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Dependency Equilibria

Wolfgang Spohn†

This paper introduces a new equilibrium concept for normal form games called de-
pendency equilibrium; it is defined, exemplified, and compared with Nash and corre-
lated equilibria in Sections 2–4. Its philosophical motive is to rationalize cooperation
in the one shot prisoners’ dilemma. A brief discussion of its meaningfulness in Section
5 concludes the paper.

1. Introduction. In this note I would like to present and briefly discuss a
new equilibrium concept for game theory that I call dependency equilib-
rium. When it occurred to me 24 years ago, I put it aside because it
seemed to me of doubtful sense. I do not know whether anybody had the
same idea; if so, he or she may have dismissed it for the same reason. In
the meantime, I have changed my mind; I think it can be backed up by
a meaningful story. Hence, I think the concept at least deserves a hearing,
even though the longer story can at best be feebly indicated here.

The driving force behind this concept is, once more, the great riddle
posed by the Prisoners’ Dilemma (PD). This has elicited a vast literature
and a large number of astonishingly varied attempts to undermine de-
fection as the only rational solution and establish cooperation as a rational
possibility, at least in the iterated case. But the hard case, it seems to me,
still stands unshaken. Under appropriate conditions backward induction
is valid;1 hence, given full rationality (instead of some form of ‘bounded
rationality’) and sufficient common knowledge, continued defection is the
only solution in the finitely iterated PD. The same conclusion is reached
via the iterated elimination of weakly dominated strategies.2 I find this

†To contact the author, please write to: Department of Philosophy, University of
Konstanz, 78457 Konstanz, Germany; e-mail: Wolfgang.Spohn@uni-konstanz.de.

1. Cf. Aumann 1995, but see also the excellent discussion in Rabinowicz 2000.

2. Iterated elimination of weakly dominated strategies is a reasonable procedure when
applied to the iterated PD, all the more so as the criticisms this may meet compared
to the elimination of strongly dominated strategies do not obtain in this application.
See, e.g., Myerson 1991, Sections 2.5 and 3.1.
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conclusion highly disconcerting; it amounts to an outright refutation of
the underlying theory of rationality. Moreover, I find that all the sophis-
ticated observations made so far about PD have failed to tone down this
harsh conclusion. Cooperation must remain at least a rational possibility
in the finitely iterated PD, and under ideal conditions even more so than
under less ideal ones. Thus, something needs to be changed in standard
rationality theory, that is, decision and game theory. After a long time of
thinking otherwise, I have come to the conclusion that it is the one-shot
case that needs to be reconsidered, and this is what I try to do with the
new equilibrium concept. Sections 2–4 will introduce and exemplify the
new concept and offer a few technical observations. Section 5 is devoted
to a brief discussion.

2. Nash, Correlated, and Dependency Equilibria. Here is an outline of the
new concept. For comparison, it is useful to rehearse Nash equilibria and
Aumann’s correlated equilibria. We shall deal only with normal form
games. Hence, the refinements of Nash equilibria relating to the extensive
form are outside of our focus. It suffices to consider two-person games.
While I hardly develop the theory here, it may be routinely extended, it
seems, to n-person games.

Thus, let be the set of pure strategies of Ann (rowA p {a , . . . , a }1 m

chooser) and the set of pure strategies of Bob (columnB p {b , . . . , b }1 n

chooser). Let u and v be the utility functions of Ann and Bob, respectively,
from into ; we abbreviate and .A # B � u(a , b ) p u v(a , b ) p vi k ik i k ik

Moreover, let S be the set of mixed strategies of Ann, that is, the set
of probability distributions over A. Hence, ifs p As , . . . , s S p (s ) � S1 m i

and only if for and . Likewise, let T be the
m

s ≥ 0 i p 1, . . . , m � s p 1i iip1

set of mixed strategies of Bob. Mixed strategies have an ambiguous in-
terpretation. Usually, the probabilities are thought to be intentional
mixtures by each player. But it is equally appropriate to interpret them
as representing the beliefs of others about the player. Indeed, in relation
to dependency equilibria, this will be the only meaningful interpretation.

We shall envisage the possibility that the actions in a game may be
governed by any probability distribution whatsoever. Let P be the set of
distributions over . Thus, if and only if forA # B p p ( p ) � P p ≥ 0ik ik

all and and . Each has ai p 1, . . . , m k p 1, . . . , n � p p 1 p � Piki, k

marginal s over A and a marginal t over B. But since p may contain
arbitrary dependencies between A and B, it is usually not the product of
the marginals s and t. This is all the terminology we shall need.

