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How are Mathematical Objects Constituted?
A Structuralist Answer

In my view, structuralism as presented by Shapiro (1991, 1997), Resnik
(1991), and elsewhere offers the most plausible philosophy of mathematics:
Mathematics is about structures, indeed it is the science of pure structures.
Structures have no mysterious ontological status, and hence mathematics
is not ontologically mysterious, either. Again, it is no mystery how we can
acquire knowledge about structures and thus mathematical knowledge. We
find structures everywhere. Hence, if mathematics is about structures, we
can apply mathematics everywhere. In this way, structuralism promises to
offer straightforward answers to the most pressing problems in the philo-
sophy of mathematics.

However, there are not only structures, there are also mathematical ob-
jects, numbers, pairs, triangles, sets, etc. Concerning their nature, struc-
turalism tends to metaphorics, the most preferred metaphor being that
mathematical objects are places in mathematical structures. Maybe it is
not really necessary to say more, since it is only the structures that really
matter. Still, I think one should be explicit and precise about mathema-
tical objects, and this is what this paper is intended to achieve. I tend to
think that the amendment it adds to structuralism is both trivial and ob-
ligatory. Maybe, though, it is contested and hence of substantial interest.

In order to say what mathematical objects are one needs to have a
conception of general ontology. I shall present such a conception very sket-
chily in section 1, just as much as to able to explain my preferred version
of Leibniz’ principle in section 2, which will become important when I am
going to present and defend in section 3 how I think that mathematical
objects are constituted.
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1 Sketchy Remarks on General Ontology

General ontology, which embraces mathematical ontology, must start so-
mewhere, and I find it most natural to start with objects and proper-
ties. Maybe one can start elsewhere, with processes, or tropes, or possible
worlds, and maybe one can prove that the various starts lead to equivalent
results in some specifiable sense. Anyway, here I shall talk about a class
D of all possible objects and class P of all possible n-place properties (n
≥ 0) (taken in a wide sense so as to comprise relations). And the task is
to axiomatically characterize P and D in a substantial way (in principle
formalizable in second-order logic). Thus we gather all we can say about
objects and properties in general. It is clear that we thereby characterize
possible objects; which of them are actual is usually a matter of contingency
and not of philosophy. Hence I am certainly a realist about possibilities.

I am not at all clear about all the details of axiomatization. Let me
sketch only some basic assumptions. First, the class P of possible proper-
ties must have an algebraic structure. Thus, I assume that each class Pn

of all n-place properties is a Boolean algebra and thus comprises conjunc-
tive, disjunctive, and negative properties. Moreover, I assume that each
P ∈ Pn has a range of applicability A(P) ⊆ Dn; properties are usually
applicable to certain kinds of objects and not to others (stones or numbers
are neither awake nor asleep, for instance). Hence, one needs to say how
the Boolean structure interacts with the ranges of applicability. Moreover,
there are various assumptions relating properties having a different num-
ber of places. The most important is the application operation α that is
defined for a property P ∈ Pn and an object d ∈ D only when d is in A(P)
and that fills the n-th place of P thus turning P into a n-1-place property
α(P, d). If all places are filled we get a state of affairs; i.e., P0 forms the
important class of all possible states of affairs. (Hence, the application of
a property to an object creates a new item in our ontology and does not
assert that the property actually applies to the object.) Let us say that a
class of properties is algebraically closed if it is closed under this vaguely
sketched set of algebraic operations without the application operation α
and applicationally closed if it is moreover closed under α.

P contains two special properties, the identity relation ≡ (= is reser-
ved for metalinguistic identity) and the property E of actual existence
(or subsistence in Meinong’s sense). (The property of possible existence is
tautological; every possible object possibly exists.) An important notion is
that of a relational property; I think it is arguable that it is just the appli-
cation operation α that creates relational properties and that all the other
algebraic operations do not lead outside the realm of relational properties.
All the other properties not at least once generated by the application ope-
ration α are non-relational. ≡ and E are non-relational. But they are not
qualitative. Hence, I postulate a class Q of qualitative properties or quali-
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ties that is algebraically closed and does neither contain ≡ and E nor any
0-place properties (there are no purely qualitative states of affairs). The
algebraic closure of Q ∪ {≡, E} is the class of non-relational properties,
and the applicational closure of Q ∪ {≡, E} is the class P of all possible
properties. Often one would like to avoid including identity and existence
among the properties. Hence, I define the class P∗ of proper properties as
the applicational closure of Q.

