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Game Situations
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Abstract: The paper attempts to rationalize cooperation in the one-shot prisoners’ di-
lemma (PD). It starts by introducing (and preliminarily investigating) a new kind of
equilibrium (differing from Aumann’s correlated equilibria) according to which the
players’ actions may be correlated (sect. 2). In PD the Pareto-optimal among these
equilibria is joint cooperation. Since these equilibria seem to contradict causal precon-
ceptions, the paper continues with a standard analysis of the causal structure of decisi-
on situations (sect. 3). The analysis then raises to a reflexive point of view according
to which the agent integrates his own present and future decision situations into the
causal picture of his situation (sect. 4). This reflexive structure is first applied to the
toxin puzzle and then to Newcomb’s problem, showing a way to rationalize drinking
the toxin and taking only one box without assuming causal mystery (sect. 5). The latter
result is finally extended to a rationalization of cooperation in PD (sect. 6).
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1. Introduction’

The driving force behind this paper is, once more, the great riddle posed by the
prisoners‘ dilemma (PD). This has elicited a vast literature and a large number of
astonishingly varied attempts to undermine defection as the only rational solution and
to establish cooperation as a rational possibility at least in the iterated case. But the
hard case, it seems to me, still stands unshaken. Under appropriate conditions
backward induction is valid'; hence, given full rationality (instead of some form of
*bounded rationality‘) and sufficient common knowledge, continued defection is the
only solution in the finitely iterated PD. The same conclusion is reached via the
iterated elimination of weakly dominated strategies.* I find this conclusion highly
disconcerting; it amounts to an outright refutation of the underlying theory of
rationality. Moreover, I find that all the sophisticated observations made so far about

*This paper was conceived and partially written during my stay at the Center for Interdisciplinary
Research of the University of Bielefeld in the summer term 2000, where [ participated in the research
group ,Making Choices. An Interdisciplinary Approach to Modelling Decision Behaviour“. I am
grateful to the Center and to the organizers of the group, Reinhard Selten, Werner Giith, Hartmut
Kliemt, and Joachim Frohn, for the invitation, and I am indebted to all the participants of the research
group for the strong stimulation and encouragement I have experienced. Moreover, I am grateful to
Max Albert, Robert Aumann, Christopher von Biilow, Werner Giith, Rainer Hegselmann, Arthur
Merin, Matthias Risse, Jacob Rosenthal, Thomas Schmidt, and Yanis Varoufakis for comments on
preliminary drafts, to Philip Dawid for pointing out to,me a'serious flaw in section 3.2 (which is now
repaired in a satisfying way, I hope), to Adelheid Baker for meticulously checking my English, and to
Hartmut Kliemt for being indulgent with this overly long paper. In particular the rich comments by
Max Albert, Matthias Risse, and Yanis Varoufakis have shown me the insufficiency of my paper. The
arrangement of the subject matter may be infelicitous in various respects, the comparative remarks in
section 6.3 and throughout the text are too scarce in almost all respects. But clearly, the topic is
inexhaustible, and the question is: how to live up to an inexhaustible topic? Only by coming to a
preliminary end, none the less.

'Cf. Aumann (1995).

Yterated elimination of weakly dominated strategies is a reasonable procedure when applied to the
iterated PD, all the more so as the criticism this may meet compared to the elimination of strongly
dominated strategies do not obtain in this application. Cf., e.g., Myerson (1991, sects. 2.5 and 3.1).
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PD have failed to tone down this harsh conclusion.* Cooperation must remain at least a

rational possibility in the finitely iterated PD, and under ideal conditions even more so

"than under less ideal ones.! Thus, something needs to be changed in standard

rationality theory, i.e., decision and game theory. After a long time of thinking

otherwise®, I have come to the conclusion that it is the single-shot case that needs to be
reconsidered, which this paper tries to do.

This is how my plot is supposed to go.© Section 2 introduces and discusses a new
notion of equilibrium for games in normal form which I call dependency equilibrium.
In particular, mutual cooperation will be a dependency equilibrium in the single-shot
PD. These equilibria may be an object of interest in their own right, but they seem to
assume an unintelligible causal loop, namely, that the players’ actions causally
influence each other (this may be why they have not been considered in the literature).
Thus, my main effort in this paper will be to make causal sense of them; then and only
then they deserve interest.

To this end, section 3 introduces some basics of the theory of causation that has
become standard and has been implicitly or explicitly assumed in decision and non-
cooperative game theory since their inception. The crucial observation will be this
(section 3.2): Whenever we reduce a richer causal model to a coarser one by deleting
some variables, each (apparent) causal dependence in the coarser model expresses
either a possibly indirect causal dependence or the relation of having a common cause
in the richer model (or a still more complicated relation which will turn out, though, to
be irrelevant for our concerns). Hence, the apparent mutual causal dependence of the
actions in a dependency equilibrium may only signify that they have a common cause.

This will lead us to the question of how an action is caused. In rational decision
theory the answer can only be that it is caused by the decision situation (= the agent’s
subjective state). Hence, if the causes of actions are to enter the causal picture of the

*As I have more fully explained in Spohn (2000, sect. 5).

*Aumann’s proof of backward induction assumes common knowledge of resilient rationality (CKR),
i.e., the mutual belief that the players will behave rationally even after arbitrary deviations from the
rational equilibrium path. Aumann (1995, p. 18) grants that "CKR is an ideal condition that is rarely
met in practice" (“ideal” in the sense of “idealized”), -and since this assumption looks implausible
even as a rationally entertainable belief (cf. Rabinowicz 1998), one may hope to find a loophole here.
I am skeptical, however. In actual life, I have certainly to reckon with the irrationality of my fellow
humans, but this should not be the only possibility how my repeated cooperation may turn out as
rational. It should all the more prove as rational, given the most unshakeable mutual beliefs in
common rationality.

’Since Spohn (1978, sect. 5.1) I have been a fervent defender of the two-box solution of Newcomb’s
problem, but I have changed my mind (see sect. 5.2 below). In Spohn (2000, sect. 6) I have offered a
line of thought for breaking the force of backward induction in the iterated case, but 1 am
withdrawing it since I do not see anymore how it can be reasonably worked out.

¢In case this summary is too abstract, it may at least serve as a reference.
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agent, we have to develop standard decision theory to become what I call reflexive
decision theory (because the possible decision situations themselves are now reflected
in decision models). This is the task addressed in section 4, where the crucial
observation will be this: A decision situation (= the agent’s subjective state) may have
other effects besides the action. If we now reduce the reflexive model to a standard
non-reflexive model, the action will appear to cause these other effects in the reduced
model, though reflexion shows that they actually have only a common cause.

In section S, this observation is applied to the toxin puzzle and to Newcomb’s
problem. This is suggested by the fact that these cases allow (though they do not force)
us to conceive the agent’s decision situation as having such side effects, i.e., as
somehow causing the prediction of the relevant predictor. Thereby we can rationalize
drinking the toxin or taking only one box within causal decision theory in a perfectly
straightforward way. Having got thus far, [ transfer this kind of analysis to the two-
person case of PD where we may similarly conceive the decision situations of the
players as being causally entangled. Thus, the dependency equilibria in PD with their
apparent causal loop in the actions acquire causal sense and may thus be rationalized.
In this way, cooperation emerges at least as a rational possibility, and backward
induction cannot even start. This is the task dealt with in section 6.1.

I will be mainly occupied with developing this line of thought in detail. However,
a fictitious dialogue in section 6.2 and a number of comparative remarks in section 6.3
will, I hope, further clarify the nature of my approach.

The paper borrows from many sources. But I should emphasize that, with regard to
section 4, my main debt is to Eells (1982) who was the first to take the reflexive
perspective in decision theory. In section 5, it will become obvious how strongly I am
influenced by the theory of resolute choice developed by McClennen (1990). I hope to
advance it by showing how resolute choice may be subsumed under the reflexive
extension of standard rationality theory.

2. Dependency Equilibria
2.1 Nash, correlated and dependency equilibria

Let me start with an outline of the new equilibrium concept. For comparison, it is
useful to rehearse Nash equilibria and Aumann’s correlated equilibria. We shall deal
only with normal form games. Hence, the refinements of Nash equilibria relating to the
extensive form are out of our focus. It suffices to consider two-person games. While I
hardly develop the theory here, it may be routinely extended, it seems, to xn-person
games.
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Thus, let 4 = {ay,...,a,} be the set of pure strategies of Ann (row chooser) and B =
{by,...,b,} the set of pure strategies of Bob (column chooser). Let z and v be the utility
functions of Ann and Bob, respectively, from 4 x B into R; we abbreviate u; =
u(a;, by) and vy = Wa;, by).

Moreover, let S be the set of mixed strategies of Ann, i.e., the set of probability
distributions over 4. Hence, s={(si,....5,)=(s) e S iff 5,20 for i = 1,....m and
is,- =1. Likewise, let T be the set of mixed strategies of Bob. Mixed strategies have
i=l .
an ambiguous interpretation. Usually, the probabilities are thought to be intentional
mixtures by each player. But it is equally appropriate to interpret them as representing
the beliefs of others about the player. Indeed, in relation to dependency equilibria, this
will be the only meaningful interpretation.

We shall envisage the possibility that the actions in a game may be governed by

any probability distribution whatsoever. Let P be the set of distributions over 4 x B.
Thus, p=(py) € P iff px20 forall i = 1,..,mand k = 1,....n and ¥ p, = 1. Each
: Tk

p € P has a marginal s over 4 and a marginal ¢ over B. But since p may contain
arbitrary dependencies between 4 and B, it-is usually not the product of the marginals s
and ¢. This is all the terminology we shall need.

As is well known, (s, ¢) is defined as a Nash equilibrium iff for all j = 1,....m
Y sty = Dtuy (or, equivalently, for all s* € S ) sipuy > 3 styuy ) and if the
ik k _ ik ik
corresponding condition holds for the other player. Hence, in a Nash equilibrium
neither Ann nor Bob can raise her or his expected utility by changing from her or his
equilibrium strategy to some other pure or mixed strategy, given the other player sticks
to his or her equilibrium strategy. There is no need here to rehearse the standard
rationale for Nash equilibria, and there is no time to discuss its strengths and
weaknesses.’ ' '

Obviously Ann and Bob’s choices from 4 and B are independent in a Nash
equilibrium. This is an assumption 1 would like to abandon (for reasons that will
become clear later on). Aumann (1974) has introduced an equilibrium concept that
allows for dependence between the players. Here is his definition from Aumann
(1987) (which is a little simpler and less general than his original definition which

- would require us to introduce additional structure):

Let p € P have marginals s € S and ¢ € T. Then p is a correlated equilibrium iff

for all j = 1,...,m D paitz 2 Z'k“jk (or, equivalently, for all s* € S . pyuy >

ik k ik
Zs‘;tku,»k) and if the corresponding condition holds for the other player. The most
ik

"This has been done many times, also by myself in Spohn (1982).
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straightforward way to understand this, which is offered by Aumann himself (1987,
pp. 3f), is the following: Somehow, Ann and Bob agree on a joint distribution over the
strategy combinations or outcomes of their game. One combination is chosen at
random according to this distribution, and each player is told only their part of the
combination. If no player can raise their expected utility by breaking their part of the
agreed joint distribution and choosing some other pure or mixed strategy instead, then
this joint distribution is a correlated equilibrium. Thus, correlated equilibria are self-
enforcing, they do not need external help from sanctions or agreements.

Correlated equilibria appear to fall outside non-cooperative game theory
However, one can model the selection of a joint distribution for the original game as
an additional move in a game enlarged by preplay communication, and it then turns out
that all and only the Nash equilibria of the enlarged gameicorrespdnd to correlated
equilibria in the original game.® This reflects the fact that correlated equilibria, despite
their allowance of dependence, are still non-cooperative in essence. The players’
standard of comparison is still whether they might be better off.by inde‘pendently'doing
something else, where the expectations about the other player are glven by the
marginal over their strategies.

This standard of comparison is changed in the dependency equilibria mtroduced
below. It is not the expected utility given the marginal for the other player, but rather
the conditional expected utility given the conditional probabilities determined by the
joint distribution.

Here is a first attempt to formalize this idea: Let p € P have marginals s € S and
t € T. Let py; be the probability of b, given a,, i.e., py; = pu/ s, and py = pi/ t; the
probability for a; given by. Now, p is a dependency equilibrium iff for all i with s; > 0
andallj =1, ..m Z Pujithe = z P4 and if the corresponding condition holds for

k k

the other player. Thus, in a dependency equilibrium each player maximizes their
conditional expected utility with whatever they do with positive probability according
to the joint equilibrium distribution.
This provokes at least three immediate remarks. -

The first point to be taken up is a technical flaw in the above definition. If some a; has
probability 0 in the joint distribution p, i.e., if s; = 0, then no conditional probability
given a; is defined. Yet, the fact that 5; = 0 should not render the other figures
meaningless. There are three ways to solve this problem. One may, first, engage in
non-standard probability theory where one can conditionalize with respect to events
having infinitesimal probability. This looks' circumstantial ‘at the least. One may,
second, resort to Popper measures that take conditional probabilities as basic and have

fFor details, cf. Myerson (1991, pp. 255-257).
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thus no problem with conditionalizing on null events. This would be the way I prefer.’
However, the game theoretic community is rather accustomed to the third way,
engaging in epsilontics, i.e., in approaching probability 0 by ever smaller positive
probabilities. This strategy is easily applied to our present problem.

Let us call a distribution p € P strictly positive iff py > 0 for all i and k. Now we
correct my flawed definition by an approximating sequence of strictly positive
distributions; this is my official definition: p € P is a dependency equilibrium iff there
is a sequence (p"),cy of strictly positive distributions such that' lim p" = p and for all i

rom

withs;> 0 andj = 1,....,m lim ), pj, uy > lim)’ pj; u, and for all k with #> 0 and

. k k .

all/=1,...,n lim ¥ pj, vx 2 lim}’ pj, v,. All the conditional probabilities appearing
i i

in this definition are well-defined. Though the definition looks more complicated now,
the intuitive characterization given above still fits perfecily.

After this correction, the second point is that dependency equilibria seem to be
well in line with decision theory. Most textbooks state that the general decision rule is
to maximize conditional expected utility. Savage (1954) still assumed a clear
separation of states of the world having probabilities and consequences carrying
utilities; consequences are then determined by acts and states. The pertinent decision
rule is simply maximizing expected utility. However, this separation is often not
feasible, and the more general picture put forward by Fishburn (1964) is that
everything -is probabilistically assessed (except perhaps the acts themselves), though
only conditionally on the possible acts. In this general picture, maximizing conditional
expected utility is the appropriate decision rule. It may seem surprising that this
situation in decision theory has so far not been reflected in equilibrium theory.

