI. There has been hopeful evidence that some Al researchers are looking to
the uncertainty community for help in certain problem areas such as planning.
In turn, uncertainty researchers must look for inspiration from the Al
community if they are to avoid working on problems whose solution will have
little or no value in the larger context of Artificial Intelligence.

Tod S. Levitt
Mt. View CA

Ross D. Shachter
Stanford, CA

Laveen N. Kanal John . Lemmer
College Park, MD Rome, NY
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A GENERAL NON-PROBABILISTIC THEORY OF INDUCTIVE
REASONING

Wolfgang SPOHN

Institut fiir Philosophie
Untversitdl Regensburg
8400 Regensburg, West Germany

1. INTRODUCTION

Probability theory, epistemically interpreted, provides an excellent, if not the best available
account of inductive reasoning. This is so because there are general-and definite rules for the
change of subjective probabilities through information or experience; induction and belief
change are one and same topic, after all. The most basic of these rules is simply to conditiona-
lize with respect to the information received; and there are similar and more general rules.]
Hence, a fundamental reason for the epistemological success of probability theory is that there
at all exists a well-behaved concept of conditional probability. |

Still, people have, and have reasons for, various concerns over probability theory. One of
these 1s my starting point; Intuitively, we have the notion of plain belief; we believe proposi-
tions2 to be true (or to be false or neither). Probability theory, however, offers no formal
counterpart to this notion. Believing A 1s not the same as having probability 1 for A, because
probability 1 is incorrigible3; but plain belief is clearly corrigible. And believing A is not the
same as giving A a probability larger than some 1 - €, because believing A and believing B 1s
usually taken to be equivalent to believing A & B4 Thus, it seems that the formal represen-
tation of plain belief has to take a non-probabilistic route.

Indeed, representing plain belief seems easy enough: simply represent an epistemic state
by the set of all propositions believed true in it or, since I make the common assumption that
plain belief is deductively closed, by the conjunction of all propositions believed true in it.
But this does not yet provide a theory of induction, 1.e. an answer to the question how epi-
stemic states so represented are changed through information or experience. There 1s a con-
vincing partial answer: if the new information 1s compatible with the old epistemic state, then
the new epistemic state is simply represented by the conjunction of the new information and
the old beliefs. This answer 1s partial because it does not cover the quite common case where
the new information is incompatible with the old beliefs. It is, however, important to com-
plete the answer and to cover this case, too; otherwise, we would not represent plain belief as
corrigible. The crucial problem is-that there 1s no good completion. When epistemic states are
represented simply by the conjunction of all propositions believed true in it, the answer can-
not be completed; and though there 1s a lot of fruitful work, no other representation of episte-
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mic states has been proposed, as far as I know, which provides a complete solution to this
probiem.

In this paper, I want to suggest such a solution. In [4], I have more fully argued that this
is the only solution, if certain plausible desiderata are to be satisfied. Here, in section 2, 1 will
be content with formally defining and intuitively explaining my proposal. I will compare my
proposal with probability theory in section 3. It will turn out that the theory 1 am proposing 1s
structurally homomorphic to probability theory in important respects and that it 18 thus equally
easily implementable, but moreover computationally simpler. Section 4 contains a very brief
comparison with various kinds of logics, in particular conditional logic, with Shackle's func-
tions of potential surprise and related theories, and with the Dempster - Shafer theory of be-
licf functions.

2. THE THEORY

The algebraic framework has to be settled first. Let W be some non-empty set of possibi-
lities (possible worlds, possible courses of events, or what have you). Propositions, denoted
by A,B,C,..., are represented simply by subsets of W. Subfields of the field of all proposi-
tions will be denoted by A,B,C,...° Usually, W will have a structure: there will be a family
(W));e of variables or factors - where 7 is some index set and each W; (i€ /) is some non-
empty set - such that W = Il;e; W;.6 That is, each we W is a function defined on / with
w;e W; for all ie] and thus represents one way how all the variables may get realized. In ma-
ny physical applications, ¢.g., each W; will be identical to the state space and [ to the real time
axis. For each J € I, Ay is to be the field {A | for all ww'e W, if w; = w'; for all ieJ, then
we A iff w'e A} of all propositions referring at most to the variables in .J.