As is well known, is defined as a Nash equilibrium if andAs,tS � S # T
only if for all , (or, equivalently, for allj p 1, . . . , m � s t u ≥ � t ui k ik k jki, k k

, ), and if the corresponding condition holdss* � S � s t u ≥ � s*t ui k ik i k iki, k i, k

for the other player. Hence, in a Nash equilibrium, neither Ann nor Bob
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can raise her or his expected utility by changing from her or his equilibrium
strategy to some other pure or mixed strategy, given that the other player
sticks to his or her equilibrium strategy. There is no need here to rehearse
the standard rationale for Nash equilibria, and there is no time to discuss
their strengths and weaknesses.3

Obviously Ann’s and Bob’s choices from A and B are independent in
a Nash equilibrium. This is an assumption I would like to abandon (for
reasons that will become clear later on). Aumann (1974) has introduced
an equilibrium concept that allows for dependence between the players.
Here is the definition from Aumann 1987 (which is a bit simpler and less
general than his original definition, the statement of which would require
us to introduce additional structure): Let have marginals andp � P s � S

. Then p is a correlated equilibrium if and only if for allt � T j p
, (or, equivalently, for all ,1, . . . , m � p u ≥ � t u s* � Sik ik k jki, k k

) and if the corresponding condition holds for the� p u ≥ � s*t uik ik i k iki, k i, k

other player. The most straightforward way to understand this, which is
offered by Aumann himself (1987, 3ff.), is the following: Somehow, Ann
and Bob agree on a joint distribution over the strategy combinations or
outcomes of their game. One combination is chosen at random according
to this distribution, and each player is told only his or her part of the
combination. If no player can raise his or her expected utility by breaking
his or her part of the agreed joint distribution and choosing some other
pure or mixed strategy instead, then this joint distribution is a correlated
equilibrium. Thus, correlated equilibria are self enforcing, they do not
need external help from sanctions or agreements.

Correlated equilibria appear to fall outside noncooperative game theory.
However, one can model the selection of a joint distribution for the orig-
inal game as an additional move in a game enlarged by preplay com-
munication, and it then turns out that all and only the Nash equilibria
of the enlarged game correspond to correlated equilibria in the original
game.4 This reflects the fact that correlated equilibria, despite their allow-
ance of dependence, are still noncooperative in essence. The players’ stan-
dard of comparison is still whether they might be better off by indepen-
dently doing something else, where their expectations about the other
player are given by the marginal over their strategies.

This standard of comparison is changed in the dependency equilibria
introduced below. It is not the expected utility given the marginal for the
other player, but rather the conditional expected utility given the condi-
tional probabilities determined by the joint distribution.

3. This has been done many times, also by myself in Spohn 1982.

4. For details, see Myerson 1991, 255–257.
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Here is a first attempt to formalize this idea: Let have marginalsp � P
and . Let be the probability of given (i.e.,s � S t � T p b a p pkFi k i kFi

) and the probability for given . Now, p is a dependencyp /s p p p /t a bik i iFk ik k i k

equilibrium if and only if for all i with and all ,s 1 0 j p 1, . . . , mi

and if the corresponding condition holds for the other� p u ≥ � p ukFi ik kFj jkk k

player. Thus, in a dependency equilibrium each player maximizes their
conditional expected utility with whatever they do with positive proba-
bility according to the joint equilibrium distribution.

This provokes at least three immediate remarks. The first point to be
taken up is a technical flaw in the above definition. If some has prob-aj

ability 0 in the joint distribution p, that is, if , then no conditionals p 0j

probability given is defined. Yet, the fact that should not rendera s p 0j j

the other figures meaningless. This kind of problem is standardly solved
by engaging in epsilontics, that is, by approaching probability 0 by ever
smaller positive probabilities. This strategy is easily applied here. Let us
call a distribution strictly positive if and only if for all i andp � P p 1 0ik

k. Now we correct my flawed definition by an approximating sequence
of strictly positive distributions; this is my official definition: is ap � P
dependency equilibrium if and only if there is a sequence of strictlyr( p )r��

positive distributions such that and for all i with andrlim p p p s 1 0rr� i

, and for all k with and allr rj p 1, . . . , m lim� p u ≥ lim� p u t 1 0kFi ik kFj jk kk k

, . All the conditional probabilitiesr rl p 1, . . . , n lim� p v ≥ lim� p viFk ik iFl ili i

appearing in this definition are well defined. Though the definition looks
more complicated now, the intuitive characterization given above still fits
perfectly.

After this correction, the second point is that dependency equilibria
seem to be well in line with decision theory. Most textbooks state that
the general decision rule is to maximize conditional expected utility. Savage
(1954) still assumed a clear separation of states of the world having prob-
abilities and consequences carrying utilities; consequences are then de-
termined by acts and states. The pertinent decision rule is simply maxi-
mizing expected utility. However, this separation is often not feasible, and
the more general picture put forward by Fishburn (1964) is that everything
is probabilistically assessed (except perhaps the acts themselves), though
only conditionally on the possible acts. In this general picture, maximizing
conditional expected utility is the appropriate decision rule. It may seem
surprising that this situation in decision theory has so far not been reflected
in equilibrium theory.