But of course, and that is my third point, this is not astonishing at all. The idea
behind the general picture is (we shall have to look at all this much more carefully in
the next section) that the conditional probabilitics somehow hide causal dependencies
which are more generally modeled in a probabilistic and not in a deterministic way (as
Savage 1954 did).” In the light of this idea, dependency equilibria are a mystery. If
Bob chooses after observing what Ann has chosen, then, clearly, his choice causally
depends on hers; that is the simplest case of a one-way causal dependence. But how
can Ann’s choice at the same time depend on Bob’s? That would amount to a causal

My real preferences, though, are for probabilified ranking functions, a sophistification of Popper
measures; cf. Spohn (1988, sect. 7).

“States of the world may then be distinguished by their probabilistic and causal independence from
the acts; but they do no longer play the special role of contributing to the deterministic causation of
the consequences.
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loop, and dependency equilibria seem to assume just this impossibility. So, whoever

might have thought of them, he should have dismissed them right away as nonsense."
However, the case is not as hopeless as it seems, and the main effort of this paper

will be to make causal sense of dependency equilibria. I am not sure whether I shall

fully succeed, but I hope to prepare the ground, at teast. For the time being, let us look

a little more closely at the properties of dependency equilibria.

2.2 Some examples

The computation of dependency equilibria seems to be a messy business. Obviously it
requires to solve quadratic equations in two-person games, and the more persons, the
higher the order of the polynomials we become entangled with. All linear ease is lost.
Therefore, 1 cannot offer a well-developed theory of dependency equilibria. Thus, it
seems advisable to look at some much discussed simple games in order to develop a
feeling for the new equilibria, namely, Matching Pennies, BoS (Bach or Stravinsky),
Hawk and Dove, and PD. This discussion becomes more vivid when we consider the
other kinds of equilibria for corhparisc’)n. Afterwards, we can infer some simple
theorems from these examples.

Matching Pennies: This is the paradigm for a pure conflict, i.e., a zero- or constant-
sum game. It is characterized by the following utility matrix:

@

It is clear that it has exactly one Nash equilibrium and exactly one correlated
equilibrium. It is characterized by the following distribution:

"Which I did when I first conceived of them in 1982,
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By contrast, it is easily verified that the dependency equilibria of this game may be
biased toward the diagonal or toward the counter-diagonal:

‘where 0 <x <4,

a | Yo-x  x

It is instructive to represent the players’ expected utilities in the various equilibria by a
joint diagram:

Ev

0,5

¢ : Nash, corr.
— :depend.

Bach or Stravinsky: This game is a paradigmatic coordination game superimposed by a
conflict. Its utility matrix is:

a

a

As is well known, this game has three Nash equilibria, two in pure strategies (the
players can meet on the diagonal) and a mixed one:

p|b1bz bebz rlh b
1 0 aqlo0 0 ql% %
00 wmlo 1 alkh %

a

@

The correlated equilibria of this game form just the convex closure of the Nash
equilibria:
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p | by by
a x < 2x, 2y
al< %t y

The dependency equilibria are again of three kinds:

plb b plb b
a 1 0 a 0 0
ay 0 0 a | 0 1

provided the zero rows and columns are approximated in an appropriate way, and

e : Nash
-- 1 COrT.

o, —: depend.

2/3 1 2 Eu

Quite similar observations can be made about pure coordination games without

conflict like meeting at one of two places.

Hawk and Dove: This game represents another very frequent type of social situation. It
will show even more incongruity among the equilibrium concepts. So far, one may
have thought that the correlated equilibria are the convex closure of the Nash
equilibria. But this is not true. I shall consider the utility matrix preferred by Aumann
because it illustrates that there are correlated equilibria which Pareto-dominate
mixtures of Nash equilibria; hence, both players may improve by turning to correlated
equilibria. However, they may improve even more by looking at dependency

equilibria. Here is the utility matrix:
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v

aq

a

There are again three Nash equilibria with the following expected utilities:

plb b plbh b plh b
a0 1 |0 0 al% %
a0 0 a1l 0 al% ¥

The correlated equilibria reach out further on the diagonal. They are given by

1.1.1 &v
7 .
1413 .
X T T >
plbh &

a|x y ,wherex+ytztw=1Iand 0<%, 2w<y,z

a |l z w

and they yield the following expected utilities:
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Again, we have three kinds of dependency equilibria:

plb b plb b

q|l0 1 4]0 0
0 0 ail O

a

provided the zero rows and columns are approximated in an appropriate way, and

, wherey =

aly 1-x-2y

£(2-15x+J4+156x+ 9x%).

This makes evident that we slip into quadratic equations. The corresponding expected
utilities reach out still further on the diagonal:

114 Ev
7 L]
6 /
— 7T
2

Clearly, 6 > 21/4 > 14/3, the maximal values reached on the diagonals of the three
diagrams.

Prisoners’ Dilemma: This is my final and perhaps most important example. Its utility
matrix is:

a .

a

There is only one Nash equilibrium:
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plh b
a0 0
a2 0 1

Indeed, defection (= a; or, respectively, b,) strictly dominates cooperation (= a; or by);
hence, there can be no other Nash equilibrium. For the same reason, this is also the
only correlated equilibrium.

The dependency equilibria, by contrast, have a much richer structure. They come in
two kinds:

p by )
a -% x(1+x) é x(1-x) , where 0 <x <1, and
a|ix-x) 10-0@-%

p by b
aq | 2d-x)1+x) }d-x)(1-3%) , where -1
a |1 A+x)1+3x) 2 (1-x)(1+x)

I

X

A
W

The expected utilities in all these equilibria look very simple:

o e : Nash, corr.

~ depend.

It is of particular interest here that joint cooperation is among the dependency
equilibria; indeed it weakly Pareto-dominates all other such equilibria. Of course, it is
a well-worn and very simple observation that such dependence between the players
may make them cooperate. But now we have found an equilibrium concept that
underpins this observation. Moreover, we have seen that correlated equilibria do not
provide the right kind of dependence for this purpose, they succumb to defection.
Evidently, all this is strong motivation to try to make good sense of dependency
equilibria. This is the task I shall pursue in the rest of the paper.
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2.3 Some observations

For the moment, I shall not further discuss or assess these examples beyond the
illustrations given. However, the examples suggest some simple generalizations, all of
which can be extended, it seems, to the n-person case.

Observation 1: Each Nash equilibrium of a two-person game is a correlated
equilibrium.
Proof: Just look at the definitions.

Observation 2: The set of correlated equilibria of a two-person game is convex.

Again, the proof is evident from. the- definition. Of course,” we find both
observations already in Aumann (1974, sect. 4)._They entail that the convex closure of
the Nash equilibria of a game is a subset of the set of correlated equilibria. ‘

The next observations are closer to our concerns:

Observation 3: Each Nash equilibrium of a two-person game is a dependency
equilibrium. ’
Proof. Again, just look at the definitions.

Observation 4: Generally, dependency equilibria are not included among the correlated
equilibria, and vice versa.
Proof: Just look at the examples above.

In BoS we saw that there are also very bad dependency equilibria, and in PD we
luckily found one dependency equilibrium weakly Pareto-dominating all the others.
This suggests the following question: Which dependency equilibria are Pareto-optimal
within the set of dependency equilibria? Clearly, these are the most interesting or
attractive ones. Here is a partial answer:

Observation 5: Let g = s ® t be a Nash equitibrium and suppose that the pure strategy
combination (a;b;) is at least as good as this equilibrium, i.e., that u, > > s; 44
oGl

and v 2 Ys V. Then this combination, or p with p; = 1, is a dependency equili-
I

brium.

Proof: Define p” = £ .p+1.4, and assume that p" is strictly positive. Obviously lim

ro

p’ = p. Moreover, lim 3 pj-u;=u,, and for all j # i and all » Y p; -uy =3 4 -uy.
r—wo i ! ]
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But now we have u; > Z[:s iy 2 Zt,uﬂ: the first inequality holds by assumption and
Js I

the second because (s, £) is a Nash equilibrium. The same considerations apply to the
other player..Hence, given our assumption, p with p; =1 is a dependency equilibrium.

If p” should not be strictly positive, modify g such that those a; with j # i and s(a)
= 0 receive some positive probability by ¢ and such that g(&;a) = 1, and
correspondingly for those b, with / # & and #(5;) = 0. Then the modified p” is strictly
positive, and the same proof goes through.

In PD, Hawk and Dove, and BoS this observation fully satisfies the quest for the
Pareto-optima among the dependency equilibria. But it does not generally do so. In .
Matching Pennies no pure strategy combination is Pareto-better than the Nash
equilibrium; yet mixtures of them in which equivalent strategy combinations have
equal weight are dependency equilibria.

This accentuates how preliminary my formal investigation of dependency
equilibria is. However, it is not yet clear whether dependency equilibria are at all worth
the efforts. If the answer we shall find is convincing, this may be sufficient motivation
to deepen the formal investigation.

3. Causal Graphs, Bayesian Nets, Reductions, and Truncations

I have mentioned that dependency equilibria seem to be a causal mystery. For the sake
of clarity, it is helpful to look at some basics of the probabilistic theory of causation
which has become sort of a standard (if there is any in this contended area). This piece
of causal theory will clearly confirm some fundamental assumptions of decision and
game theory that are causally motivated, but probabilistically expressed. Thus, it will
at first deepen the mystery about dependency equilibria. At the same time, however,
we shall be able to see more clearly how to gain a different view.

3.1 Causal graphs and Bayesian nets

The standard theory I am alluding to is the theory of causal graphs and Bayesian nets."
It deals only with causal dependence and independence between variables. In order to

"*This theory has been discussed more or less explicitly in the statistical path analysis literature since
Wright (1934) and in the linear modeling literature since Haavelmo (1943) and the papers collected in
Simon (1957). The structure and the crucial role of the general properties of conditional probabilistic
independence seem to have been recognized not before Spohn (1976) and Dawid (1979). Pearl and
his collaborators rediscovered these properties and added the graph theoretic methods as summarized
in Pearl (1988). Since then an impressive theoretical edifice has emerged, best exemplified by Spirtes
et al. (1993), Shafer (1996) and Pearl (2000).
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do so, it must consider specific variables and not generic ones. Generic variables, say,

of a sociological kind, would be annual income or social status. But it is usually very
hard to say anything substantial about causal relations between generic variables.
Specific variables of a sociological kind would be, e.g., my income in 2001 or my
social status in 2002, insofar they are understood as ranges of possible values the
variables may take, and not as facts consisting in the values the variables actually take.
Hence, the realization of specific variables is always Jocated at a specific time and
usually also at a specific place or in a specific object or person.

The basic ingredient of the causal standard theory is thus a non-empty set U of
variables which we assume to be finite; U is also called a frame. We may represent
each variable by the (finite) set of the possible values it may take (this presupposes that
the variables are mutually disjoint sets). For ¥ < U, each member of the Cartesian

product XV of all the variables or sets in V is a possible course of events within V, a
possible way how all the variables in ¥ may realize.

Due to their specificity, the variables in U have a temporal order <. A < B says that
A precedes B.® 1 assume < to be a linear (and not a weak) order, thus avoiding
questions about simultaneous causation. Moreover, due to their specificity the
variables in U also display causal structure; their causal order is a partial order
agreeing with the temporal order. That is, if A = B expresses that 4 influences B or B
causally depends on A4, then = is a transitive and asymmetric relation in U, and 4 = B
entails 4 < B.

Since U is finite, we can break up each causal dependence into a finite chain of
direct causal dependencies. This simplifies our description. If 4 — B expresses that A
directly influences B, or B directly causally depends on A, then — is an acyclic relation
in U agreeing with the temporal order, and = is the transitive closure of —. Of course,
directness and indirectness is relative here to the frame U, a direct causal dependence
in U may well become indirect or, as we shall see, even spurious in refinements of U.

Graphs are relations visualized. Thus, we may say as well that (U, —) is a directed
acyclic graph agreeing with the temporal order" or, as we define it, a causal graph. Let
me introduce some terminology we shall need:

Pa(B) = the set of parents of B= {4 | 4 - B},
Pr(B) = the set of variables preceding B= {4 | 4 < B} , and
Nd(B) = the set of non-descendants of B= {4 | A # B and not B = 4}.

“This is not the A and B from sect. 2. From now on A, B, C, etc. are used to denote any single
variables whatsoever. Of course, A and B from sect. 2 are also variables.

"“The temporal order is often left implicit or neglected, presumably because the statistical literature is
more interested in generic variables. However, as long as one is not engaged in the project of a causal
theory of time, one must presuppose temporal order when talking about causation.
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A small example may be instructive. It is Pearl’s favorite. The indices indicate the
temporal order:

(slippery pavement: yes/no)

I

(wet pavement: yes/no)

A7 R
(rain: yes/no) (sprinkler: off/on)
\ 7

(season: spr./sum./aut./win.)

This is a very simple causal graph showing how the season influences the wetness of
the pavement via two different channels, and the wetness in turn directly influences the
slipperiness.

So far, we have just structure. However, the causal structure must somehow relate
to how the variables realize, and since we shall consider realization probabilities here,
this means that the causal structure must somehow relate to these probabilities. I
should emphasize that these probabilities may be objective ones (whatever this means
precisely), in which case they relate to the objective causal situation, or they may be
some person’s subjective probabilities, in which case they reflect the causal beliefs of
that person.'” The latter perspective will be the relevant one for us.

But what exactly is the relation between causation and probability? Spirtes et al.
(1993) state two crucial conditions, the causal Markov condition and the minimality
condition. In order to explain them, we need the all-important notion of conditional
independence:

Let p be a probability measure for U (i.e., p(v) 2 0 for each v € XU and

Z p(v) =1). Then, for any mutually disjoint sets of variables X, ¥, Z < U Xis said to
vexU
be conditionally independent of Y given Z w.r.t. p — in symbols: X 1 Y/ Z — iff for all
xe XX, ye XY and ze XZ p(x|yz) = p(x{z), i.e, if, given any complete
information about Z, no information about ¥ teaches us anything about X.

Conditional probabilistic dependence is closely tied up with causal dependence
according to a causal graph (U, —). The causal Markov condition says that, for all

This assertion sounds nice, and I do not think it is really wrong, but it deserves a most careful
explanation. In fact, it is the most profound philosophical problem with causation what to say here

precisely.
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A € U, given the parents of 4, A4 is irrelevant to all other variables preceding it, or
indeed to all other non-descendants ~ formally: that forall 4 € U

A L Pr{A)\ Pa(4) / Pa(4) (where\ denotes set theoretic subtraction),

or equivalently (though the proof is not entirely trivial — ¢f. Verma, Pearl 1990 and
theorem 9 in Pearl 1988, p. 119):

A L Nd(4)\ Pa(4) | Pa(A).