The central concept is now easily defined (and afterwards explained):

Definition 1: Let 4 be a field of propositions. Then X is an A-measurable natural conditio-
nal function (A-NCF) iff x is a function from W into the set N of natural numbers such that
K(w) = 0 for some we W and x(w) = x(w’) for all atoms’ A of 4 and all w,w'e A.8 More-
over, we define for each non-empty Ae 4: k(A) = min{x(w) | we A}.%

The measurability condition is quite obvious; it requires that an 4-NCF does not discrimi-
nate possibilities which are not discriminated by the propositions in 4.

The crucial question, however, is how to interpret an NCF as an epistermic state. The most
accurate answer 1s 10 say that an NCF « represents a grading of disbelief: a possibility w with
x(w) = 0 is not disbelieved at all in x; if k(w) = 1, w is disbelieved to degree 1 in K; etc.
This means that all possibilities w with x(w) > () are believed 1n ¥ not to obtain; 1.e., the true
possibility is believed in ¥ to be 1n 1(0) = {w] x(w) =0} ; and hence the stipulation of De-
finition I that x-1(0) # &. A proposition A is believed true in x iff the true possibility is be-
lieved in K to be in A, i.e. iff x°1(0) € A, i.e. iff k(-A) > 0.10 Thus, the set of propositions
believed true in x is deductively closed; and it is consistent, because x~1(0) # . Note that
k(A) = 0 only means that A is not believed false in K; this is compatible with K(-A) = 0, i.e.
with A also not being believed true in x.
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One may also talk of integer-valued degrees of firmness of belief, i.e. one may define that
A 1s believed with firmness m in x iff either k(A) =0 and x(-A) = m or x(A) =-m > 0.
Thus, A 1s believed to be true or false iff, respectively, A is believed with positive or negative
firmness. This firmness-of-belief function is intuitively easier to grasp because it does not re-
quire thinking in negative terms; but it is formally less well-behaved, and the theorems would
not look so simple. Therefore 1 prefer to stick to NCFs,

These explanations well agree with two simple consequences of Definition 1:

Theorem I: Let X be an A4-NCF, Then we have:
(1) for each contingent!! Ae 4, k(A4) =0 or k(-A) = 0 or both,
(2) for all non-empty A,Be A4, k(AUB) = min{x(A),x(B)} .

(1) 1s the fundamental NCF-law for negation, saying that not both A and -A can be disbe-
lheved. (2) is the fundamental NCF-law for disjunction: It is obvious that AwB should be be-
hieved at least as firmly as A and B. But AUB cannot be believed more firmly than both A and
B; otherwise, 1t might happen that both A and B are disbelieved, though AURB is not. In order
to discover a fundamental NCF-law for conjunction, we have to look at conditional NCF-va-
lues.

This brings up the crucial question how epistemic states represented by NCFs are changed
through information or experience. Two plausible assumptions provide a complete answer.
The first assumption is that, if the information immediately concerns only the proposition A

and nothing else, then neither the grading of disbelief within A, nor that within -A are chan-
ged by that information. We define:

Definition 2: Let ¥ be an 4-NCF and A a non-empty proposition in /4. Then, the A-part
of K 15 to be that function x(.1A) defined on A for which x(wld) = x(w) - k(A) for all

we A, It Be 4 and ANB # 0, we also define k(BIA) = min{x(wlA) | we ANB)) = x(ANB)
- K(A).

The first assumption thus says that an information immediately concerning only A leaves
the A-part as well as the -A-part of x unchanged, i.c. its effect can only be that these two
parts are shifted in relation to one another. Definition 2, by the way, already contains the
fundamental NCF-law for conjunction:

Theorem I (cont.):
(3) for all compatible A,Be 4, K(ANB) = x(A) + x(BlA).

The second assumption is that information about A may come in various degrees of firm-
ness; seeing A usually informs about A much more firmly than being told about A by some
more or less reliable person. Thus, the firmness with which an information is embedded in an
epistemnic state cannot be fixed once and for all, but has to be conceived as a parameter of the
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information process itself. In view of the first assumption, this parameter completely deter-

mines belief change:

Definition 3: Let x be an A-NCF, A a contingent proposition in 4, and me N. Then the
A,m-conditionalization X4, of K is defined as that 2-NCF for which x4 ,,(w) = x(wlA), if
we A, and KXq (W) = m + K(wl-A), if we -A.

In the A,m-conditionalization of x, only the A-part and the -A-part of x are shifted in rela-
tion to one another, and A is believed with firmness m, as specified by the conditionalization
parameter.