A basic notion of general ontology is the actuality operator @ that ap-
plies to states of affairs and states them to be facts; of course, it has to
conform to the algebraic behavior of states of affairs.

The final notion to be introduced is perhaps the most important one,
namely that of ontological necessity basically represented by an operator N
that applies to a one-place property P ∈ P1 and an object d ∈ D and says
that P is an essential property of d. The conjunction of all the essential pro-
perties of d forms the essence of d. Corresponding to the distinctions above
we can also speak of the qualitative, non-relational, and proper essence of
an object. The idea is that an object can’t exist or keep its identity with-
out its essence; any object not having the essence of d must be different
from d. Thus, objecthood is fundamentally a modal notion. The further
conjecture not to be defended here is that this operator N, i.e. the ascrip-
tion of essential properties, is the foundation for all our talk of ontological
necessity. Hence, my essentialism is certainly close in spirit to Fine (1994),
though not in details. In particular, an operator � for states of affairs may
be introduced that asserts their ontological necessity.

2 Leibniz’ Principle

I just made the familiar, but somewhat sloppy assertion that an object
can’t exist or keep its identity without its essence. This raises the issue
of an adequate, i.e., a substantial and acceptable formulation of Leibniz’
principle; only by thinking about this issue can we gain a proper under-
standing of objecthood or of the so-called constitution of objects.

Leibniz’ principle has two parts; it asserts the indiscernibility of the
identical and the identity of the indiscernible. The first part was always
the trivial one. It does not hold for intensional contexts; but this only
means that intensional contexts do not express properties of the objects
denoted by the expressions occurring in these contexts—as Quine has em-
phasized many times (though his aim was to argue that there is at best
necessity de dicto). The issue is about the second part. Indiscernibility im-
plicitly quantifies over one-place properties; thus the crucial question is,
what is the domain of quantification?

First, it is clear that identity must be excluded. Inclusion of self-identity
runs empty, and, as is well known, inclusion of identity α(≡, d) with so-
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me object d renders Leibniz’ principle true, but trivial. The same holds
for existence. Possible existence is empty again. And actual existence E
should be excluded as well, because it cannot be the only feature distin-
guishing two objects. Try to imagine the contrary: two objects sharing all
qualitative or relational proper properties and still one existing and the
other not. This seems impossible to me; the reason, though, will lie in the
argument for the positive Leibniz’ principle I am defending below.

This leaves us with the proper properties. However, we cannot say that
d = d′ iff they share all proper one-place properties. As a rule, many proper
properties will apply to d only contingently, and hence there is no saying
whether or not these contingent properties apply to d as such; only d’s
essential properties apply to d in any case. This does not seem to be a
deep objection, though. The idea was rather to say that d = d′ iff they
actually share all proper properties, i.e., iff @(α(P, d)) exactly if @(α(P,
d′)) for all proper one-place properties P. However, this won’t do, either.
The reason is that in this version Leibniz’ principle would apply only to
actual objects (since @(α(P, d) entails @(α(E, d)), whereas it is intended
to apply to all possible objects d.

Thus, one might want to extend the idea that d = d′ iff they exist in the
same possible worlds and share all their proper properties in those pos-
sible worlds. This is plausible, no doubt. However, we cannot yet express
this extended idea, because in the ontological order envisaged in section 1
possible worlds emerge quite late as complex and in some sense comple-
te configurations of possible objects and possible properties, i.e., states of
affairs. (These would then be Wittgensteinian possible worlds. Of course,
there are also Lewisian possible worlds, i.e., (analogously) spatiotemporal-
ly maximal possible objects. General ontology should acknowledge both
kinds of worlds and clarify their relations.)

Should we wait then with fixing Leibniz’ principle till we have reached
these constructive stages? No, we should know beforehand about the rela-
tion between identity and indiscernibility; otherwise, we won’t be able to
say what possible worlds might be. For instance, part of saying this will
be to explain so-called transworld identity, i.e., to which extent different
worlds contain the same individuals. This extent may be null, as Lewis
(1986) and elsewhere claims by assuming that strictly speaking each in-
dividual exists only in one world and replacing transworld identity by his
counterpart relation; but if we want to allow for transworld identity, the
envisaged version of Leibniz’ principle is of no help at all, even if the con-
struction to be given should make it true. So, however we go about, it
seems to be a mistake to refer Leibniz’ principle to the properties objects
have actually or in other possible worlds.