And the minimality condition says that, for all 4 € U, the set Pa(A) of parents of 4
is indeed the smallest set of variables preceding 4 or of non-descendants of 4,
respectively, for which these conditional independencies hold w.r.t. p.

We say that p agrees with the causal graph (U, —) or that (U, —, p) is a Bayesian
net iff p satisfies the causal Markov and the minimality condition w.r.t. (U, -). In
fact, in such a Bayesian net (U, —, p) we can infer from p alone the set of parents of
each variable and thus the whole causal graph agreeing with p.”

Let me illustrate these definitions with the above example: p satisfies the causal
Markov condition w.r.t. the graph concerning (obviously Californian) pavements iff

As LAy Ay, Ae L A1/ {4y, A3}, As L {A), Ay, A3} [ Ay,
or, equivalently, iff for all a; € 4; (i = 1,...,5)

playanas,asas) = pla) - plas | ay) - plas | ay) - plas | az,a3) - plas | ag).

The latter equation, by the way, makes clear how information about causal
structure allows for a vast reduction of probabilistic information, an observation
computer scientists are eagerly exploiting for implementing probability measures.® p
satisfies the minimality condition iff moreover none of the following holds:

A2J_A], A3 _J_Al /Az, A4_LA2/A3, A4J.A3 /Az, A5J_A4.
The conditional independencies and dependencies characteristic of the causal

Markov and the minimality condition are the basic ones entailed by the causal
structure. But there is a very useful and graphic way to discover all conditional

' This definition is due tp Pearl (1988, p.119).

""This was precisely my explication of direct causal dependence in probabilistic terms in Spohn
(1976/78, sect. 3.3) and (1980).

For a good introduction into the computational aspects of Bayesian nets, see Jensen (1996).
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dependencies and independencies implied by the basic ones. This is delivered by the
so-called criterion of d-separation.” Let us say that a path in the graph (U, =)® is
blocked ot d-separated by a set Z c U of nodes (or variables) iff

(a) the path contains some chain 4 — B — C or fork 4 <« B — C such that the middle
node Bisin Z, or

(b) the path contains some collider 4 — B « C such that neither B nor any descendant
of Bisin Z.

We continue to define for any mutually disjoint X, ¥, Z U that Z d-separates X
and Y iff Z blocks every path from a node in X to a node in Y.

The notion may look complicated at first, but one becomes quickly acquainted
with it. In our sample graph, for instance, 4; and 4; are d-separated only by {4}, but
neither by & nor by any set containing 44 or 4s.

The importance of d-separation is revealed by the following rheorem: For all X, ¥,
Zc U, if X and Y are d-separated by Z then X 1 Y/ Z according to all measures p
agreeing with (U, —); and conversely, if X and Y are not d-separated by Z, then not X
L Y/ Z according to almost all p agreeing with (U, —).*" This shows that d-separation
is indeed a reliable guide for discovering conditional independencies entailed by the
causal structure, and in fact all of them for almost all measures. We shall make use of
this fact later on.

Spirtes et al. (1993) define a causal graph (U, —) and a probability measure p for
U to be faithful to one another iff indeed for all mutually disjoint X, ¥, Zc UX1Y/Z
w.r.t. p if and only if X and Y are d-separated by Z.” Thus, the second part of the
theorem just stated says that almost all p agreeing with (U, —) are faithful to (U, —).
But sometimes it is useful to exclude the exceptional cases by outright assuming
faithfulness.

3.2 Reductions of causal graphs and Bayesian nets

An important issue in the theory of causation is how causal graphs and Bayesian nets
change with changing frames. If the frame is extended there is no determinate answer

“Invented by Thomas Verma; see Verma, Pearl (1990), and also Pearl (1988, p. 117).

A path is just any connection between two nodes disregarding the directions of the arrows, i.e., any
sequence (Al,...,An) of nodes such that for each i = 1,...,n-1 either Ai — Ai+] or Ai « Aitl.

#Cf. Pearl (2000, p. 18). The proof is involved; see Spirtes et al. (1993, theorems 3.2 and 3.3).
“Almost all” is here understood relative to the uniform distribution over the compact space of all
probability measures for U.

ZThis is not quite faithful to Spirtes et al. (1993). Their definition of faithfulness on p.56 is a different
one, and in their theorem 3.3 they prove it to be equivalent with the definition given here.
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because probabilities can be arbitrarily extended to the richer frame. But if we start
with a Bayesian net on a large frame and reduce it, then the Bayesian net on the
reduced frame must have a definite shape. The question is which one.

Let us simplify matters by focussing on reductions by asingle variable only.
Larger reductions can then be generated by iterating such minimal reductions. So, how
does a causal graph change when a node, C, is deleted from the frame U? The answer,
which is not entirely obvious, is prepared by the following definition:

The causal graph (U*, —*) is called the reduction of the causal graph (U, —) by the
node C iff:

1. U*=U\{C},

2. for all 4, B € U* A -* Biff either 4 — B, or not 4 — B and one of the following
three conditions holds:
(i) 4 - C — B (let us call this the IC-case), or
(ii) A <Band 4 « C — B (let us call this the CC-case), or
(ii1) 4 < B and there is a variable D < B such that 4 - D «— C — B (let us call this
the N-case).

Thus, the reduced graph contains all the arrows of the unreduced graph not
involving the deleted variable C. And it contains an arrow 4 —* B where the
unreduced graph contains none exactly when B is rendered indirectly causally
dependent on A by the deleted C (the IC-case), or when the deleted C is a common
cause of 4 and B (the CC-case), or when A4 is the neighbor of such a CC-case
involving B (the N-case).

The N-case may look a bit complicated. Let us make it more graphic (as another
mnemonic aid for its label):

o/ © 3
/ \ reduces to ﬂ
@ © ® —

The N-case is always accompanied by a CC-case. Note the importance of the
temporal relation D < B. If B < D, we only have a CC-case involving B and D, where

©

®
SN AP /e
G) © ®
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The justification for this definition is provided by the following theorem: Let (U,
—», p) be a Bayesian net, let (U*, —*) be the reduction of (U, —) by C, and let p* be
the marginalization or restriction of p to U* = U\ {C}. Then the causal graph agreeing
with p* is a (proper or improper) subgraph of (U*, —*), and if p is faithful to (U, —),
then it is (U*, —>*) itself which agrees with p*.

Proof: Suppose that B directly causally depends on 4 w.r.t. p* ie., thatnot 4 L B/
X, where X = Pr(B) \ {4, C}. We need not specify here relative to which probability
measure the conditional (in)dependence statements are to be taken, because p and p*
completely agree on them within U*. According to the above theorem about d-
separation not 4 1 B/ X entails that A and B are not d-separated by X in (U, —). This
may be so because 4 — B or because the IC-, the CC-, or the N-case obtains, but in no
other case; in all other cases each path between 4 and B must be blocked by X, as is
easily checked. Hence, not 4 L B/ X entails 4 —* B. This proves the first part of the
theorem.

Now, suppose that B does not directly causally depend on 4 w.r.t. p*, i.e., that 4 1|
B/ X, and suppose that p is faithful to (U, —). Hence, 4 and B must be d-separated by
X in (U, —). Therefore, as we have just seen, neither 4 — B nor one of the IC-, CC-,
 or N-case can obtain. That is, 4 — B does not hold. This proves the second assertion
of the theorem.

In the case that p is not faithful to (U, —), the theorem cannot be strengthened,
because in that case there may hold a lot of conditional independencies not foreseen by
the criterion of d-separation. Hence, d-separation may tell us 4 —>* B, even though 4
L B/ X, which excludes a direct causal dependence of B on 4 w.r.t. p*.

However, if p is faithful to (U, —), this situation cannot arise, and we have a
complete answer about the behavior of reductions.” Indeed, it is more illuminating to
reverse the perspective again and to read the theorem not as one about reductions, but
as one about extensions. Our picture of the world is always limited, we always move
within a small frame U*. So, whenever we construct a causal graph (U*, —*) agreeing
to our probabilities p* we should consider this graph as the reduction of a yet
unknown, more embracive graph (U, —). And the theorem then tells us (i) that where
there is no direct causal dependence according to the small graph, there is none in the
extended graph, and (ii) that what appears to be a direct causal dependence in the
small graph may be either confirmed as such in the extended graph, or it may turn out
to be spurious and to resolve into one of the IC-, CC-, or N-case. This observation will
acquire crucial importance in sections 4 and 5. To be precise, the observation is

BQne should note, though, that even if p is faithful to (U, —»), p* need not be faithful to (U*, —*).
Indeed, p* cannot be faithful if the N-case applies, since in that case we have A 1 B, though A and B
are not d-separated by & in (U*, —»*).
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guaranteed only if the extended probabilities p are faithful to the extended graph (U,
—). But since almost all probability measures agreeing with (U, —) are faithful to it,
we may reasonably hope to end up with such a p.

So much for the standard theory of probabilistic causation. Calling it standard is
perhaps justified in view of the impressive list of its predecessors and defenders. It is
also more or less explicit in a great deal of applied work and in particular in large parts
of decision and game theory. But it is still contested, most critically perhaps by
Cartwright (1989, 1999), who splits up the causal Markov condition into two parts, a
proper Markov condition relating only to the past of the parents of the relevant node,
and a screening-off condition (as in Reichenbach’s principle of the common cause)
relating to the other non-descendants. Cartwright accepts the proper Markov condition,
but vigorously rejects the screening-off condition. This is tantamount to the assertion
of interactive forks, as introduced and defended by Salmon (1980, 1984).

But even if the theory is not contested, the underlying conceptions may be quite
different. In Spohn (2001) I have elaborated, for instance, on the differences between
my picture and that of Spirtes et al. (1993). It is important to know of these
divergences; in philosophy no opinion is really standard in the end. In the following,
though, I shall neglect these debates and proceed with the theory to which I refer as the
standard one.

3.3 Actions, truncations, and basic decision models

So far, actions and agents have not entered the picture. A Bayesian net describes either
some small part of the world or some person’s partial view of the world. But this
person might be a detached observer having only beliefs and no interests whatsoever
about that part. This, however, is not the agent’s view as it is modeled in decision
theory. In order to accommodate it, we have to enrich our picture by adding two
ingredients.

The first ingredient consists in desires or interests that are represented by a utility
function. Each course of events is more or less valued, and accordingly a wutility

function u is a function from XU into R.

So far, we still might have a mere observer, though an interested one. But an agent
wants to take influence, to shape the world according to his interests. Hence, we must
assume that some variables are action variables that are under direct control of the
agent and take the value set by him. Thus, the second ingredient is a partitioning of the
frame U into a set H of action variables and a set W of occurrence variables, as | call
them for want of a better name.
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Are we done now? No. The next important step is to see that not any structure (U,
—, H, p, uy (where W = U\ H) will do as a decision model; we must impose some
restrictions.

A minor point to be observed here is that A does not contain all the variables in U
which represent actions of the agent. Rather, H contains only the action variables still
open from the agent’s point of view. That is, the decision model is to-capture the
agent’s decision situation at a given time t. Thus, A contains only the action variables
later than ¢, whereas the earlier variables representing acts of the agent are already
past, no Jonger the object of choice, and thus part of .

Given this understanding of H, the basic restriction is that the decision model must
not impute to the agent any cognitive or doxastic assessment of his own actions, i.e., of
the variables in H. The agent does not have beliefs or probabilities about H. In the first
place, he has an intention about H, formed rationally according to his beliefs and
desires or probabilities and utilities, -and then he may as well have a derivative belief
about H, namely, that he will conform to his intention about H. But this derivative
belief does not play any role whatsoever in forming the intention. I have stated this
“no probabilities for acts” principle in Spohn (1977, sect. 2) since it seemed to me to
be more or less explicit in all of the decision theoretic literature (cf., e.g., Fishburn
1964, pp. 36ff.) except Jeffrey’s evidential decision theory (1965); the principle was
also meant as a criticism of Jeffrey’s theory. The arguments I have adduced in its favor
have been critically examined by Rabinowicz (2002). My present attitude toward the
principle will become clear in the next section.

It finds preliminary support, though, in the fact that it entails another widely
observed principle, namely, that the action variables in H are exogenous in the graph
(U, -»), i.e., uncaused or parentless. Why does this “acts are exogenous” principle, as
L.call it here, follow? If the decision model is not to contain probabilities for actions, it
must not assume a probability measure p for the whole of U. Only probabilities for the
occurrence variables in /¥ can be retained, but they may, and should, be conditional on

the various possible courses of action h € XH; the actions may, of course, matter to

what occurs in #. Hence, we must replace the measure p for U by a family (py)pexy of
probability measures for . Relative to such a family, Bayesian net theory still makes
perfect sense; such a family may also satisfy the causal Markov and the minimality
condition and may agree with, and be faithful to, a given causal graph.* However, it
can do so only when action variables are parentless. For a variable to have parents in
agreement with the probabilities, conditional probabilities for it must be explained, but

%My definitions and theorems concerning conditional independence in Spohn (1978, sect. 3.2) dealt
with the general case relating to such a family of probability measures. The graph theoretic material
may be supplemented in a straightforward way.



218 W, Spohn
this is just what the above family of measures must not do concerning action variables.

Therefore, these variables cannot have parents.

Pearl (2000, ch. 3) thinks along very similar lines when he describes what he calls
the truncation of a Bayesian net: He starts from a Bayesian net (U, —, p). U contains a
subset H of action variables. p is a measure for the whole of U and thus represents
rather an external observer’s point of view. Therefore, the action variables in H have
so far no special role and may have any place in the causal graph (U, —). Now Pearl
imagines that the observer turns into an agent by becoming empowered to set the
values of the variables in H -according to his will so that the variables in H do not
evolve naturally, as it were, but are determined through the intervention of the agent.
Then Pearl asks which probabilities should guide this intervention. Not the whole of p.
Rather, the intervention cuts off all the causal dependencies the variables in H have
according to (U, —) and puts itself into place. Hence, the agent should rather consider
the truncated causal graph (U, —>*) which is defined by deleting all arrows leading to
action variables, i.e., 4 »>* Biff 4 - B and B ¢ H. Thereby the action variables turn
exogenous, in accordance with our principle above.

The next task is to find the probabilities that agree with the truncated graph. We

must not simply put py(w) = p(w|h) (h e XH, w € XW), this would reestablish the
deleted dependencies. Rather, we have to observe the factorization of the whole of p
provided by the causal graph (U, —) (which I have already exemplified above with the
Californian pavements):

If v e XU is a course of events in U » and if for each 4 € U a is the value A4 takes
according to v and pa(a) the values the variables in Pa(A4) take according to v, then

pv) =[] plal pa(ay).

AeU
Then we have to use the truncated factorization® that deletes all factors concerning

the variables in H from the full factorization:

If h € XH and w € XW and if for each 4 € W a is the value 4 takes according to
w and pa(a) the values the variables in Pa(4) take according to # and w, then

piw) =[] ptal pa(a)).