This account of belief change may be generalized. The information may immediately con-
cern not only a single proposition, but a whole field B of propositions. The parameter charac-
terizing the information process then consists not in a single number, but in a whole B-NCF
A. And belief change is then defined in the following way:

Definition 4: Let x be an A4-NCF, ‘B a subfield of .4, and A a BNCF. Then the A-condi-
tionalization k3, of x is defined as that 4-NCF for which for all atoms B of B and all we B
Ka(w) = A(B) + x(wlB).

In the A-conditionalization of x, k) (B) = A(B) for all Be ‘B, and only the B-parts of x, for
all atoms B of B, are shifted in relation to each other. Definition 4 corresponds to Jeffrey's
much discussed generalized probabilistic conditionalization; cf, [1], ch. 11.

It 1s to be expected that a workable concept of independence goes hand in hand with this

account of conditionalization, This is indeed the case. The following definition is straightfor-
ward:

Definition 5: Let € be an A-NCF and B and C two subfields of 4. Then B and Care in-
dependent with respect to x iff for all non-empty Be B and Ce C x(BNC) = (B) + x(C).
Fuarthermore, B and ( are independent conditional on the proposition D w.r.t. x iff for all
non-empty Be B and Ce C x(BNCID) = x(BID) + x(CID). If D is a further subfield of 4,
then B and Care independent conditional on Dw.r.t. ¥ iff B and ( are independent condi-

tional on all atoms D of D w.r.t. K. Finally, these definitions are specialized to two contin-
gent propositions B and C by taking B as {J,B,-B,W} and Cas {J,C,-C,W).

How do all the concepts so defined behave? This may not be immediately perspicuous, but
the next section will provide a surprisingly powerful answer,

3. A COMPARISON WITH PROBABILITY THEORY

The basic definitions and formulae in the previous section look very similar to those in
probability theory; we only seem to have replaced the sum, multiplication, and division of
probabilities by, respectively, the minimum, addition, and subtraction of NCF-values. In or-
der to see that this is no accident, we have to move for a moment into the context of non-stan-
dard arithmetics and non-standard probability theory:

153

Theorem 2: Let 4 be a finite field of propositions. Then, for any non-standard 4-NCF12
¥ and for any infinitesimal z there is a non-standard probability measure P such that for all
A.Be A4 k(BIA) = niff P(BIA) 15 of the same order as 27 (ie. P(BIA)/z" is finite, but not in-
finitesimal). In particular we have: whenever P(C) = P(A) + P(B), then x(C) = min{K(A),
K(B)} ; whenever P(C) = P(A) P(B), then x(C) = x(4) + ¥(B); k(BIA) = x(ANB) - k(A),
as desired; and whatever is (conditionally) independent wr.t. P, is so also wr.t. K.

- Sketch of proof: Define P in the following way: for each atom A of 4 with ¥(A) = n > 0
let P(A) = 27, and distribute the rest equally among the other atoms of 4 so that the pro-
babilities of all atoms of 4 sum up to 1. The claims of Theorem 2 are then easily checked;
they in particular turn on the fact that, if x is of the same order as z” and y of the same order
as z”, then xy is of the same order as z*t" and x + y is of the same order as zmin(m.n),

It is thus not surprising that the laws of the concepts introduced in the previous section are
simply translations of the laws of the corresponding probabilistic concepts. For instance, the
theorem of total probability translates into this (where Aj,....A partition W):

(4) K(B) = minrﬂs [K(Ar) + K(BIA;-)] .
Bayes' theorem yields this (with Aq,...,A; as before):
(O} K(A4B) = k(Ayg) + K(BIA,) - miny«; [x(A;) + x(BIAS)] .

Also, the probabilistic laws of independence and conditional independence hold for NCFs -
C.E.:

(6) IfA and C are independent w.r.t. k, then B and C are independent w.r.t. ¥ iff AURB
and C are independent w.r.t. K - provided that A and B are disjoint.