The general point is this. We characterize possible objects through their
essential properties that cannot vary across the worlds, times, and places
at which they exist. The other properties, insofar they are applicable, may
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vary and open up the objects’ range of contingency, and they keep their
identity, of course, while changing within that range. Hence, it is inap-
propriate to characterize their identity by their contingent properties. The
properties that fix their identity, insofar it can be fixed at all, can only
be their essential properties. Therefore, we should take Leibniz’ principle
as referring only to the objects’ essential properties, i.e., considering the
previous conclusion, only to the objects’ proper essential properties.

Or can we draw a closer boundary? Within the classifications of the
previous section, the only narrower range of properties would be the qua-
litative properties. But even with respect to the actual qualitative proper-
ties, let alone the essential qualitative properties, Leibniz’ principle would
be simply false. There are so many examples for qualitatively indistin-
guishable objects (note that spatiotemporal location is always a relational
affair). And the knockdown argument is given by symmetric worlds and
worlds of eternal recurrence in which ever so many objects with the very
same qualitative properties exist. If different objects can be distinguished
at all, then mostly in relation to other objects. I am not aware of any
further classification of properties bearing on Leibniz’ principle. Thus my
preliminary conclusion is that when we are looking for a substantial and
acceptable version of Leibniz’ principle, we have to focus on the objects’
proper essential properties explicitly including the relational ones.

In fact, many salient essential properties are relational. For instance, for
many bodies their having the origin they have is essential, and this is a
relational property. For a natural number its position in the progression of
natural numbers is essential. And so on. Hence, the proper essence is not
only the only remaining, but also at least a plausible candidate for turning
Leibniz’ principle into a non-trivial truth. The candidate is this:

(L) for all d, d′ ∈ D, d = d′ if and only if d and d′ have the same
proper essence (proper Leibniz’ principle).

Indeed, I maintain that (L) is true.
The implication from left to right remains uncontestable. What about

the converse implication? Is the proper essence only necessary or also suf-
ficient to fix the identity of an object? If it is not sufficient, this would
entail in view of the above discussion that there is nothing else to fix the
identity of an object. Objecthood would then transcend all conceivable
access through properties; the identity of an object would be an inexpli-
cable brute fact. The doctrine of haecceitism is explained in the literature
in slightly diverging ways, perhaps because of diverging theoretical fra-
meworks. Within our essentialistic framework, I take acceptance versus
rejection of (L) to be the exact dividing line between anti-haecceitism and
haecceitism.

If haecceitism were true, which kind of situation would we have to con-
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ceive as possible? For instance, the following: I assume that my origin is
essential for me, i.e., that I have developed from this specific egg of my
mother and this specific sperm of my father (where the origin of the sperm
and the egg and of my mother and my father is essential for them in turn,
and so forth). If this were not sufficient to fix my identity, then it must
be possible that the world develops up to this sperm and egg in exactly
the same way as the actual world, that they unite in exactly the same way
as in this world, and still it is not me, but a phantom twin of mine that
thereby comes into existence. Why should this not be a possibility?

Note, by the way, that the same kind of scenario decides about the
issue whether actual existence may be among the properties relevant for
Leibniz’ principle. In this situation the only difference between me and my
phantom twin is that I exist and he does not. Thus, the anti-haecceitist
would be justified to exclude actual existence from the relevant properties,
whereas the haeceitist might hope to save Leibniz’ principle by including
it. This is why I above deferred the discussion of this issue to the present
argument.

I am not sure about this possibility. First, it is clear that if there is one
phantom twin, there are many, indeed infinitely many, and there does not
seem to be an upper boundary to the number of phantom twins. Secondly,
it strikes one as absolutely superfluous to postulate all these possibilities.
They do not do any work and appear whimsical. So, they seem to be a ca-
se for Occam’s razor that would reduce the many possibilities to just one,
namely me without phantom twins. Generally, though, I am not a friend of
Occam’s razor. Being economical is a good maxim in practical life, but not
in ontology. Accepting Occam’s razor just for the sake of economy leaves
me unconvinced. Still, if there is a good application of Occam’s razor, this
seems to be one.