Al
For the family (py) thus defined, we say that (U, —*, (p,)) is the truncation of (U,
—, p) with respect to H, and we can easily prove that (p;) agrees with (U, »*) if p
agrees with (U, —); this is built in into the truncated factorization. Thus, as Pearl and [
agree, it is this family (p;) that yields the probabilities to be used by the agent. Hence,

»] use ,,v* since,,u” is already reserved for the utility function.
®Cf. Pearl (2000, p. 72).
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Pearl also subscribes to the two principles above.” The notion of truncation will
receive a crucial role in sections 4 and 5.

We may resume this discussion by defining a basic decision model. This is a

structure (U, —, H, (pp), ), where (U, —») is a causal graph, H is a set of exogenous

variables, (pp) is a family of probability measures for ¥ agreeing with (U, =), and v a

utility function from XU into R.
What is the associated decision rule? Maximize conditional expected utility, i.e.,

choose a course of action % € XH for which Z u(h,w)- p,(w) is maximized.
weXW

However, this decision rule is naive insofar as it neglects the fact that the agent need
not decide for a whole course of action; rather, he needs to choose only from the
(temporarily) first action variable and may wait to decide about the later ones. Thus the
naive decision rule has not taken into account strategic thinking. We shall have several
reasons for undoing this neglect below.

So far, I have not really argued for the two principles and thus for the given basic
form of decision models. I have only claimed that it is more or less what we find in
most of the decision theoretic literature. I find it very natural to read Savage (1954)
and Fishburn (1964) in this way, and I have referred to the more recent literature about
causal graphs such as Spirtes et al. (1993) and Pearl (2000). This is not an argument,
but it carries authority. We shall continue the topic in the next section.

Let me point out an important consequence, though. In a basic decision model all
non-descendants of an action variable are probabilistically independent of it. This is
entailed by the exogeneity of action variables, as is easily verified with the help of d-
separation. In other words: what is causally independent from actions is also
probabilistically independent from them.

This observation provides an immediate solution of Newcomb’s problem.?
According to Nozick (1969), the initial paper on the problem, Newcomb’s problem is
constituted by the fact that there may be events (such as the prediction of the
mysterious predictor) which are causally independent from my actions, but
nevertheless probabilistically relevant. According to the observation just made, this
alleged fact is spurious; there are no such events, and hence there is no Newcomb’s
problem, as I have explained in Spohn (1978, sect. 5.1). Of course, there is more to say
about Newcomb’s problem, and I shall say more below. But I believe that thereby the

¥In this paragraph I have slightly assimilated Pearl’s conception to mine, though in a responsible
way, | believe. In principle, the truncation procedure is already described in Spohn (1978, pp. 187ff)),
though without graph-theoretic means. 1t should also be noted that Spirtes et al. (1993, pp. 75ff)
make essential use of the transition from unmanipulated to manipulated graphs, as they call it. This
transition closely corresponds to Pearl’s truncation.

*For a presentation of Newcomb's problem, see sect. 5.
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stubborn intuition of two-boxers, which 1 have espoused for more than 20 years, is
well explained: if Newcomb’s problem is modeled by a basic decision model, two-
'boxing is the only rational action.

The observation also explains a constitutive feature of non-cooperative game
theory, namely, that the actions of the players are causally independent; they do not
communicate or interact in any way. And the players have to be aware of this causal
independence. Hence, if this observation is correct, the players’ actions are
probabilistically independent as well (also from their own point of view). This is what
has been assumed all along in non-cooperative game theory, and this is why we seem
to be forced to adopt something like Nash equilibria, which are the only equilibria
conforming to this probabilistic independence.

All this shows that basic decision models as defined above are deeply entrenched
in decision and game theoretic thinking. The last point, in particular, underscores the
suspicion, raised in section 2, that dependency equilibria do not make causal sense.
Thus, our search for causal sense can only take one direction: we have to scrutinize the
assumptions underlying basic decision models. This is our next task.

4. Reflexive Decision Theory

How can one doubt the “no probabilities for acts” and the “acts are exogenous”
principle? I see essentially two ways. On the one hand, the agent himself may make his
actions dependent on the behavior of other variables and thus turn the action variables
into endogenous ones; this is what is called strategic behavior. By deciding for a
certain strategy the agent obviously accepts certain probabilities for the actions
covered by the strategy, in contradiction to the two principles. On the other hand, it is
hard to see why the agent should not be able to reflect on the causes of his own
actions, just as he does concerning the actions of others. This reflexion should clearly
enable him to have (probabilistic) predictions about his future actions, again in
contradiction to the principles. We shall see that both approaches come to the same
thing; but let us dwell upon them separately and more carefully.

4.1 Dependency schemes and strategies

Let us take up strategies first. Concerning basic decision models, I have already
mentioned that it would be a naive decision rule simply to choose a course of action
with maximal expected utility. Usually it is better.to wait and see what happens and act
accordingly. How can this be accounted for in our graph theoretic framework?

The most general way is this: According to a given basic decision model (U, —,
H, (p), uy all action variables in H are exogenous. What the agent does in thinking



Dependency Equilibria 221
about strategies is to enrich the causal graph (U, —) by some edges each of which
ends at some action variable and starts at some preceding occurrence variable; this
‘means to reverse the truncation described in the previous section. Of course, the agent
does not only create such dependencies, he considers to create them in a specific way
expressed by specific probabilities. This is captured in the following definition: A
dependency scheme q for a given basic decision model is a function which specifies
for each action variable 4 € H a probability distribution for 4 conditional on each
realization of Pr(4), i.e., of all the variables preceding 4.

On the basis of the probability family (p,) each dependency scheme g determines a

probability measure p, for the whole of U defined as follows: for w € XW and

he XH phw) = py(w)-q(h|w) — where g(h | w) denotes the probability that the
action sequence / realizes according to ¢ given w. That is: if, for 4 € H, a denotes the
value 4 takes according to 4 and pr(a) the values the variables in Pr(4) take according

to 4 and w, then g(h |w) = H g(alpr(a)). These are just the factors we need in order
AeH

to fill up a truncated factorization to yield a complete one.

This, in turn, enables us to define the expected utility of each dependency scheme

q: BEug)= Y, Y, u(h,w)-p,(hw). This suggests a more general and reasonable
heX H weXW

decision rule: If your situation is represented by the given model, choose a dependency
scheme with maximal expected utility! Is this rule a good one?

No, the problem is that not every dependency scheme represents a feasible
strategy. I have lost my glasses, for instance. What to do? Clearly, the optimal
dependency scheme would be to search in my office if I have forgotten them in my
office, to look into the fridge if I have put them into the fridge, etc. This would clearly
be the fastest way to find my glasses. But it is obviously not feasible; my problem is
just that I do not know where I have put them. Hence, dependency schemes
maximizing expected utility tell only how the agent and his actions would be optimally
embedded into the causal graph according to his subjective view. Whether he is able to
embed himself in such a way is another question.

This raises the following question: Which of the dependency schemes are feasible
strategies that the agent is able to realize by himself? Generally, one can only say that
the latter form a convex subset of the former. The reason is the frame-relativity of
dependency schemes. One should think at first that there is no need to consider
probabilistic dependency schemes because it is always better to establish good
deterministic dependencies. However, there is no guarantee that the frame contains the
variables which the agent is able to connect up with in a deterministic way. Perhaps
the agent at best receives incomplete information about the variables included in the
frame. In this case only a probabilistic dependency is within his power. Hence, as long
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as we do not make special assumptions about which variables are in the frame U, no
more can be said about the feasibility of dependency schemes.

So, we should perhaps include in the frame those variables to which the agent can
establish a deterministic dependence. Which are they? The answer seems clear. The
agent can make his action depend only on those variables whose state he learns before
the time of action. Maybe his behavior is correlated with the state of certain variables,
though he does not notice it. But if so, the behavior is not intentional. Thus, for the
dependence to be intentional, the agent has to know the states he wants to correlate
with.

Again, no general statement seems available concerning the kind of variables the
agent learns about. They must be observable, for sure; but the decline of empiricism
has shown that this characterization is vague and loose. Still, there is a general
statement: Whatever the external events the agent does, or does not, notice, he knows
his own state before the time of action, he knows the decision situation he is in (i.e.,
his subjective view of it), which is generated, among other things, by the external
events he has noticed.

This seems generally true. Hence, a general procedure for discovering the feasible
strategies among the dependency schemes would be to extend the causal graph of the
given basic decision model by a number of decision nodes, as 1 call them, such that
each action node is preceded by a decision node, and then to define a strategy as a
dependency scheme which makes each action node depend only on its associated
decision node. Here, a decision node is quite a complex variable consisting of all the
decision situations the agent might be in concerning the associated action node.
Obviously a decision node causally depends, in turn, on many other variables; thereby,
the action node’s direct intentional dependence on the decision node ramifies into
various indirect dependencies (where “direct” and “indirect” is relative to the extended
causal graph). Moreover, it is obvious which deterministic shape the action node’s
intentional dependence on the decision node should take: the relevant decision rule,
say, maximizing conditional expected utility, states which action to perform in which
decision situation.

It should be clear that we have to elaborate the content of the previous paragraphs
in detail. This is what we shall do in section 4.3. But one point should be stated right
away. What I have explained so far entails that as soon as the agent has decided for a
certain strategy or dependency scheme, he can, on the basis of this decision, predict
with which probability he will perform which action supported by his strategy. This is
the first way for apparently rebutting the “no probabilities for acts™ principle.
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4.2 Reflexion

I have announced a second. way, at which we should look next before further
developing the above ideas. This way is even more straightforward: Why should the
agent be unable to take doxastic attitudes like predicting, explaining, etc. toward his
own actions, if he can very well do so toward the actions of others? One should indeed
think that he is particularly well endowed in his own case because he has so much
more data about himself than about anybody else.

Hence, the question is rather: How should the agent predict his own future
behavior? There seem countless ways. The agent knows his habits (“sure, I’ll brush my
teeth this evening when I go to bed; that’s what I always do!”) or the conventions (“of
course, I’ll drive on the right tomorrow; everybody does!”), he knows his anxieties and
the resulting behavior (“I won’t hike through Devil’s gorge!”), and so on. All these
pieces of behavior may, or may not, be under the rational contro! of the agent. If they
are, as is likely in the case of habits and conventions (at least in the examples given),
the prediction is incomplete unless it mentions that the particular instantiation of a
habit or convention is confirmed by rational control. This means, in turn, that the
prediction of a piece of behavior is really based on the prediction of the (tacit or
explicit) rational deliberation leading to it. If a piece of behavior is not under rational
control, as it may be in the case of anxiety, then, it seems to me, it cannot be the object
of a practical deliberation and does not deserve the status of an action node in a
decision model; from the point of view of a practical deliberation, it is just an
occurrence to reckon with, not an action to be intentionally chosen.”

To conclude, the agent should predict and explain his actions at future action
nodes as intentional and rational actions with the help of decision theory, just as he
explains and predicts the actions of others. Hence, if we want to make explicit these
means for predicting and explaining actions within the decision model, we should
extend it by decision nodes, as we have envisaged them in our discussion of strategies.
The agent has (probabilistic) predictions about the decision situations he will face, and
accordingly he has (probabilistic) predictions about the firture actions, again just as in
the case of strategies.

It may seem surprising how the active mode of considering which feasible strategy
to choose and the passive mode of predicting future actions can come to the same
thing. But it is not so surprising, after all; the two modes melt into each other in this
special case. If 1 predict my likely future actions from my likely future decision
situations, this is like forming a conditional intention. And conversely, if I choose
among feasible strategies that make future actions dependent on future decision

»Psychology and self-observation teaches that this distinction is not clear-cut at all. However, for the
sake of theoprizing we sometimes have to paint black and white.
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situations, the chosen dependence is not really subject to my present evaluation and
intention. Rather, all the parameters on which the evaluation and intention is based,
i.e., the relevant subjective probabilities and utilities, are already specified in the future
decision situation on which the action depends; the decision is deferred to that
situation. One description is as good as the other; and so the active mode of decision
and the passive mode of prediction merge.

Thus, it seems that we have a convincing double safe argument against our
principles. Did we succeed to refute them? It is not clear whether this conclusion
would help with the task set at the end of section 3. And it would be premature, in any
case. Before jumping to conclusions, we should rather scrutinize how decision models
that include decision nodes really look like.

4.3 Reflexive decision models and their truncated reductions

In section 4.1 I have already sketched such reflexive decision models, as 1 would like
to call them, since they model how the agent reflects on his own attitudes. These
models need to be worked out. The resulting structure, however, will be very complex;
we cannot and need not fathom it here in full depth. I shall render precisely only those
aspects required for my argument; the others will be left sketchy.

Here is my proposal in the form of an extensively annotated partial definition: 5=
(U, -, H, D, p, u) is a reflexive decision mode! iff the following conditions (1) — (8)
are satisfied:

(1) H, the set of action variables, and D, the set of decision variables, are disjoint sub-
sets of U, as before, W= U\ (H W D) is the set of occurrence variables.
This simply introduces the decision variables as new ingredients.

(2) (U, —) is a causal graph such that each action node has exactly one decision node
as the only parent, i.e., for each 4 € H there is a A € D with Pa(4) = {A}, and each
decision node has at least one action node as a child, i.e., for each A € D there is an
A4 € Hwith A € Pa(4).

This was the upshot of our preceding discussion. For each action node it is just the
parental decision node that provides the intentional or explanatory or predictive
determinants of which element of the action node is performed. It is thus obvious that
only decision nodes can be parents of action nodes, and indeed that each action node
can have only one parental decision node. Thus, (2) is the minimum required.

The question is rather whether (2) should be strengthened. One might require that
no two action nodes have the same parental decision node, or that each action node be
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immediately preceded in time by its parental decision node.® One might also wonder
how a decision node can have other children than action nodes. It will be crucial for
my argument in the next section to reject all such strengthenings of (2). Therefore, 1
shall defer further discussion of this point.

(3) u is a utility function from X(U\ D) into R.

The point of this condition is to exclude the decision nodes from the utility
function; in my view, being in, or getting into, this or that decision situation does not
hold any utility in itself. I have argued for the point in Spohn (1999, pp. 49ff.). But
since it does not play any role here, 1 shall not dwell upon it.

(4) p is a probability measure for U.

This reflects the point that there seems to be no restriction on the domain of the
agent’s probability function under the present perspective. Later conditions, though,
will restrict the values p may take.

The next condition is concerns the self-localization of the agent in the reflexive
decision model §. Such a model is to represent the agent’s own practical point of view
resulting in a decision, not that of an external observer. The point is reflected in the
fact that H represents his own possible future actions and p and u his own cognitive
and conative attitudes. But at which time? The answer is immediate: the agent is to
decide about the first of his action nodes (and possibly later ones as well) and hence
finds himself, as it were, in the first decision node. That is, the time when the agent
takes the attitudes p and u is the time of the first decision node.