But this is not astonishing at all; that is my third point. The idea behind
the general picture is that the conditional probabilities somehow hide
causal dependencies which are more generally modeled in a probabilistic
and not in a deterministic way (as Savage 1954 did). In the light of this
idea, dependency equilibria are a mystery. The causal independence of
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the choices of the players seems to be a defining characteristic of games
in normal form. If Bob chooses after observing what Ann has chosen,
then, of course, we have a clear case of a one way causal dependence.
But how can Ann’s choice then depend on Bob’s? That would amount
to a causal loop, and dependency equilibria seem to assume just this
impossibility. However, the case is not as hopeless as it seems, as I shall
try to indicate in Section 5. For the time being, let us look a little more
closely at the properties of dependency equilibria.

3. Some Examples. The computation of dependency equilibria seems to
be a messy business. Obviously it requires one to solve quadratic equations
in two-person games, and the more persons, the higher the order of the
polynomials we become entangled with. All linear ease is lost. Therefore,
I cannot offer a well developed theory of dependency equilibria. Let us
instead look at some much discussed simple games in order to develop a
feeling for the new equilibria, namely, Matching Pennies, Bach or Stra-
vinsky (BoS), Hawk and Dove, and PD. This discussion becomes more
vivid when we consider the other kinds of equilibria for comparison.
Afterwards, we can infer some simple theorems from these examples.

Matching Pennies. This is the paradigm for a pure conflict, that is, a
zero-sum or constant-sum game. It is characterized by the following utility
matrix:

v
u b1 b2

a1
0

1
1

0

a2
1

0
0

1

It is clear that it has exactly one Nash equilibrium and exactly one cor-
related equilibrium. It is characterized by the following distribution:

p b1 b2

a1 1/4 1/4

a2 1/4 1/4

By contrast, it is easily verified that the dependency equilibria of this game
may be biased toward the diagonal or toward the counter-diagonal:
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Figure 1. ‘7’ indicates Nash and correlated equilibria, and ‘-’ indicates dependency
equilibrium.

p b1 b2

a1 x 1/2 � x

a2 1/2 � x x

where . It is instructive to represent the players’ expected util-0 ≤ x ≤ 1/2
ities in the various equilibria by a joint diagram (Figure 1).

Bach or Stravinsky. This game is a paradigmatic coordination game
superimposed by a conflict. Its utility matrix is:

v
u b1 b2

a1
1

2
0

0

a2
0

0
2

1

As is well known, this game has three Nash equilibria, two in pure strat-
egies (the players can meet on the diagonal) and a mixed one:

p b1 b2 p b1 b2 p b1 b2

a1 1 0 a1 0 0 a1 2/9 4/9

a2 0 0 a2 0 1 a2 1/9 2/9

The correlated equilibria of this game form just the convex closure of the
Nash equilibria:
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Figure 2. ‘7’ indicates Nash equilibrium, ‘--’ indicates correlated equilibrium, and ‘7,-
’ indicates dependency equilibrium.

p b1 b2

a1 x ,≤ 2x 2y

a2 ,≤ x/2 y/2 y

The dependency equilibria are again of three kinds:

p b1 b2 p b1 b2

a1 1 0 a1 0 0

a2 0 0 a2 0 1

provided the zero rows and columns are approximated in an appropriate
way, and

p b1 b2

a1 x 2/3 � x

a2 1/3 � x x

where . The players’ expected utilities in these equilibria are0 ≤ x ≤ 1/3
shown in Figure 2. Quite similar observations can be made about pure
coordination games without conflict, like meeting at one of two places.

Hawk and Dove. This game represents another very frequent type of
social situation. It will show even more incongruity among the equilibrium
concepts. So far, one may have thought that the correlated equilibria are
the convex closures of the Nash equilibria. But this is not true. I shall
consider the utility matrix preferred by Aumann because it illustrates that
there are correlated equilibria that Pareto-dominate mixtures of Nash
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equilibria; hence, both players may improve by turning to correlated equi-
libria. However, they may improve even more by looking at dependency
equilibria. Here is the utility matrix:

v
u b1 b2

a1
6

6
7

2

a2
2

7
0

0

There are again three Nash equilibria with the following expected utilities
(see also Figure 3):

p b1 b2 p b1 b2 p b1 b2

a1 0 1 a1 0 0 a1 4/9 2/9

a2 0 0 a2 1 0 a2 2/9 1/9

The correlated equilibria reach out further on the diagonal (again see
Figure 3). They are given by

p b1 b2

a1 x y

a2 z w

where and , , z, and they yield the ex-x � y � z � w p 1 0 ≤ x/2 2w ≤ y
pected utilities shown in Figure 4.