The crucial point rather seems to be about unknowability. These situa-
tions are so defined as to be absolutely indistinguishable. There is no way
of telling whether I exist or my phantom twin (except by simply stipula-
ting that it is me who exists and not my phantom twin). We might even
consider two scenarios: one which looks like the actual world and in which
I have a normal continuous existence and another that also looks like the
actual world, in which, however, there are two guys alternating each year,
two phantoms, as it were, switching haecceitistically. Again, we could not
tell which is the actual scenario. Such cases seem to be absurd.

Is unknowability really the crucial point? If so, we seem to import some-
thing alien into our discussion. My intention was to do pure ontology, which
must certainly be kept free of epistemological considerations. This is the
only worry that makes me feel insecure. Perhaps pure ontology may or must
be conceived to be so whimsical. Still, the point is not about the know-
ability of truth, not about Putnam’s internal realism. I am sympathetic to
this as well (see Spohn 1991), but it would be an entirely different issue
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requiring entirely different arguments. No, the point is about the knowabi-
lity of possibility. No reasonable possibilities are lost by limiting possibility
in this way. This is why I accept (L), but presently I don’t know how to
deepen my argument. It must be clear, though, that by accepting (L) we
accept a really strong postulate tightly connecting possible objects in D
and possible properties in P.

It was perhaps unhappy that I chose cases of personal identity for the
sake of vividness, since these may be special; in any case, we seem espe-
cially affected by them. But I am presently not interested in persons (as
perhaps opposed to human beings). We could consider the same kind of
scenarios with respect to the chair I am sitting on, for which, I take it,
the circumstances of its production are essential as well; again we might
wonder about its phantom twins.

In my examples I have chosen relational properties concerning origin as
an example of relational essences. Let me add that I have done so only
because this seems so plausible for many empirical objects in space-time.
But nothing depended on this. The argument was intended to be gene-
ral: Leibniz’ principle has to refer to essential properties; it cannot refer
to identity and existence; hence we consider the strongest properties that
remain; and these form the proper essence of the objects referred to in (L).
The question which relational properties are part of that proper essence
does not play a role in that argument, even though properties of origin
may be most plausible in many cases.

Probably, doubts about (L) are raised by philosophers that have a much
weaker notion of an essence of an object. Some think, e.g., that only essen-
tial properties (or sortals in Strawson’s sense), i.e., properties that apply
essentially to all the objects to which they apply at all, belong to the es-
sence of an object. For them, any version of Leibniz’ principle referring to
essences must be unacceptable. However, they face the old question, what
else might fix the identity of an object? If the arguments above hold good,
they have to reply: nothing. Thus, the present brief discussion of haeccei-
tism bears on them, too.

Does the point about knowability I was raising depend in any way on
the fact that I am always alluding to relational essences because purely
qualitative or intrinsic essences are generally insufficient? I don’t think
that this distinction is relevant with regard to knowability. From my point
of view, it is not clear which objects have an intrinsic essence. They seem
to be special. Maybe it is only Lewisian possible worlds; everything inside
of them is essential to them; nothing could be different; and relations they
might have to something external are not relevant. Now, the point about
knowability arises for them as well. If (L) holds good, there is only one co-
py of each possible world. If one rejects (L), one allows for infinitely many
duplicates of each world. I am not aware that Lewis explicitly discusses
this issue. But if Lewis (1986) says that a possible world is a way a world
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might have been, he thereby seems to assume that for one way there is one
world and not many duplicates. So I conclude that acceptance or rejection
of (L) does not depend on relational versus purely intrinsic essences.

This brief section has touched deep issues and has made deep claims
that call for a thoroughgoing comparative discussion. I am well aware that
there are sharply diverging views that are not refuted in such a superficial
manner and many similar views worth inquiring for their subtle differences.
However, I cannot afford the required discussion in this brief note. So, let
us rush on to the application of (L) in the philosophy of mathematics.

3 Systems, Structures, and the Constitution of Mathematical Ob-
jects

Indeed, I believe that with these ideas about the constitution of objects in
general in the background we can now provide in a straightforward way
what I complained to be missing in current presentations of structuralism.
The basic categories of structuralism are systems and structures; they can
directly be defined in the framework sketched in section 1:

S = 〈R,E〉 is a system if and only if R ⊆ P and E ⊆ D such that R
and E are applicationally closed and the application operation α is always
defined w.r.t. R and E. In a nutshell, a system is just any closed part of our
ontology given by P and D. One could imagine other closure properties,
e.g., closure under ontological dependence, a notion I have not introduced
here; but here we may be content with the definition given. Thus, there
will be natural and unnatural systems.