At that very time the agent knows in which decision situation he presently finds
himself. He may not have foreseen it, and he may have forgotten it later on; but at the
time of decision he knows his subjective view of his situation; and the model
represents only this view. This knowledge is captured in the next condition:

(5) If Ap € D is the temporally first decision node, there is a particular &g € Ag such
that p(80) =1

This is embarrassing, though. 8, is obviously to represent the present decision
situation of the agent of which he is aware; on the other hand, the reflexive model 3,

»Since we have assumed the variables to be linearly ordered in time, the second strengthening implies
the first.
"'This condition of consciousness or self-knowledge has first been stated by Eells (1982, p. 176).
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which we are about to define, does so as well. But §; is only a part and not the whole
of &. How can this be?

The first response is that two different decision models, in the present case 8y and
§, may well represent the same situation; the representation relation is rarely one-one
in model construction. Indeed, if one decision m‘odel is a reduction of another, they
may be said to represent the same situation.” The second response is that we face a
general difficulty here. Whenever one models states of reflexion, the object of
reflexion cannot be understood as the whole reflexive state itself. The embarrassment
is thus a common one.

Here is an account of what g is, if not the whole of 8. It is not the basic submodel
resulting from the full reflexive model by eliminating all decision nodes; it is only the
first decision node A, itself that needs to be eliminated. This elimination results, more
precisely, in the truncated reduction of 8 by {Aq} defined as follows:

For any decision node A € D, let Ac(A) denote the set of action children of A
(which must not be empty according to condition (2)) and Oc(A) denote the set of
other (occurrence or decision) children of A (which may, but need not be empty).
Then, the truncated reduction of & by {Aq} is obtained by first reducing & by {A} not
precisely in the way described in section 3.2, but in a slightly modified way and then
truncating this reduction with respect to Ac(Ap). What is the slightly modified way?

Arrows in which Ag is not involved are simply maintained in the reduction as
defined in section 3.2. Likewise, the reduction contains arrows from the parents of Ay
to the children of Ay; this is the IC-case. The arrows arriving at action children will
then fall victim to the truncation. (In the following diagrams triangles stand for
decision nodes, squares for action nodes, and circles for occurrence rodes.)

U O 0
A

A reduces to: T turns by trun-

/I\ cation into:

O O O

(the IC-case)

] have not explicitly defined the reduction of basic decision models; but our definition of the re-
duction of Bayesian nets is easily extended. Such reductions are at the heart of the theory of small
worlds of Savage (1954, sect. 5.5). In Spohn (1978, sects. 2.3 and 3.6) I have elaborated on their
theoretical importance.

This is so at least if we stick to standard ways and do not resort to the model theoretic means
devised by Barwise (1990), which attempt to accommodate such circular phenomena in a
straightforward way.
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The slight modification occurs in the CC-case. Here, we have to stipulate, for

reasons to be immediately explained, that all arrows between Ac(Ag) and Oc(Ag)

created by the reduction run from 4c(Ao) to Oc(Ay) irrespective of the temporal order,
i.e., even in the case where the arrows thus run backwards in time.

D reduces to: D ~a turns by trun- D
A ; o o e

cation into: O

(two CC-cases, the fat arrows show the modification)

This modification entails that the N-case cannot obtain. The modification of the
CC-case treats all occurrence children of Ay as if they were later than the action
children of A, and thus the “N” can take only the form of a simple CC-case:

O<«—01d O<—0O

O (I
/ ’\ / reduces to: / tur|l15 b.y trun- /
O A

cation nto:

@) O

(no genuine N-case)
Hence, I propose:

(6) 8o = (U\ {Ao}, =*, H, D\ {Ao}, (pg), ) is the truncated reduction of 8 by {Ao} in
the sense just defined (where g runs through XAc(Ap)).

We have to make clear to ourselves what this amounts to: The causal graph
(U\{Ap}, »*) of & is obtained from (U, =) by deleting, together with Ay, all arrows
ending or starting at Ay and, provided Oc(Ap) is not empty, by adding arrows from all
A € Ac(Ag) and all B e Pa(Ag) to all C € Oc(Ay). The action nodes in Ac (Ag) are
thereby turned into exogenous variables, making the other children of A, if any,
directly causally dependent on all the parents and all the action children of A,.

This may appear not entirely intelligible. The first mystery may be how a decision
node may at all have any causal influence that is not mediated by action nodes. But let
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us grant this point for the moment; it will become clear when we consider specific
_examples with non-empty Oc(Ag) in the next section.*

The second mystery is the modification of the CC-case which creates arrows
running backwards from Ac(Ag) to earlier members of Oc(Ag). Do we thereby allow
for backward causation? No. Recall our observation in section 3.2 that in a reduced
causal graph an arrow 4 — B generally signifies only that B directly causally depends
on A or that the IC-, the CC- or the N-case applies to 4 and B. Here, it can only be the
CC-case which applies to the arrows from Ac(Ag) to Oc(Ag). Note that we had no
choice here but to assume the anomalous backward arrows. If we had added only
forward arrows in the reduction, i.e., arrows from the earlier members of Oc(Ag) to
Ac(Ap) and from Ac(Ap) to the later members of Oc(Ay), then only the latter, but not the
former, would have survived the truncation. But there is no reason whatsoever to treat
the former and the latter arrows in the truncation in a different way; the temporal
location of the members of Oc(Ay) is irrelevant to the causal structure of the situation
and should not make any difference. Hence, the information about the common cause
of Ac(Ag) and Oc(Ap) has to be completely, and not only partially, retained in the
truncated graph. The only way to do this is by adding in the reduction only arrows
starting from, and not leading to, Ac(Ay), as it is shown in the above diagram of the
CC-case. This point will be a crucial step of my whole argument because it allows us
to interpret critical action dependencies of probabilities as indicating merely a common
cause relation. l

Concerning the rest of 8, it is clear that & contains the same utility function as §
since decision nodes do not carry utilities anyway. The probability family (p,) of &,
finally, is derived from the measure p of 8 by eliminating the reflexive probability of
condition (5) and all probabilities entailed by it, in particular the probabilities for the
actions in Ac(Ag). The procedures described in section 3 then guarantee that the
remaining family (p,) agrees with the reduced and truncated graph.’

The upshot of all this is that 8 contains the same decision relevant items as the
reflexive model & and indeed all of them; the surplus of the reflexive model is only the
agent’s firm belief that he is in 8 and what follows from this belief. In this way, the
circularity problem that plagued our modeling of reflexive states is solved.

*Let me point out, though, that the presence of this kind of causal influence is a most crucial point
behind the insightful considerations of Frank (1988). The decision situations in which one finds
oneself are accompanied by emotions which show in other ways than merely in the actions optimal in
these situations.

*There is a familiar problem about conditionalization here. The relation between decision nodes and
the appertaining action nodes will be essentially deterministic. Hence, if p(80) = 1, then p(g*) = 1 for
the action (course) g* that is optimal in 80 and p(g) = 0 for all other actions g so that pg remains
undefined for them. But the problem is familiar from sect. 1, and it may be corrected with similar
means. | neglect it here in order to avoid further complications.
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However, I should emphasize that thereby the “no probabilities for acts™ principle
has reentered the picture, if only in relation to the variables in Ac(Ag); the other action
_variables are taken care of by the later decision nodes. The reason is that §;, which
observes this principle, contains precisely what is needed for determining or causing
the optimal action. The surplus of the reflexive model has no effect in this respect —
though, of course, we can positively assert this only after the decision rule determining
optimal actions has been introduced.*

This is all we need for our present purposes. However, the definition of the
reflexive decision model § is not yet completed. Let me indicate what is still missing.

For one thing, we require

(7) a condition concerning the shape of all the decision situations & in all the decision
nodes A € D.

This condition would not differ so much from our detailed condition (6) on 8. The
most important difference will be that the agent may envisage arbitrary changes of
probabilities and utilities in all the possible decision situations, whereas the
probabilities and utilities of 3y had, of course, to agree with those of 5. To be sure,
theoretical work only becomes substantial by considering various specific forms of
change. For example, a case that is treated extensively in decision theory is the one
where the agent deliberates whether first to collect (possibly costly) evidence and then
to decide on the basis of probabilities changed accordingly. But many more changes
may be conceived”, and conceptually one should allow for all kinds of changes.

Another, final, ingredient is missing, indeed the most difficult and important one:
the decision rule that specifies for each possible decision situation what is rationally or
optimally done in it. In our reflexive context, this also determines the agent’s beliefs
about the relation between decision and action nodes, since he believes to be and to
stay rational (otherwise, it would be wrong from the outset to consider only decision
nodes as parents of action nodes). Hence, the final condition is:

(8) For any decision node A and any situation & € A, if g € XAc(A) is irrational in §
according to the relevant decision rule, then p(g | 8) = 0.

This condition is stated only negatively. In case there are several optimal actions in
3 the general model should not ordain specific probabilities for those actions.

*This has been one of my two arguments for this principle in Spohn (1977, sect. 2), the one which
Rabinowicz (2001) considers to be the stronger one.
In Spohn (1999, sect. 4) I tried to start a systematic treatment of the possible kinds of changes.
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But what is the relevant decision rule? I am not sure, and I think nobody knows. It
is obvious that it will be a recursive one. Each situation & in the last decision node A,
is free of further decision nodes; the strategic horizon does not extend further. Hence,
each such 3 is a basic decision model, and the rule of maximizing conditional expected
utility is good enough for it. Having determined optimal choices for all situations in
the decision nodes Ayq,...,A,, we may then continue considering all the feasible
strategies for the situations in A, and maximize expected utility, as defined in section
4.1, and so on until we reach Ag. This procedure may be strictly defined. Indeed, it is
what is usually called sophisticated choice: predict what you will find rational, and
thus will do, in the future situations you might reach, and do right now what is rational
from your present point of view given these predictions!* However, I do not think that
sophisticated choice is adequate for reflexive decision models in general. Since I have
made no assumptions concerning the probabilities and utilities in later situations and
their evolution from earlier ones, the agent’s future points of view and his present one
may mesh in more complicated ways than is conceived in sophisticated choice. I have
argued the point and proposed an improved decision rule sketchily in Spohn (2000,
sect. 4) and in formal detail in Spohn (1999, sect. 3). The issue is extremely difficult,
though. Fortunately, it is irrelevant for our present purpose, and these meager hints
may suffice. The only decision rule we will need in the next two sections will be the
maximization of conditional expected utility in basic decision models, which forms the
unproblematic recursion base.

This finishes my (partial) construction of the reflexive decision model 5. 1 admit,
it has become quite involved. But decision nodes have a rich internal structure and are
richly connected within the graph. So these are unavoidable costs of reflexion. Every
item of the construction is significant and consequential, and I recommend the whole
structure for further investigation.

4.4 Where do we stand?

Before going on, let us take stock where we presently stand with respect to our
concern for understanding dependency equilibria. Our proximate goal was to
undermine the exogeneity of action nodes in basic decision models. This we have
achieved, indeed in the only feasible way, I think, by introducing decision nodes; it
would have been inconsistent to proclaim decision theory as a theory of rational action
and then to resort to other theories when reflecting on the causation of actions.

%Sophisticated choice was first developed by Strotz (1955/56) and further elaborated and discussed,
among others, by Pollak (1968), Yaari (1977), and Hammond (1976, 1988). See also the thorough
discussions in McClennen (1990).
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What does it help, though, to understand action nodes in this way as endogenous?
Nothing, it seems. One may have feared that, by allowing for the endogeneity of action
nodes, we plunge right into the absurdities of evidential decision theory, by
recommending, for instance, to refrain from smoking in Fisher’s scenario of the
smoking gene (even if one would like to smoke) or, generally, to perform an act which
is symptomatic of the more favorable circumstances, even though it does nothing to
promote these more favorable circumstances. But this does not follow. If we look at
&y, the present situation of the agent of which he has self-knowledge, we find again the
nodes in Ac(Ag) to be exogenous; the decision rule for 8, does not recommend to
choose the symptomatic act. The same is true for the reflexive model & that is
governed by the same decision rule. But here the fatal consequence is blocked by self-
knowledge; since the agent knows he is in 8y and in no other decision situation, the
chosen act cannot be symptomatic of the circumstances; it would be so only via
alternative decision situations. In fact, this is precisely how Eells (1982, ch. 8) blocks
the consequence and thus establishes two-boxing as the rational solution of
Newcomb’s problem within the confines of evidential decision theory. Hence, we have
generally maintained the very argument which we attempted to circumvent in order to
make causal sense of dependency equilibria: namely the argument that causal
independence from actions implies probabilistic independence.

Still, our progression into reflexive decision theory with its introduction of
decision nodes provides us with the key to a solution of our problem. But the key lies
elsewhere; it does not lie in the endogeneity of action nodes, but rather in the efficacy
of the decision nodes extending beyond action nodes. The above weak version of
condition (2) leaves room for the possibility that a decision has a causal relevance that
the appertaining action has not. And the decision rule for the decision model that
resuits from the truncated reduction of a reflexive model states what is rational if that
possibility should obtain. I want to develop this idea in the next two sections. For this
purpose, let us leave these (too) abstract fields and apply the structure to two
apparently simple, albeit most significant examples, namely, the toxin puzzle and
Newcomb’s problem. This application will turn out to be highly instructive.

5. The Toxin Puzzle and Newcomb's Problem
5.1 The toxin puzzle
What is the foxin puzzle? It was invented by Kavka (1983) and goes as follows: This

noon someone who seems to be a rich neuroscientist, let us call her the predictor,
approaches you and makes you an offer. She shows you a glass filled with a fluid
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called toxin. It tastes disgusting and makes you feel terribly kind of seasick for about

three hours, but has no after-effects; afterwards everything is fine again. The offer the
predictor makes is this: If you have the firm intention by midnight to drink the glass of
toxin tomorrow noon, she will reward you by transferring $ 10,000 to your bank
account briefly after midnight. You can trust on this, even if you cannot confirm by
tomorrow noon whether the money has arrived. She has a kind of cerebroscope that
reliably establishes whether you have the intention by midnight. What you do the next
day is irrelevant; you are rewarded for having the intention, not for actually drinking
the toxin.

Suppose you clearly prefer $§ 10,000 over three hours of terrible sickness.
Otherwise, you would reject the offer. So this seems to be easily earned money. Where
is the problem? It is that it seems impossible for you to form the relevant intention and
to earn $ 10,000. For you know already now that tomorrow noon, when you will be
standing in front of the glass of toxin, you will have no reason to drink it. The case will
be decided, the predictor has transferred the money or not, according to what the
cerebroscope told her, and then it would be clearly less pleasant to drink the toxin than
to abstain from doing so. Thus, how could you ever form the required intention in the
full awareness of all this?