Without the proviso, (6) would not necessarily hold. And so on. Let me only mention the
most mmportant law concerning conditional independence of subfields. It says in terms of the
factorization of W at the beginning of section 2, where J, K, and L are pairwise disjoint
subsets of the index set [

(7) If Ay is independent of Ag conditional on .4;, and independent of 4;. or independent
of 4; conditional on Ag w.r.t x, then 4y is independent of g, w.r.t. k.13

These observations have a considerable import. For instance, the theory of probabilistic
causation has turned out to be to a large extent a theory of conditional stochastic indepen-
dence.14 NCFs would thus allow to extend these ideas to a theory of deterministic causa-
tion.15 In the present context, however, the crucial observation is that conditional indepen-
dence 1s an important means for making probability measures computationally manageable.
This carries over to the implementation of NCFs. In particular, the results and techniques re-
lated to such things as influence diagrams, Markov fields and trees, causal graphs, etc.16 may
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be ranslated into NCF-theory. This is exemplified by [12] and [13]: In [12], Hunter achieves
a way of parallel updating of NCFs by adapting methods of parallel probabilistic updating
developed by Pearl in [11]; and in [13], Hunter shows that the results reported in [14] and
[15] carry over to NCFys, i.e. that for NCFs, too, the conditional independencies implied by a
given causal input list according to Definition 5, those derivable from that list by the axioms
of semi-graphoids, and those implied by that list via Verma's criterion of d-separation are
always the same.l7 Finally, Definition 4 suggests that the concept of a mixture may be
meaningfully carried over from probability theory to the theory of NCTFs and may there have
fruitful applications.

Of course, there also are differences. On the one hand, NCFs are computationally simpler
than probabilities; they have the advantage of formally representing the intuitively so impor-
tant concept of plain belief; and it may be easier to elicit and implement the subjective judg-
ments of experts in the cearser terms of NCFs. On the other hand, I presently do not see how
NCFs would allow for a meaningful analogue to the theory of integration and expectation and
thus for a useful decision theory (for which something like expected vtility 1s essential). And
most importantly, relative frequencies are so intimately tied to probabilities that I do not see
how to reasonably deal with statistical data within an NCF-framework.

A final remark: I said in the introduction that plain belief in A cannot be probability 1 for A
because of the incorrigibility of probability 1. This seems t0 be disproved by extensions of
standard probability theory which allow for conditionalization by null propositions and thus
render probability 1 corrigible. However, Popper measures, the best known extension of this
kind, cannot account for iterated epistemic changes, as has already been observed in [16].
According to my diagnosis in [4], sect. 7, which 1s based on the investigation |17] into the
formal structure of Popper measures, this failure can only be overcome by replacing Popper
measures by, so to speak, probabilified NCFs. Thus, it secems that the probabilist cannot
avold considering NCFs as long as he takes plain beliet seriously. |

4. OTHER COMPARISONS

Though many have proposed non-probabilistic representations of epistemic states, I have,
to my surprise, nowhere found the very structure described 1n section 2; aims and intuitions
have presumably been different. But often, the importance of stating general and precise rules
of belief change, which are tantamount to a theory of induction, has apparently not been clear-
ly recognized; this will in any case be my standard criticism of the further comparisons pur-
sued here.

4.1. Various Logics

The following strategy for modelling belief change has attracted many people: Suppose a
language with a conditional — to be given; represent an epistemic state by a (consistent and
deductively closed) set S of sentences of that language; and define the change S4 of S by in-
formation A as S4 = {B1A — B € 5}.13 Of course, this strategy crucially depends on the
properties of —. E.g., — must not be interpreted as material implication. Strict implication
will do neither; all the conditionals in the vanious many-valued logics that have been proposed
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are unsuited, t0019; and even the conditionals of the variants of relevance logic seem to be un-
helpful.20 However, these remarks are not meant as a criticism, because all the conditionals
mentioned were not designed for the present purpose.

Indeed, no monotonic conditional will be adequate for this strategy. The best conditional
for this purpose is that of conditional logic (which has always been conceived to be non-
monotonic in the sense that A — C does not entail A & B — ). Most semantics of con-
ditional logic and corresponding models of belief change basically use orderings: orderings of
propositions or of certain sets of propositions, well-orderings of possible worlds, and similar
or equivalent things.?! But they don't use numbers and their arithmetical properties. As I
argue in |4}, this is why these semantics and the corresponding models of belief change get
problems with iterated belief change and cannot provide an equally adequate concept of
(conditional) independence. Moreover, epistemic changes as defined in Definition 4 seem
completely inaccessible to the whole strategy. Again, this is not a criticism of conditional
logic, but only of the envisaged strategy of modelling belief change.*%

4.2. Plausibility Measures

One of the first to propose formal alternatives to the beaten tracks of probability theory
was Shackle with his functions of potential surprise most extensively presented in [25]. Such
a function is a function y from the set of propositions into the closed interval [0,1] such that

8 y() =1,
(9) either y(A) = 0 or y(-A) = O or both,
(10) y(AUB) = min{y(A),y(B)}.