It should be clear, though, that systems are not objects in our ontology,
at least not so far. They are something we can talk about only in our in-
formal set-theoretic metalanguage. As is well known, the projection of P
into D is always on the verge of paradox and hence something to be done
with great care.

What the facts within a system are can be expressed with the help of
the actuality operator @. Thereby, systems have certain shapes, and their
shapes can be similar or dissimilar. This can be more precisely captured in
the following way: Let S = 〈R,E〉 and S′ = 〈R′,E′〉 be two systems. Then
f is an isomorphism from S to S′ if and only if f is a bijection from R onto
R′ and from E onto E′ such that algebraic operations on P are preserved
under f and for all P ∈ R0 @(P) iff @(f(P)). S and S′ are isomorphic if
and only if there is an isomorphism from S to S′.

What, then, are structures? Intuitively, they are the forms or shapes of
systems; it is systems that have a structure. Hence, a structure is just a pro-
perty of systems (in our metatheoretic sense, i.e., not something belonging
P) or, what comes to the same, a relation between a set of properties and
a set of objects. However, this is still too wide to be an appropriate cha-
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racterization of structures. Structures are not any properties of systems,
but properties they have in virtue of the facts obtaining in the systems.
Thus, isomorphic systems must have the same structure. Finally, a struc-
ture must not be empty; there must be systems having that structure. So,
to sum up: a property S of systems is a structure if and only if some system
S has S and if for any two isomorphic systems S and S′ either both have
or both lack the property S.

The talk of structures is ubiquitous, but of course it is most prominent
in mathematics. Indeed, mathematics is in principle interested in struc-
tures so generally conceived (of course, uninteresting structures abound).
However, if our more specific concern is mathematical ontology, then we
have to focus on categorical structures—where K is a categorical structure
if and only if any two systems having the structure K are isomorphic.
(Since categorical structures are structures, they are consistent.) Let me
explain the relation between ontology and categoricity:

There is, for instance, the group structure. It is not categorical, but if
we fix the cardinality of a group to be a particular prime number, it is cate-
gorical. There is the structure of natural numbers as fixed in the axioms of
Peano arithmetic. Gödel’s famous incompleteness theorem (together with
Gentzen’s consistency proof) implied that it is not categorical, but has
nonstandard interpretations. However, it is well known that second-order
Peano arithmetic is categorical. Thus, the examples may be multiplied.

Let us consider natural numbers for a while. What are they? So far,
we have no notion of them. We have a lot of objects in D. (That is, we
don’t even know so far that they are a lot, because I have not stated any
existence axiom for objects and no axiom for producing objects out of
existing ones.) So, we have a lot of systems. And we may hope that some
systems have the categorical structure of the natural numbers, i.e., are
progressions. But do we thereby have the natural numbers? It does not
seem so. On the other hand, we may say that we have all there is to know
about the natural numbers; the progressive structure is, in a way, all there
is to them. Structuralists have introduced the metaphor of natural num-
bers being the places of the structure of natural numbers. There are many
different systems the objects of which fit into these places, but the places
of the structure are unique, and they are the numbers. Similar assertions
may already be found in Benacerraf (1965).

Note that the categoricity of the natural number structure is essential
for speaking of these places. Take groups, by contrast. There are many
non-isomorphic groups, and therefore it does not make sense to speak of
the places of the group structure. This is so even when we more specifical-
ly consider quaternary groups, for instance, since such groups, although
they must have four members, allow for non-isomorphic group operations.
Matters become different with, say, the binary or the ternary group, but
just because they are categorical structures.
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The metaphor of places in a structure (or of offices in an administration
as opposed to the occupants of these offices) is clear and powerful, but
it remains a metaphor. How then to turn such places into mathematical
objects? The classical way was to take some more or less natural distin-
guished system to represent the structure, for instance, the Frege numbers
or the von Neumann numbers. But this does not seem to be correct; what
we get thereby always seem to be representatives of numbers, never the
numbers themselves. Now, one can try to start from the structure, from
the property of systems itself, and to somehow abstract or construct from
it the intended objects. But again it seems no construction is involved. The
structuralists themselves are evasive concerning this issue; in any case, I
do not find a rigorous account of it in Resnik (1991) or Shapiro (1997). So,
how might one understand places in a structure as mathematical objects?