Well, is it really impossible? Two things should be clear. On the one hand,
intention and action are not analytically tied together. One may drink the toxin, or do
anything, without intending to do so. The popular view among action theorists is that
actions analytically presuppose at least some intention or have to be intended under
some description; only mere behavior may occur without intention.” However, in this
respect our action nodes should rather be understood as behavior nodes. How an action
node realizes depends on nothing but the behavior shown by the agent. Of course, he
intends it to be an action, and if the behavior is actually caused by a decision node, it is
an action. But this is not how an action node in itself is characterized. Conversely, one
may have the firmest intention possible to drink the toxin without actually drinking it.
Philosophers call this weakness of will and have their problems with this possibility.
But it is one. Perhaps, after smelling the toxin the disgust is too great to be overcome
even with the best intention. Perhaps you even start drinking it, but your throat
automatically revolts, and you spit it out without control. However, even if the
predictor foresees that this will happen, she should not deny you the intention.

On the other hand, if you leave open the slightest possibility to reconsider the case
the next day (with predictable outcome), or even if you only hope that your body will
unintentionally refuse the toxin, this defeats your present intention to drink the toxin. If
the cerebroscope detects anything of this kind, any false thought, the predictor is right
to deny you the reward.

* This view was forcefully introduced by Davidson (1971).
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How, then, should we model this decision problem with the means introduced
before? A preliminary point is that we have to translate the action theoretic talk of
intentions into decision theoretic talk in which the term “intention” does not occur. My
proposal is to translate “intending to do a” as “being decided to do a” and the latter as
“being in a decision situation in which it is optimal to do a”. These translations enter
delicate terrain. Intention talk and decision talk do not square easily.® Thus, I propose
simply to accept the first translation. Concerning the second translation, one should
note two things: that we are dealing only with rational persons who do not err in their
decision and always opt for the optimal or rational action, and that decision theory
does not take decision making as a process in time which starts with analyzing one’s
situation and eventually results in a decision; being in a decision situation that is
represented by some model automatically entails knowing the optimal action according
to this model.*' With these two observations, the second translation seems justified.
Given these translations, it is clear that the model for the toxin puzzle should
contain five nodes or variables: an action node 4 = {drink, do not drink}, three
occurtence nodes F = {feeling seasick for three hours, not feeling so}, C =
{cerebroscope is positive, it is negative} and B = {$ 10,000 are on your bank account,
they are not}, and a decision node A = {decide to drink, decide not to drink}. These
naodes are; I find, properly arranged in the following causal graph:

“For instance, action theorists are occupied with the locution ,doing a with the intention i”, a
locution that appears very crude from the decision theoretic point of view because actions are usually
guided not by one goal, but by many values as they are represented in a utility function.

“What lurks in the background here is the long discussion about the so-called deduction problem in
doxastic logic, i.e., about the question of whether or not one may assume belief to be consistent and
deductively closed (cf., e.g., Stalnaker 1999, ch. 13 and 14). The fundamental opposition here is that
between semantic or regulative and computational theories. Regulative theories neglect the
computational aspect and operate only on the semantic level by setting there the normative standards
for correct computations, and thus assume belief to be deductively closed. In computationa! theories
this is considered illegitimate and one tries to do without this assumption. I observe that theories
about propositional attitudes naturally move on the regulative level, that they are substantial theories
within their idealized confines, and that computational theories are poor or more or less equally bad
idealizations.

These observations hold for decision theory as well. For instance, Pollock (1995) is one of the few
exceptions having tried to develop a decision theory at the computational level. But already its
epistemic part is to be criticized, as I argue in Spohn (2002). Hence, in my view, the only successful
decision theories move on the regulative level — hence my remark about the ,,automatic* knowledge
of the optimal action.
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The positions of 4, B, C, and F are beyond dispute, but the place of A needs
discussion. Let us first complete the reflexive model, though. The utilities of the
various courses of events are clear. The causal relations may be assumed to be more or
less deterministic; that is, given A is positive (decide to drink), the probability for the
other variables being positive is roughly 1, and given A is negative, the other variables
are almost certainly negative, too. Morcover, the probability for A being positive is
also 1: its conditional expected utility is roughly the utility of all variables being
positive, the conditional expected utility of the negative decision is roughly the utility
of all variables being negative, the first value is clearly larger than the second, and
hence the positive decision is the optimal one (which means being determined to drink
the toxin, actually drinking it, feeling seasick, and receiving the reward).

The crucial point in achieving this result is, of course, the introduction of the
decision node and its side effect upon the cerebroscope (which is, to be sure, the
fantastic part of the story). If we looked only at the action node, we would see only its
causal influence on the sickness and thus conclude that abstaining from the toxin is the
dominant action, as is maintained by those who find it impossible to have the positive
intention. We should therefore inspect this crucial point more closely.

Why assume one decision node as the temporally first one? One alternative seems
to be to assume two decision nodes, one at noon today and the other at tomorrow noon,
both governing the same action node 4; that is, you decide now to drink the toxin, and
later you reconsider and decide not to drink it. Well, this may be what actually
happens; we should not consider it impossible that a person is firmly decided, but
nevertheless reconsiders and arrives at a different decision later on. This may even be
reasonable; perhaps some new fact has emerged which one would never have dreamt
of and which puts the previous decision into an entirely new light. However, the
decision model models the perspective of the agent and not what may actually happen.
This perspective cannot accommodate two decision nodes; to envisage a second
decision node at which to decide about the toxin would cancel out the first decision
node; it would mean that the case is, after all, nor decided at the first node. Therefore, I
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think condition (2) is right in insisting that each action node is governed by exactly one
decision node.

Are there any further alternatives? I see only one, namely, to place the decision
node A immediately before the action node A. My condition (2) above allows for any
temporal distance between an action node and the relevant decision node. This is
perhaps too liberal. It might be tempting to think that as long as there is time to decide
about an action, it is not yet decided; this would imply that the decision to do a is
located immediately before a, and hence A immediately before 4. But I am not
tempted by this idea. I do not see why one should exclude the possibility to decide a
matter very early, to maintain one’s decidedness until the time of action has come, and
then to do what one has decided. One may object that maintaining one's decidedness is
a matter of choice, something one may or may not do. Perhaps. But then we are back at
the first alternative, which we have already rejected. Again, one has to distinguish
between an external, objective perspective and the agent’s intentional perspective.
Objectively, the agent always has a choice — I do not see why I should deny this — so
that the matter is decided only at the last possible moment. By contrast, from the
agent’s present point of view, there can be only one choice: either right now, and then
it is a matter of intention to stick to that choice; or later on, and then it is a matter of
prediction what the situation and the choice will be. And it is the agent’s point of view
which is to be captured by our modeling.

Part of the present intention or decision to do a some time later is the intention not
to reopen the issue in the meantime. This intention and the capability to realize it may
be subsumed under the label “commitment power”.©> More or less of this power may
be needed. We shall soon see that the same point will be relevant to Newcomb’s
problem and that the commitment power needed there is minimal. In the case of
Ulysses and the Sirens the required commitment power is superhuman; intention and
will is powerless against the seduction of the Sirens; and knowing this, Ulysses is
well-advised to have the sailors’ ears blocked and let himself be bound to the mast.
The toxin case is between the extremes; it takes some courage to resist the temptation
and to overcome the disgust. Of course, to some extent it is vague and, I suspect, even
a matter of convention when the intention is (too) feeble and the temptation (too)

“0One must be careful here. ,Commitment® is rather a family concept in game theory. Each specific
application is clear, but what unites the various applications is not entirely clear. However, one
prevailing idea seems to be that in order to be committed to do a, | have to commit myself to do a,
where the latter is an action by which I establish external forces, as it were, that will compel me to do
a. In this sense, commitment power is the power to establish such external forces. In my view, a
commitment can exist without such externalization (even though this is sometimes characterized as
magic or self-hypnosis), and in this sense, commitment power is, as explained, the capability to
maintain one’s decidedness (which may, of course, be supported by external means). McClennen
(1990, sects. 9.7 and 12.9) has best explained the meaning of ,,commitment” as [ am using it.
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strong, that is, when the weakness of the will is or is not exculpable. And this
vagueness can, of course, not be resolved by the cerebroscope. It is an unavoidable,
not a central aspect of the above example.

It should be clear by now that the distinction I am belaboring here is tantamount to
the distinction between sophisticated and resolute choice by McClennen (1990).
Sophisticated choice takes a predictive attitude toward future actions and optimizes
present actions given the predictions. Resolute choice, by contrast, takes an intentional
or commissive attitude toward future actions and optimizes present and future actions
at once. Like McClennen I find nothing miraculous in that intentional attitude of
resolute choice. Hence, it is a welcome aspect that the distinction is reflected in my
formal framework. But the way in which it is reflected is perhaps more important,
namely simply by the temporal location of the decision node(s) in the reflexive model.
Reflexive decision theory is thus able to reconcile these two methods of choice; they
are both instantiations of one kind of model and one decision rule.

Indeed, there is a choice here between sophisticated and resolute choice.
Obviously it is not fixed in advance at which time the decision node A is to be located.
You may decide the case right now, or you may defer the decision to tomorrow. And
you choose when to decide according to where you have the higher conditional
expected utility. In the model presented above it is higher than in the model where A is
later. Thus, in the above reflexive model of the toxin puzzle I have already specified
the result of this optimization. Hence, whether the agent proceeds according to
sophisticated or to resolute choice, is itself a matter of optimal choice. Reflexive
decision models do not yet represent this choice since they assume a fixed causal
graph. But they show a way to extend the theory so as to cover this choice as well.
This extension would be most interesting, but it is beyond the scope of this paper, all
the more so as we have left the general decision rule for reflexive decision models
aside.

5.2 Newcomb’s problem

With all these points in mind let us turn now to Newcomb'’s problem which is much
closer to our ultimate concern since it bears often observed similarities to the
prisoners’ dilemma. The problem is quickly explained:

You will be led into a room with two boxes on the table. One is transparent and
visibly contains $ 1,000; the other is opaque, but you are told that it contains either $ 0
or $§ 1,000.000: You have a choice: you may take either the opaque box only (one-
boxing) or both boxes (two-boxing). This seems an easy choice — of course, you do not
want to miss out on the additional thousand dollars in the transparent box - but there is
a highly irritating detail. A predictor has already predicted what you will do and has
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filled the opaque box accordingly. If her prediction is that you will take only one box,
she fills it with a million dollars; if she predicts you will be two-boxing, nothing is put
into the opaque box. As I mentioned, the prediction and the filling of the boxes are
already completed; any cheatful change is excluded. The predictor is surprisingly
knowledgeable, and you know this. In, say, 95 percent of the cases her prediction is
correct, concerning one-boxers and two-boxers alike; and very likely she will be
correct in your case as well. Does this story behind the opaque box change your mind?
Will you now take only one box?

The majority tends to stick to two-boxing, and there is a considerable variety of
theories justifying this.® I find the simplest theory emerges when we look at the natural
formalization of the situation in a basic decision model, which contains three
variables; the action variable B = {one-boxing, two-boxing}, and two occurrence
variables P = {prediction of one-boxing, prediction of two-boxing}, R (= return) =
{receiving $ 0, $ 1,000, $ 1,000,000, $ 1,001,000}. The temporal, and thus the causal,
relations are clear:

//@
\
®

You cannot influence the prediction because it has already taken place, and even
in a reflexive context the prediction cannot influence your decision because you have
no information whatsoever about it. The point now is that the agent’s probabilities
have to agree with this causal graph. Hence, the prediction is not only causally, but

“See, e.g., the papers collected in Campbell, Sowden (1985) and Sobel (1994), and, more recently,
Joyce (1999).
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also probabilistically independent of your choice®, and so two-boxing turns out as the
dominating action and as the only rational choice.*

For more than twenty years I was ﬁmﬂy convinced by this consideration. But
nagging doubts have kept returning. It is not only that the minority of one-boxers is the
personified bad conscience of the majority of two-boxers.* Rather, it is the question of
Gibbard and Harper (1978): “If you're so smart, why ain’cha rich?” The answer of
Lewis (1981) is that rational persons have no chance if irrationality is (pre-)rewarded.
But this answer is feeble-minded; somehow rationality should show in the adaptability
to the conditions of success.

The doubts are reinforced if we look at the iteration of Newcomb’s problem.
Suppose you are confronted with this situation a hundred times, say, once a day for a
hundred days. So, if all goes well, you will have earned a hundred million dollars! But
it seems you cannot earn them; backward induction stands against it: The above model
applies to the last round; hence you will decide then to take both boxes. If the predictor
does not have a false theory about you, she will predict exactly this, and you will
receive just one thousand dollars. Thus, it is clear already now what will happen in the
last round, and since this is clear, the only rational thing for you to do in the
penultimate round is again to take both boxes, and so forth. On the whole, you will
thus end up with a hundred thousand dollars instead of a hundred million. This seems
absurd.

Of course, one should scrutinize this use of backward induction. Perhaps it is more
problematic here than in the genuine game theoretic application (though I do not see
why). However, despite the doubts that have been raised against backward induction, it
is a forceful argument.” Therefore, I think it would be too weak a strategy only to try
to undermine backward induction. Indeed, the absurdity is also created by the claim
that only two-boxing is rational in the one-shot case. This claim was doubtful as well.
Hence let us look more carefully at the original problem.

“This entails that you cannot transfer the predictor’s observed success rate of 95 percent to your own
case and form the corresponding probabilities conditional on your own options. That this divergence
between the statistical and the subjective probabilities in your own case lies at the heart of
Newcomb’s problem was forcefully argued by Kyburg (1980).

“This is the view of Newcomb’s problem which I have presented in Spohn (1978, sect. 5.1). It is
explained also in Meek, Giymour (1994) with the explicit use of the theory of Bayesian nets.

“Jeffrey, for instance, has changed his mind several times. in (1983), (1988), and (1996).

“"The doubts were initiated by Binmore (1987), Reny (1989), Bicchieri (1989) and Pettit, Sugden
(1989). Aumann (1995) proves backward induction to be valid under-certain assumptions. This result
may be used as a defense of backward induction (against Aumann’s explicit advise). However,
Rabinowicz (1998) in turn makes clear the respect in which these assumptions are unreasonably
strong. Rabinowicz is right, I think, but the gap he opens seems too small to accommodate all the
positive conclusions about cooperation [ am after.
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Let us start by asking what you might or should think about the predictor, if you
were in this situation. No doubt you would be wondering how she manages to be so
successful and what her theory about human agents might be. On the other hand, it is
clear what your own theory about yourself is. You firmly believe to be rational and to
maximize conditional expected utility. This is how you fix your intentions concerning
your present actions, and this is how you predict your future actions in future
situations. That this is so is, of course, presupposed in this paper. If your self-theory is
entirely different, this paper simply does not apply to you.