(9) and (10) are identical with (1) and (2), and (8) arbitrarily fixes the maximal degree of
potential surprise to be 1. Thus, Shackle's and my functions only differ in their ranges. This
is not a mere technicality, however. There is reason to accept the generalization of (2) or (10)
to countable unions (without weakening min to inf), and this forces the range of these
functions to be well-ordered. Moreover, I have avoided a maximal degree of disbelief, be-
cause this maximal degree could not be changed according to all rules of belief change and
would thus be incorrigible. Therefore, I do not want to allow the possibility accepted by
Shackle that non-empty propositions have maximal potential surprise.

The main point, however, is that Shackle didn't get a grip on conditionalization. This 1s
clear from his proposal

(11) y(AnB) = max{y(A),y(BIA)},

where he left y(BIA) undefined.?3

Similar remarks apply to the plausibility indexing which Rescher has proposed since
1964, e.g. in [26], and to Cohen's theory of inductive probability in [27] (which 1s not ma-
thematical probability, but quite similar to NCFs). The works of these authors show the wide
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und fruitful applicability of non-probabilistic belief representation in many arcas inside and
outside philosophy.

4.3. Dempster - Shafer

In [28], p.224, Shafer shows that Shackle's theory is a special case of his: the function y
18 a degree of doubt derived from a consonant belief function in the sense of Shafer iff it
satisfies (8) - (10). Since Dempster's rule of combination governs belief change for Shafer's
belief functions in general, 1t may be expected to complete Shackle's theory. It indeed does,
but in a different way than I did in section 2:

According to {28], pp.43 + 66f., there are also conditional degrees of doubt given by the
formula

(12) y(BIA) = [y(ANB) - y(A)] / [1 - y(A)] .

Apart from the denominator, this looks like my Definition 2. However, y(.|A) here represents
the degree of doubt which results from combining the old belief function with the belief func-
tion Bel defined by: Bel(B) = 1, if ACB, and Bel(B) = 0 otherwise; and this function
makes A incorrigibly certain, according to Shafer's theory. Thus, one should rather know
how Shafer processes evidence which makes A less than incorrigibly certain, since this is
what the above Definition 3 accomplishes. Shafer does this by combining the old belief
function with some belief function Belg defined by: Bel(B) = 1, if B=W, Bel (B) = s, if
ACB#W, and Bely(B) = O otherwise (0<s<1). (In a sense, s corresponds to the m of Defini-
tion 3.) But now the problem arises that, if the old belief function is consonant, its combina-
tion with Bely will in general not be consonant; this is easily checked. Thus, my conditionali-
zations of NCFs move within the set of all NCFs, whereas the set of all consonant belief
functions in Shafer's sense is not closed with respect to Dempster’s rule of combination. This
entails that the NCF-theory presented here cannot be covered by the Dempster - Shafer theo-
ry of belief functions.

However, 1n [3] Shenoy gains a more positive perspective. He proposes a different rule of
combination for NCFs which gives an account of belicf change equivalent to the conditiona-
lizations given by Definitions 3 and 4. Moreover, he defines marginalization for NCFs and
shows that marginalization and combination thus explained obey the axioms presented in

[29]. This means that the general scheme of local computation developed in [29] can also be
applied to NCFs.24

NOTES

1 Most notably Jeffrey's generalized conditionalization and the principle of maximizing relative entropy;
cf. [1}, ch. 11, and, e.g., {2].

2 "Proposition” 1s the philosophically most common general term for the objects of belief and the one 1
shall use. The precise nature of these objects is philosophically very problematic, but not my present concern.

3 Whatever has probability 1 keeps it, according to all rules of belief change within standard probability
theory.
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41 am here alluding 1o the so-called lottery paradox, which has gained considerable importance in the wri-
tings of H.E. Kyburg, jr., I. Levi, and others. Cf., e.g., the various hints in [31.

5 In the present context W may well be assumed to be finite; so, we need not decide which kinds of fields
to consider. In the infimite case, complete fields seem 10 me 1o be the most appropriate (cf, [4]), but alternative
algebraic frameworks might be adapted, too.