I propose to maximally short-circuit the answer. What characterizes the
places in a categorical structure is that these places have their locus in the
structure essentially and that there is nothing else to be said about them.
The number 2 is just that place of the natural number structure which is
essentially related to all the other places of that structure as specified in
that structure, which in particular is essentially the successor of 1 (which
in turn is essentially the successor of 0 which is essentially the only number
not being a successor) and which has no property beyond those necessita-
ted by the structure.

In other words: I propose the following powerful existence axiom for
objects in D and properties in P:

(M) For each categorical structure K there is a distinguished minimal
system SK = 〈RK,EK〉 such that

(a) SK has the structure K,
(b) for each P ∈ RK

0 , if @(P), then �P,
(c) for each P ∈ RK

0 A(P) = (EK)n.
The system SK is called the canonical system having K.

Here, condition (b) says that all the relations obtaining in the system
SK obtain there necessarily; mathematical truth is necessary truth, as
everybody agrees. Thus, the essence of all the objects in EK consists in
being related to the other objects in EK in the way they are. Condition
(c) says that the properties in RK do not apply beyond the objects in
the system SK. This is meant by characterizing the canonical system as
minimal. It is often suggested, e.g., in Benacerraf (1965), that such a
condition is intuitively correct.

It is not part of (M), and minimality does not mean, that the objects
in EK have no relations to objects outside—correctly so, I think. The
number 2, for instance, carries the relation “numbers” to many things,
e.g. to binary sets or to plural objects like couples, etc. This should
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certainly be allowed. May the objects in EK have more properties and
stand in more relations than contained in RK? Probably yes. What, e.g.,
about the natural number property “randomly chosen by Merlin”? This
is a relational property we may suppose to be applying exclusively to
natural numbers, and though it might be extensionally equivalent to some
property in Peano arithmetic, it is certainly not a member of the RK

pertinent to arithmetic.
(M) seems to be a powerful existence axiom. Is it really so? One

might think that it is only a conditional existence axiom. Only if P and
D are already so rich as to contain appropriate systems, structures are
realized, and only then (M) asserts also the existence of canonical systems
in the case of categorical structures. However, this is not the intended
reading of (M). (M) is intended as an unconditional existence postulate:
Whenever K is a categorical and hence consistent structure, the canonical
system SK and its objects exist and thereby shows the structure K to be
realizable—whether or not we can prove this. In order to also prove the
existence of these objects, we have to somehow prove the consistency and
categoricity of the structure K. But ontology as such is independent of
provability.

So, if (M) is as powerful as I say, is it threatened by paradox? I don’t
see how. If a structure is categorical it must be consistent. Moreover, (M)
implies that the canonical systems pertaining to two different categorical
structures are disjoint; they cannot generate conflict. So, I don’t see any
threat. (Indeed, the argument is almost a consistency proof, I find.)

Note, finally, that (M) accurately observe the proper Leibniz’ principle
(L). (M) specifies the relational essences of mathematical objects, and
according to (L) this is all we have to do in order to generate these objects
and to fix their identity. These essences are not specified individually.
Rather, they are specified for all objects of a canonical system at once; all
of them are mutually ontologically dependent. This seems the right thing
to say, and the whole point of the previous section was to be able to say
this.

All in all, (M) seems to capture exactly what we want. Moreover,
it preserves the structuralist answers to the basic questions in the
philosophy of mathematics mentioned in the introduction. If (M) tells us
what mathematical objects are, it also tells us how we can refer to them;
if we can refer to the structure, we can ipso facto refer to the canonical
system and its objects. And it tells us how we can know anything about
the mathematical objects. This is so because it is no mystery how we can
investigate, and know something about, categorical structures. Finally,
it explains how mathematics is applicable outside mathematics, since
it is no mystery how structures are applicable everywhere and since
mathematical objects are nothing but the objects of minimal realizations
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of such structures, which may thus be rediscovered everywhere. Of course,
these are not full answers; but they point in the right direction, I think.