These remarks do not yet fully determine your self-theory since maximizing
conditional expected utility may mean various things explicated in a number of
theories that differ in certain details. We will come to this in a moment. What I want to
focus on right now is the tension between your assuredness regarding your self-theory
and your bewilderment about the predictor. Perhaps the predictor has simply been
lucky to have been successful so many times in the past; but this is too improbable.
Perhaps her prediction is guided, say, by the form of your nose and thus by an entirely
wrong theory; but again success with such a theory appears to be sheer luck. Thus, in
view of your self-theory, you should rather assume that her means of prediction. are
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(a) decision causes prediction (b) decision and prediction have
a common cause

Case (b) shows how the situation was conceived by Eells (1982, p. 211), who was
the first to introduce the reflexive point of view, and how thereafter the correlation
between prediction and action was usually understood. If we look here at the reduced
and truncated model 8, € A, which is reflected by the full model &, we find that B and
P, action and prediction variable, are causally and probabilistically independent.
Hence, two-boxing is the dominant and thus optimal action in 8, and in § as well.

Fisher’s smoking scenario has the same structure as case (b) provided the arrow
from P to R is deleted. Here, X would be the variable of the smoking gene that is
responsible for the desire to smoke as well as for lung cancer, P would represent
getting lung cancer, B would be the action variable about smoking, R would be a
variable about the pleasure derived from smoking, and A would be the decision
variable containing the various possible desirabilities for smoking caused by X. Then,
as before, if T find myself in the actual decision situation 3y with its preference for
smoking, it would be rational to smoke since it is causally and probabilistically
independent from P and thus dominates nonsmoking.

So, am I wedded to familiar views? No. Case (a) is a possible scenario as well,
making even more sense and allowing very different conclusions; this is what I would
like to defend in the following. Case (a) presupposes that the decision variable A
temporally precedes the prediction variable P. This seems to contradict the very
description of Newcomb’s problem; here you are standing before the two boxes, and
now is the time to decide. However, we have observed in the toxin puzzle that the
temporal position of the decision variable is something that is within your choice, too.
Thus, when you are standing before the boxes, you may as well consider the decision
as having been taken a long time ago and as having only to be executed right now.
Indeed, it would be rational to place the decision variable at such an early time because
this yields the higher conditional expected utility. And, although it may be unclear how
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the predictor actually arrives at her prediction, it follows that, if she has observed your
rationality in the past and thus uses the correct theory to predict your behavior, she
should take you to be decided to take only one box and hence put the million dollars
into the opaque box. This leaves open the exact temporal position of A. You can place
it as early as you want, in principle as early as the inception of your rationality (but, of
course, this, too, is not an event with a well-defined temporal location), and in any case
early enough for the predictor to observe, and to become convinced of, your
rationality.

What [ would like to claim is that case (a) at least presents an intentional picture
you may have. I cannot say you should have it because it is too unclear how the
predictor operates. Maybe case (b) actually applies, however early A is placed, even
though the predictor is much more likely to observe the consequences: of your
rationality rather than its causal preconditions. Maybe case (a) applies, but your trust in
the efficiency of your decidedness regarding the predictor is not firm enough to justify
one-boxing. Maybe the predictor thinks that despite being decided to take only one box
you will succumb to the temptation to take the additional thousand dollars. Or maybe
the predictor has indeed been nothing but lucky. All this is unclear. Still, case (a) is a
way to rationalize one-boxing without causal mystery, and if you could be sufficiently
sure that the predictor has developed a correct picture of you, then case (a) provides
the optimal representation of your situation and you should be decided to take only one
box.

According to this point of view, the presentation of Newcomb’s problem has been
utterly deceptive. It was presented as if you had to decide now so that the causal
situation could only be as in case (b). But actually you can also consider yourself to be
decided so that now, when standing before the boxes, you simply have to car}'y out
your previous commitment without being in a new decision situation.

All this shows, by the way, the difference to the smoking gene example. There is
no way to conceive that example as in (a) and thus to rationalize nonsmoking.

The same caveat applies here as in the toxin puzzle. Even if case (a) represents
your intentional picture of the situation (as it should, given you have enough trust into
the predictor), it is not a picture of what actually happens. Standing before the boxes
with the best of your intentions, you may still reopen the issue, decide anew, and
conclude to take both boxes. Or you might simply succumb to the temptation to take
two boxes (although there is no aversion to overcome in this case in order to stick to
your commitment). Or you might believe you can outsmart the predictor, and so on.
Either way, you may end up taking both boxes against your rational intention.

However, let us look again at the iterated case where you have the relevant choice
a fixed number of times. (An informal look will suffice, it would be too cumbersome
to formalize it.) According to the old picture, case (b), backward induction showed that
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you should rationally take both boxes every time, that the predictor, if she has a correct

theory about you, should predict just this, and that your only way to circumvent this
result is to somehow convince the predictor of your irrationality (say, by starting to
take only one box). The new picture, case (a), is completely reversed. Now the
predictor should rationally expect you to take only one box; and if you are as rational
as always to take only one box, everything is fine. If, however, she observes you taking
two boxes, this will undermine her belief in your rationality, and she will presumably
adjust her predictions. The crucial point is here that the backward induction has lost its
base because we have shown two-boxing to be not the only rational solution of the
single-shot case. On the contrary, if the predictor has the right theory about you, one-
boxing is the only rational solution of the single-shot case. And backward induction
then shows that this is so in the iterated case as well. At any rate, whatever your
temptation to deviate from your rational intention in the single-shot case may be, it
should be effectively suppressed in the iterated case.

Let me make sure that the crucial step in my argument is crystal clear: It is my
stipulation in section 4.3 that in the truncated reduction of the reflexive model the
causal arrows have to go from the action children of the deleted decision node to its
other children, even if the latter precede the former. This anomaly can be observed in
our examples. There, the truncated reduction 8, contains an edge from B to the earlier
P (Newcomb) or from A to the earlier C (toxin), respectively, and the probabilities in
8o agree with this. But this does not amount to assuming backward causation. Rather,
the arrow B — P in the truncated reduction 8, means only that P causally depends on
B, or B and P have a common cause (since the N-case cannot apply); and the latter is
indeed true of our cases. Hence, rather than creating a mystery, we have an
explanation how the probabilities can be as they are in §; without assuming a causal
anomaly, namely, by understanding these probabilities and the dependencies they
embody as the result from reducing and truncating a richer, entirely normal causal
graph.

Finally, only because the probabilities are as they are in &, the rationality is
reversed, and drinking the toxin and taking one box turn out to maximize conditional
expected utility. In a nutshell, the point is this: (1) that we may maximize the
conditional expected utility of our decision or that of our action, (2) that the two
maximizations may fall apart, (3) that in such cases only the former, i.e., the
maximization. of the conditional expected utility of the decision, is rational, (4) that
this maximization can be made explicit only in a reflexive model, and (5) that it is only
the truncated reduction of the reflexive model as here defined which preserves this
maximization on the level of unreflexive models.
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6. Prisoners’ Dilemma

6.1 How cooperation may be rational in prisoners’ dilemma

Let us return to our starting point, the game theoretic dependency equilibria and in
particular to the single-shot PD which we found to have a single Pareto-optimal
dependency equilibrium and which we need to attend for avoiding the absurdities
emerging in the finite iteration. Does the foregoing shed new light on PD?

Hope is nourished by the long-observed kinship between Newcomb’s problem and
PD. Newcomb’s problem is a one-sided decision problem because the predictor is not
modeled as an agent or player. It is left unclear what drives the predictor. She appears
to be a wealthy philanthropist, or maybe she is a goddess, and her only interest is to
predict correctly.®

By contrast, PD is a two-sided Newcomb’s problem. Each player has well-defined
utilities and acts according to them, and each player takes both the role of the agent
and that of the other agent’s predictor. Since defection dominates cooperation, it is
clear for both how to act and what to predict: joint defection. At least, this is the
unsatisfactory standard view, just as two-boxing is the majority view regarding
Newcomb’s problem. Hence, the foregoing change of view should also open up a new
perspective on PD.

However, because of the double role of the players, the situation is more
complicated. If the roles were separated, the picture would be clearer. If, say, Ann
were in the role of the predictor and Bob in the role of the agent, Bob could not hope
to have an influence on Ann’s decision situation by being decided early enough.
Because Ann has interests of her own and not the predictor’s philanthropic ones, she
would in any case choose defection as her “prediction”.

But in fact the roles are not separated in this way. With her decision, Ann does not
only predict Bob’s action, but also tries to influence his decision; likewise, by forming
a certain intention or decision, Bob does not only try to impress Ann, but also responds
to her intention or decision. Thus, we have to conceive their decision situations as
entangled, as shown in the following causal graph:

“Selten, Leopold (1982) have analyzed the situation as a game. With bi = i-boxing and pi = predicting

i-boxing (i = 1,2), the most plausible utility matrix is given by
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Here (b2, p2) is the only Nash (and the only correlated) equilibrium, whereas (b1, p1), (b2, p1), and
(b2, p2) are dependency equilibria,
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Here, A, and B are occurrence nodes from Ann’s perspective; her decision node is
only A, and her action node is only 4. The converse holds for Bob.

By drawing a double arrow between A, and A,, [ have enriched causal graphs in a
way initially not allowed. How are we understand this double arrow? Not as a causal
loop, which would be impossible. I think we should rather conceive the variables A,
and A, as temporally extended so that there is enough time for causal influence to flow
back and forth and thus to establish the interdependence indicated by the double arrow.
Hence, there is no causal mystery here.

However, by assuming this interdependence, have I not violated the independence
constitutive of PD outright? No, I do not think so. The independence in PD applied to
the actions, in the first place. And this holds here as well; there is no causal influence
running from 4 to B or from B to A.

That is a lame argument, one will object; of course, the causal independence was
also meant to hold between the players’ decision situations. There the criminals sit in
their prison cells, pondering what to do and being firmly precluded from any
communication. Well, one may represent their situation in this way; then one would
have to delete the double arrow in the diagram above, and joint defection would ensue
as the only rational solution.

But one need not represent their situation in this way. My point here is the same as
in Newcomb’s problem, where one could take one’s decision as having been
determined a long time before one is actually standing before the boxes. The temporal
location of the decision was not fixed there; rather, it was rational in the sense of
maximizing conditional expected utility to locate it as early as possible.

Likewise in PD. I am not simply referring to the trivial fact that the criminals may
have communicated and coordinated long before they were imprisoned and that later
on they may stick to their old intentions or decisions. I rather think that the players
should see their decision situations, even in the absence of communication, as being
entangled in the way described above, and that this entanglement can rationally take
only the form of the Pareto-optimal dependency equilibrium since this is the only way
how they can individually(!) maximize conditional expected utility. This is what full
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rationality demands for all PD-like situations; anything else but cooperation would be
a deviation from full rationality, i.e., irrational.

However, it should be clear again that all this only describes how the players
should rationally view and decide their decision situations. What actually goes on may
be different. A player may doubt that the co-player(s) are fuily rational in the sense
explained (perhaps because it is likely that they have not fully grasped the theory of
rationality developed here), and he may thus have different conditional probabilities
and different expected utilities. Or he may be tempted, against his or her intention or
decision, to reconsider the issue and conclude to defect (or not to drink the toxin, or to
take two boxes), and there may be strong incentives to do so. And so on. But this does
not disprove the rationality of cooperation.

I grant that such factors may make cooperation unlikely in the one-shot PD. The
situation changes, however, in the iterated PD. Here, the rationality of the players
becomes more clearly observable. In particular, if one player defects, this displays his
deficient rationality, with all the detrimental effects on the conditional probabilities
and future cooperation. Of course, this is far from a theoretical treatment of the
iterated PD. But it completely reverses the standard rationality account of the iterated
PD in, I find, a plausible and desirable way. The comerstone of this reversal is, of
course, the different view of the one-shot case, which undermines backward induction
in favor of continued defection right at the beginning. Moreover, the reversal seems to
open up the possibility of rationalizing the intuitively compeiling and experimentally
confirmed tit-for-tat strategy and similar strategies embodying kindness and
responsiveness®, a rationalization that still seems to be wanting.

6.2 A dialogue

Incredulity and rejection was the most frequent response to my accounts of the toxin
puzzie, Newcomb’s problem, and PD. It may be helpful to dramatize the central doubts
in a little dialogue between the opposing wisdom (OW), which I myself still feel very
strongly, and the daring proponent (DP), whose role I have taken here.

OW: To be honest, I don’t believe a word of what you said.

DP: 1 can imagine.

OW: Let’s return to the toxin puzzle. Here you stand the other day at noon, about to
drink the toxin. Do you really want to deny that you would be better off not drinking
it?

DP:  Yes.

OW: You’re kidding.

*Cf., e.g., Axelrod, Dion (1988).
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DP:  No. Look! It simply does not occur to me when standing before the toxin that

I’d prefer to refrain from it. This has been clear all along. But I prefer $ 10,000 even
more. Therefore, 1 decided at midnight to drink the toxin, and it was part of my
decision not to decide anew; otherwise, my decision would not have been a genuine
one, and I would not have got the $ 10,000.

OW: But you can decide anew, and you would be better off.

DP:  Yes, I can, but I shouldn’t. I don’t deny that you are maximizing conditional
expected utility when you refrain from drinking the toxin. But I have given you a
perfectly reasonable explanation of how I am maximizing conditional expected utility,
too. I would already be satisfied if you could grant this. And these are not two different
senses of maximization. We apply the same theory, we only differ in structuring the
decision situation. Of course, I have claimed more. I have also claimed that what
maximizes expected utility depends on when you decide, and that if you can choose
when to decide, you are better off in the toxin case if you decide early.

OW: But the final decision is taken only immediately before the action.

DP:  What do you mean by “final™? Is there a decision and a final decision? No, I
think to assume that decisions always immediately precede actions would be an
unsupported and restrictive assumption. You carn choose when to decide in the toxin
case. By the way, often you just carry out old decisions, too.

OW: But only because my present deliberation would confirm my old decision. Or
because the decision costs are too high for always deliberating anew.

DP:  Are you sure these are the only reasons?

OW: Well, let me ask you another question: How do you manage to maintain your
decidedness? Somehow, you have to commit yourself.

DpP:  What do you mean? )

OW: 1 mean you have to take some measure ensuring that you will really stick to
your decision in the end, say, by instructing a friend to return the $ 10,000 if you don’t
drink the toxin.