6 T denotes the Cartesian product.
T 4 is an atom of A iff no proper non-empty subset of A 1a a member of 4.

3 "Conditional”, because these functions can be conditionalized, as we shall see; "natural”, because they
take natural numbers as values; in [5], Shenoy has proposed the more intunitive label "disbelief function”
(which, however, cannot be wranslated into German). In (4], I have more generally defined "ordinal conditional
functions” which take ordinal numbers as values. This generality will not be needed here (all the more as it has
some awkward consequences which relate to the fact that addition of ordinal numbers is not commutative).

9 The latter function for propositions will indeed be the more important one.
10 .4 denotes the complement or the negation of A.

11 4 s contingent 1ff A and -4 both are not empty.

12 This is to mean that k takes non-standard natural numbers as valucs.

13 Fora proof see {4], sect. 6. These are the properties of conditional independence which Pearl calls Con-
traction and Intersection, ¢.g. in [6], p.84.

14 As is manifested by many papers in {7], by [8], and at rnany other places.

13 Indeed, 1 origmally invented them for this purpose in [9].

16 See, e.g., [10], [11], and [6], ch. 3-5. Of course, references could be easily extended.

17 Perhaps NCFs allow an easier mvestigation of conditional independence than probability measures, be-
causc they are mathematically simpler, because NCFs carrespond only to strictly positive probabilities, and
because the disturbing property of what Pearl calls weak transitivity (cf. [6], pp.128ff.), which is a special pro-
babilistic law for binary variables, does not hold for NCFs,

18 This is the so-called Ramsey test, most thoroughly propounded by Girdenfors, e.g. in [18], who has
summarized his work in [19]. See also’[201.

19 As may be easily confirmed with the help of the list in [21].
20 [n order to substantiate this remark, we would have to go more deeply into [22].

21 Cf., e.g., the pioneering work [23], the overview in [24], and [19], ch. 7 together with ch. 4.

22 Another serious problem for this strategy is presented by the trivialization result in [18]. I have here
avoided this problem by excluding conditional propositions as objects of belief.

23 In (251, p.203, Shackie mentions that he has considered the law (3) for NCFs instead of (11). But he
says almost nothing about why he finally stuck to (11).

24 1 am very grateful to Dan Hunter for having introduced my thoughts and myself to the Al community.
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EPISTEMOLOGICAL RELEVANCE AND STATISTICAL KNOWLEDGE"

Henry E. KYBURG, Jr.

Computer Science and Philosophy
University of Rochester
Rochester, NY, USA

1. BACKGROUND

For many years, at least since McCarthy and Hayes [10], writers have lamented, and
attempted to compensate for, the alleged fact that we often do not have adequate statistical
knowledge for governing the uncertainty of belief, for making uncertain inferences, and the
like. Tt is hardly ever spelled out what "adequate statistical knowledge" would be, if we
had it, and how adequate statistical knowledge could be used to control and regulate
epistemic uncertainty.

One response to the lack of adequate statistics has been to search for non-statistical
measures of uncertainty. The minimal variant has been to propose "subjective probability”
as a concept to which we can turn when we lack statistics.

This proposal comes in widely differing flavors, corresponding to the dreadful ambiguity
of "subjective”. Sometimes this means merely "indexed by a subject”. In this sense there
1s no conflict with statistical representations: the "subjectivity” involved just represents the
fact that statistical knowledge is related to (had by) a knower. (This appears to be the sense
of "subjective” employed by Cheeseman [3].)

At the other extreme, "subjective” may mean arbitrary, whimsical, subject to no objective
control or constraint. Those who think we must turn 1n thts direction are influenced by the
feeling that in many cases there may be nothing better to turn to. The philosopher F. P.
Ramsey, who did much to make the subjective approach to uncertainty respectable,
apparently felt this way; he wrote: "...a man's expectation of drawing a white or a black
ball from an urn ... may within the limits of consistency be any he hkes..." [12].

Other proposals concern non-probabilistic measures of uncertainty: the certainty factors of
Buchan [2], the belief functions of Shafer [14], the fuzzy membership relation of Zadeh
[16]. | |

Our purpose here 1s not to evaluate these alternative treatments of uncertainty, but rather to
explore the question of how far you can go on the basis of statistical knowledge that you do
have, and what considerations must be taken account of in this attempt. Relatively few
people have explored the question of how far you can go using statistical knowledge. One
writer who has taken this question seriously is Bacchus [1].

*Research underlying the results reported here has been partially supported by the Signals Warfare Center of
the United States Army.
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