However, to my knowledge, (M), though suggestive, has not been
proposed in the literature. Why? One reason is that structuralists have
not felt the urgency to introduce objects besides structures. Another
reason is certainly that one has to state the ontological framework more
or less in the way I did in order to be able to state (M) as above. A more
important reason, though, is that there are objections to this procedure.
I know of two, a minor and a major objection.

The minor objection is that one would like to say, e.g., that the natural
number 2 and the real number 2 are the same number. But according
to (M), by necessity, no natural number is a real number and vice versa.
However, this appears to me to be a palatable consequence. Strictly
speaking, it seems right to insist on this difference. And loosely speaking,
natural numbers are, of course, embeddable into the real numbers, and
then one might think about defining weaker senses of identity according
to which what is embeddable is identical. I shall not pursue here those
weaker senses.

The major objection is generated by so-called non-trivial automor-
phisms. An automorphism of a system is an isomorphism from that
system to itself. Identity is always such an automorphism, viz. the trivial
one. The system of natural numbers has no non-trivial automorphism;
that is why it is particularly suited to motivate the structuralist view
of mathematics. But Euclidean space, for instance, has uncountable
non-trivial automorphisms, rotations, dilations, and translations. Let us
look at the simplest example of that kind in order to see what the problem
is supposed to be:

A very simple structure is the dual structure; any system has the
dual structure iff it consists of exactly two different objects. The dual
structure is obviously categorical; since identity and difference are the
only relations that matter, any two systems consisting of two different
objects are isomorphic. So, according to (M) there is the canonical system
pertaining to the dual structure which we might call Duality. It consists
of two objects that we might call the One and the Other, and the only
things we can tell about these objects is that they are self-identical and
different from each other. Of course, this is a very shallow system, but
it has a non-trivial automorphism mapping the One onto the Other and
vice versa. So, why is the One the One and not the Other? The Other
could serve just as well as the One and the One as the Other. In short,
what distinguishes the two?

I cannot really see a mystery here. First, the One is identical to the
One and different from the Other, and hence it behaves in a different way
from the Other. This answer may appear to be too trivial, but it is only
so trivial because the dual structure is so poor of descriptive means. If
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it would contain more relations I could state more interesting differences
(despite possible automorphisms). Still, the answer seems unsatisfactory.
The complaint is that, if one were to put the One and the Other into an
urn, so to speak, and to draw one at random, it would be impossible to
tell which one was drawn. It seems the One is to be the One simply in
virtue of being so called. Yes precisely, and I do not see why this response
is not good enough. According to (M), the dual structure is realized in its
canonical system, which consists of two objects that we simply stipulate
to be the One and the Other. Once we have this canonical structure we
may correctly observe that it has a non-trivial automorphism, i.e., that
exchanging the roles of the One and the Other generates an isomorphic
system, indeed something more similar: an isomorphic system in which
the pertinent relations also apply necessarily and solely to the objects of
the system. That’s all.

Perhaps, though, this example is too simple to be easily assessed.
Let us hence look at a more complex, but more familiar example, say,
Euclidean space. How does my response carry over to it? Well, there is
the categorical axiomatization of three-dimensional Euclidean space. It
provides the structure we are considering. It has a canonical system. Here
they are, all the points of this system, each self-identical and standing
in the various geometrical relations to all the others. Let’s give them
names. Let us stipulatively and rigidly call one point (0,0,0), and let
us stipulatively and rigidly erect a trihedron with (0,0,0) in its center
and with (1,0,0), (0,1,0), and (0,0,1) as its stipulated end-points. This
helps us to a name for each point in Euclidean space in the familiar way.
Starting from this canonical system, we may again observe that each
rotation, dilation, and translation generates an isomorphic system (with
the stronger similarity already noted w.r.t. duality).

Again, however, you may ask which of the uncountably many points
spread out in space is the point (0,0,0)? What are you here asking for?
Should I point at (0,0,0)? Of course, I can’t. I cannot point at objects
that are not in real space and time. You might have asked for deferred
ostension. Again, that’s either easy or impossible, depending on whether
or not you ask for a substantial account of the relevant deference. However,
I can tell you what the point (0,0,0) is. In just these words, or with more
complicated descriptions ultimately referring to the basic trihedron; there
are no other ways of referring to it. If you still miss something I do not
know what it is. At least, this is what I have to say from the point of view
of (M). It appears good enough to me.
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