DP:  That’s a point where I do not understand you at all. You present the case as if'I
had to guard against my rationality and had to force myself into doing something that I
will judge to be irrational and that I would never do in the absence of force. This is a
very distorted picture of commitment. I don’t have to guard against my rationality;
that’s almost analytic. Of course, others may not trust in my sense of commitment, and
then I may have to prove it to them by some such measure. But I don’t have to prove
anything to myself. No, I am committed merely by the insight into the rationality of
being committed. This is part and parcel of what it means to be rational. It is not a
mysterious or superhuman additional capacity. Whether it is rational to be committed
depends on the situation, but in the toxin case it is. Of course, there are also intricate
intertemporal situations that are difficult to assess, but the toxin case is a very simple
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one in which the basic point stands out very clearly. What I have to guard against is
my weakness that I may not follow my insight. I admit this is often necessary, but
that’s another story.

OW: Hm, we could be moving in circles here. Let me turn to Newcomb’s problem.
You have added another mystery here. In the toxin case, you actually decide by
midnight and think you can maintain this decision. In the Newcomb case, you stand
before the boxes, you reflect on the case for the first time in your life, and now you say
you discover, as it were, that there is nothing to decide, that you have been decided for
a long time, and that you only have to carry out your old commitment. How can you be
decided, when you never reflected on the case?

-DP: 1 agree, this sounds odd, at least if you conceive of a decision as an occurring
mental event. But if you don’t, you may well discover that you are committed. Since I
have not pondered about Newcomb’s problem before, the idea cannot be that the
predictor somehow observed me pondering and deciding to take only one box and that
she filled the opaque box accordingly. The idea is rather that the predictor has had
many opportunities to observe my rationality in general, that she inductively infers that
I will behave rationally on other occasions as well, that rationality, i.e., maximizing
conditional expected utility as explained, requires me to be committed in this very
special type of situation, and that knowing this both of us behave accordingly. The
same applies to the toxin case, by the way. If 1 am rational, the predictor’s
cerebroscope should see this, and then we both can deduce that I have the intention to
drink the toxin. If you accept my toxin story, it’s really a small step to accept my
Newcomb story.

OW: Hm. But it is not a small step to PD.

DP: 1 agree. 1 fear my presentation has diminished the differences. On the other
hand, if what I said so far is acceptable, this must have consequences for PD. Do you
have something particular in mind?

OW: Several things! First, you have extensively explained why the probabilities as
they are in your dependency equilibria need not imply a causal interdependence
between the players’ actions. The interdependence may as well obtain only between
their decision situations. Now [ can imagine how the latter interdependence comes
about by all kinds of signaling, commitment moves in my sense, or what have you. But
if T understand you correctly, you allow for such things, but you say they are not
required.

DP:  Yes, precisely.

OW: But how am I then to conceive of that interdependence? That’s definitely a step
beyond your intrapersonal “discovery to be committed”.

DP:  Yes, certainly. But if photons can be entangled, why should persons not manage
to be so as well? '
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OW: Come on, that’s a bit farfetched, isn’t it?

DP: Ah, you know well enough that I would never make any quick inferences from
the quantum to the human domain, say, from uncertainty to freedom. No, purely from
the perspective of a theory of causation the comparison is not so farfetched. But you
are right, just as I said that rationality requires you to be committed in the toxin and the
Newcomb case, I now say that rationality requires both players to be entangled in the
Pareto-optimal dependency equilibrium and to be committed to cooperation. This
entanglement and commitment emerges with the situation without requiring binding
agreements or whatever. That’s what maximizing conditional expected utility dictates.

OW: This sounds as if the players should choose their beliefs so as to maximize
conditional expected utility.

DP:  No, certainly not. They do believe in common rationality, and this belief has
consequences. ‘ _

OW: All this is hard to believe. But let’s grant your entanglement of the players’
original decision situations. Now, however, my very first doubt returns. Suppose you
are one of the prisoners, you are in prison, and you find yourself entangled with your
partner, as you describe it. But you are free to break the entanglement, and you should
notice that you are better off by doing so. So, vou should break it and leave your co-
player in her imaginary entanglement. Or rather, you should realize that the same holds
for your co-player, and that there is no way to save the entanglement, anyhow.

DP: 1 feared that you would come up with the hardest question of all. T see the dif-
ference to the toxin and the Newcomb case. There I am committed to myself. I would
not maximize expected utility, if I were not fully decided early enough. In PD, by
contrast, I am committed to my co-player (as she is to me), and by breaking my
commitment, I am harming her, but not, it appears, myself. That makes a difference.
On the other hand, if there are commitments in the sense I have described above, why
shouldn’t there be joint commitments in the same sense, whose violation would be
individually irrational? '

ow: 17?

DP:  Look, I need not defend the view that cooperation is the only rational option in
the single-shot PD. The only point I want to insist upon is that one may represent the
decision situations of the players as originally entangled in the weakly Pareto-optimal
dependency equilibrium — an entanglement, which is not broken by later
reconsideration and by a new decision and in which it is rational to cooperate even in
the single-shot case. That’s all that is required for breaking the force of backward
induction. As soon as you look at iterations the joint commitment will unfold its
momentum.

OW: Hm, I would like to see this worked out. But what does commitment and
entanglement help in case of several Pareto-optimal dependency equilibria?
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DP:  Not much. PD is particularly simple insofar as entanglement alone already
yields a unique solution. But the problem of selecting from multiple equilibria exists
here as elsewhere. The rich literature on bargaining theory should apply in my setting
as well as in the usual one.
OW: Let me ask you a final question. By calling your dependency equilibria equilibria,
you use a venerable name. This seems to be a false pretense. Equilibria are so called
because they are self-stabilizing. This is true of correlated equilibria as well. But I
don’t see how this characterization should apply to dependency equilibria.
PD: 1don’t find much of a difference. First of all, you know well enough that mixed
Nash equilibria are not self-stabilizing as such.
OW: Yes, of course, they have to be backed up by Harsanyi’s (1973) account, say,
according to which they are approximations of equilibria in perturbed games.
PD: I admit I have not thought about a similar account for mixed dependency
equilibria. But a pure dependency equilibrium is self-stabilizing. Both players have an
incentive to stick to it since each would lower their conditional expected utility by
deviating from it. But even in a mixed dependency equilibrium, just as in a mixed
Nash equilibrium, the players don’t have an incentive to deviate, in the sense that each
will do only what has positive probability in the relevant marginal of the joint
probability distribution. Otherwise, they would again lower the conditional expected
 utility.
OW: But this is just the argument why correlated equilibria are self-stabilizing.
DP: No, in correlated equilibria deviation includes the break of the dependency in
the equilibrium distribution. That’s not the sense appropriate for dependency
equilibria. There, deviation has to keep within the entanglement of the players’
decision situations, as embodied in the equilibrium distribution. Hence my consistent
talk of maximizing conditional expected utility. Of course, this is to say that this
explanation of self-stabilization presupposes all my stories about joint commitment
and entanglement. If you don’t swallow the latter, you can’t accept the former.
OW: You seem to have, or want to have, an answer to every question.
PD: This is my role here, isn’t it?
OW: But roles aside, do you really believe every word you say?
PD: How do you expect me to respond? I have grown up in the same tradition as
you. It is a good and strong tradition, but presumably not one with which one can be
fully content, and certainly not one from which one can easily free oneself. How can I
know then what I really believe?
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6.3 Some comparative remarks

So many pages have been filled with PD, indeed so many pages at least resembling
mine in spirit, that I cannot aim here for any completeness in my comparative remarks.
In fact, I do not have an argument with similar approaches. The question is not really
who is wrong and who is right, but rather to which extent the various approaches are at
least illuminating. Hence, my concluding comparative remarks rather aim at clarifying
in which way I believe my ideas to differ from similar ones.

(1) Some philosophers may say that they have offered a much simpler
rationalization of cooperation in the one-shot PD than the one I have put forward,
namely, via the so-called mirror principle® which says that whenever Ann and Bob are
in the same decision situation, they act in the same way. In PD they are in the same
situation because of the symmetry of the story. Hence, only joint cooperation and joint
defection are possible outcomes. If they believe in the principle, they also believe that
these are the only possible outcomes. Hence, since for both joint cooperation is better
than joint defection, it is rational for both to cooperate.

This argument is entailed by my account, so I agree with its conclusion. But it is
too quick. It avoids causal considerations, and it does not present a theory of
rationality that would entail the rationality of cooperation for Ann and Bob in their
particular situation. Therefore, it does not exclude that mutual defection satisfies the
mirror principle as well, as the standard theory has it. In a way, it takes its conclusion
for granted. By contrast, my account tries to back up the mirror argument by specifying
a theory of rationality in which the rationality of cooperation emerges as a conclusion.
Moreover, it is hard to see how to apply the mirror principle when the situation is not
symmetric; but there is no such presupposition in my account.

(2) In a similar spirit, some game theorists may say that my account really belongs
to cooperative game theory within which the cooperative solution of PD is no mystery,
anyway. However, if we follow Osborne, Rubinstein (1994, pp. 255f.) and take
cooperative game theory to refer to groups of players without considering “the details
of how groups of players function internally”, this is not true. I have at least attempted
to offer a theory of individual rationality rationalizing cooperation. If instead we
follow Harsanyi, Selten (1988, p. 1) and “define cooperative games as those permitting
enforceable agreements”, it is again not true. Clearly, my rationalization of cooperation
refrained from alluding to enforceable agreements. Whether it succeeded is, of course,
another question. In any case, I have tried to tell a story about individual rationality
backing up cooperative game theory to some extent.

(3) To continue on the issue, Harsanyi, Selten (1988, pp. 4ff.) showed how
cooperation can emerge as an ordinary Nash equilibrium in a non-cooperative PD by

*'Cf. Davis (1977) and Sorensen (1985).
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adding a preplay of commitment moves. Ann starts making her conditional
commitment move (“I commit myself to cooperate, if Bob does so as well”), Bob
follows with his unconditional commitment move (“I commit myself to cooperate™),
and then both cooperate. Thereby we do not even have to assume a causal
interdependence of the players’ decision situations; the dependence is successively
generated by the commitment moves. We also find the relevant conditional beliefs in
their original decision situations, which turn into unconditional beliefs in cooperation
after the commitment moves have been taken. But, of course, the idea of Harsanyi and
Selten is that there is some external mechanism sufficiently lowering the pay-offs in
case the commitments are violated. As I have explained, this is not my conception of
commitment, I hoped to do without such a mechanism. Only in this way can I hope to
extend my argument to the iterated PD in which cooperation should emerge without
external help, an argument that has not been pursued by Harsanyi and Selten.

(4) My proposal closely resembles the old theory of conjectural variations.®
Friedman (1983, p. 107) concludes that “at the level of simultaneous decisions in a
single-period model, conjectural variation is not meaningful” and hence interprets the
old single-period models of conjectural variation as being implicitly about a dynamical
process that has been more recently treated in multiperiod models. So, does this verdict
apply as well to the account offered here? Yes, at least according to opposing wisdom,
as I called it. However, the effective objection has been that single-period conjectural
variations assume a causal dependence that does simply not exist. This objection does
not apply here. At least I have taken pains with explaining why dependency equilibria
do not assume the causal dependence they seem to assume. Whether my resort helps
making sense of the theory of conjectural variations is, however, beyond my judgment.
The answer may very well be negative. After all, duopoly and PD are quite different
chapters of game theory. : .

(5) Without doubt, my closest allies are Albert, Heiner (2001) and Heiner, Albert,
Schmidtchen (2000). They also seek a causally unassailable rationalization of one-
boxing in Newcomb’s problem, and they also generalize their account to a treatment of
the single-shot PD. It is surprising to see, however, how intentions can be so close and
how their realizations can still differ in so many details. Hence, some comparative
remarks are called for.

There is no doubt that their approach is more detailed and makes sense more
immediately. This is so because they choose quite a different setting, namely, that of
evolutionary game theory. Their idea is that solvers of Newcomb’s problem come in
two types, the greedy type and the temptation resistant type. These labels are used just
for illustration, the real difference between the types lies in their decision rules. The
greedy type bases their calculation of expected utilities on the disconnection principle,

2As Max Albert has pointed out to me. This theory is well reviewed in Friedman (1983, sect. 5.1-2).
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as they call it, which favors two-boxing, and the temptation resistant type on the
backtracking principle favoring one-boxing. Moreover, the types are somehow
predictable; they send out some kind of signal which displays their type (more or less
reliably) and which the predictor can use for her prediction. It is plausible then, and
Albert and Heiner explain this more rigorously, that only the temptation resistant type
will survive if evolution rewards high pay-offs. A similar, though more complex
account applies to PD. The players come in various types, exchanging signals
displaying their type, and behaving according to their type and the signal received.
Then, again, evolution will favor the (conditionally) cooperative type.

At face value, at least, this is not a story about individual rationality. And it seems
it cannot be turned into one. I am lucky, or not lucky, in the evolutionary lottery that
assigns a type to me, but the question of which type I should rationally adopt does not
arise. This is certainly a major difference to my attempt, and I do not see how it could
be bridged.”

A number of further differences are entailed by this. Also considering the causes
of actions, Albert and Heiner introduce what they call motivation packages, which
resemble my decision nodes. However, they do not engage in what I have called
reflexive decision theory. The causal picture they develop is that of the external
theorist rather than that of the agent himself, a fact that shows up also in their rejection
of my (or rather Eells”) reflexive condition (5) in section 4.3. Indeed, a motivation
package in their sense does not only consist of beliefs and desires or probabilities and
utilities, but also of a decision criterion, and their point is that the types may differ only
in the latter component of their motivation packages. By contrast, I have no place for
variation here. For me, there is only one decision rule, the rational one (at least as long
as I have not given up and acquiesced in many rationalities). And since I am dealing
only with rational subjects, there is only one decision rule for the subjects as well.
Still, I can mimic the types of Albert and Heiner. The temptation resistant (or, as I
would say, the commissive) type is decided early, whereas the greedy type is decided
late (though both types apply the same decision rule). And because I can decide when
to be decided, I can choose my type. However, this is not to say that my commissive
type follows their backtracking principle. My account rather proceeds in terms of
truncated reductions as explained, which agrees with the backtracking principle in the
Newcomb case, but perhaps not in general. Moreover, since my idea is that there is a
unique rationality, I may hope to dispense with signals (though, of course, they are
helpful in actual life as well as in the presentation of models). The common insight of
the predictee and the predictor (in the Newcomb case) or the players (in PD) into what

“In private communication Max Albert tells me they need not stick to the evolutionary approach and
could turn their story into one about individual rationality. This would indeed shift the discussion
lines between us.
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is rational in their kind of situation should suffice. But I grant that this may be a
mysterious part of my account, a part Albert and Heiner cannot share, all the more so,
.as they would certainly reject my conception of commitment.

Thus, I have listed seven or eight differences, and there may be more. This strikes
me as rather fruitful. It would be palliative to say that these differences confirm our
common intention. But they certainly span a fascinating field of further investigation
that may produce still better rationalizations of cooperation.
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