Again, we have three kinds of dependency equilibria:

p b1 b2 p b1 b2

a1 0 1 a1 0 0

a2 0 0 a2 1 0

provided the zero rows and columns are approximated in an appropriate
way, and

p b1 b2

a1 x y

a2 y 1 � x � 2y

where . This makes evident that2�y p (1/18)(2 � 15x � 4 � 156x � 9x )
we slip into quadratic equations. The corresponding expected utilities
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Figure 3.

Figure 4.

reach out still further on the diagonal (see Figure 5). Clearly 6 1 21/4 1

, the maximal values reached on the diagonals of the three diagrams.14/3
Prisoners’ Dilemma. This is my final and perhaps most important ex-

ample. Its utility matrix is

v
u b1 b2

a1
2

2
3

0

a2
0

3
1

1

There is only one Nash equilibrium:
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Figure 5.

p b1 b2

a1 0 0

a2 0 1

Indeed, defection ( or, respectively, ) strictly dominates cooperationp a b2 2

( or ); hence, there can be no other Nash equilibrium. For the samep a b1 1

reason, this is also the only correlated equilibrium.
The dependency equilibria, by contrast, have a much richer structure.

They come in two kinds:

p b1 b2

a1 (1/2)x(1 � x) (1/2)x(1 � x)

a2 (1/2)x(1 � x) (1/2)(1 � x)(2 � x)

where , and0 ≤ x ≤ 1

p b1 b2

a1 (3/8)(1 � x)(1 � x) (1/8)(1 � x)(1 � 3x)

a2 (1/8)(1 � x)(1 � 3x) (3/8)(1 � x)(1 � x)

where . The expected utilities in all these equilibria look�1/3 ≤ x ≤ 1/3
very simple (see Figure 6).

It is of particular interest here that joint cooperation is among the
dependency equilibria; indeed it weakly Pareto-dominates all other such
equilibria. Of course, it is a well worn and very simple observation that
such dependence between the players may make them cooperate. But now
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Figure 6. ‘7’ indicates Nash and correlated equilibria, and ‘-’ indicates dependency
equilibrium.

we have found an equilibrium concept that underpins this observation.
Moreover, we have seen that correlated equilibria do not provide the right
kind of dependence for this purpose—they succumb to defection. Evi-
dently, all this is strong motivation to try to make good sense of depen-
dency equilibria.

4. Some Observations. The examples suggest some simple generalizations,
all of which can be extended, it seems, to the n-person case.

Observation 1. Each Nash equilibrium of a two-person game is a
correlated equilibrium. (Proof: Just look at the definitions.)

Observation 2. The set of correlated equilibria of a two-person game
is convex.

Again, the proof is evident from the definition. Of course, we find both
observations already in Aumann (1974, Section 4). They entail that the
convex closure of the Nash equilibria of a game is a subset of the set of
correlated equilibria.

The next observations are closer to our concerns:

Observation 3. Each Nash equilibrium of a two-person game is a
dependency equilibrium. (Proof: Again, just look at the definitions.)

Observation 4. Generally, dependency equilibria are not included
among the correlated equilibria, and vice versa. (Proof: Just look at
the examples above.)

In BoS we saw that there are also very bad dependency equilibria, and
in PD we luckily found one dependency equilibrium weakly Pareto-dom-
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inating all the others. This suggests the following question: Which de-
pendency equilibria are Pareto-optimal within the set of dependency equi-
libria? Clearly, these are the most interesting or attractive ones. Here is
a partial answer:

Observation 5. Let be a Nash equilibrium and suppose thatq p s � t
the pure strategy combination is at least as good as this equi-(a , b )i k

librium, that is, that and . Then this com-u ≥ � s t u v ≥ � s t vik j l jl ik j l jlj, l j, l

bination, or p with , is a dependency equilibrium.p p 1ik

Proof: Define , and assume that is strictlyr rp p [(r � 1)/r]p � (1/r)q p
positive. Obviously . Moreover, , and forr rlim p p p lim � p u p urr� rr� lFi il ikl

all and all r, . But now we haverj ( i � p u p � t u u ≥ � s t u ≥lFj jl l jl ik j l jll l j,l

: the first inequality holds by assumption, and the second, because� t ul jll

is a Nash equilibrium. The same considerations apply to the otherAs, tS
player. Hence, given our assumption, p with is a dependencyp p 1ik

equilibrium.
If should not be strictly positive, modify q such that those withrp aj

and receive some positive probability by q, and such thatj ( i s(a ) p 0j

, and correspondingly for those with and .q(bFa ) p t b l ( k t(b ) p 0l j l l l

Then the modified is strictly positive, and the same proof goes through.rp
�

In PD, Hawk and Dove, and BoS this observation fully satisfies the
quest for the Pareto-optima among the dependency equilibria. But it does
not generally do so. In Matching Pennies no pure strategy combination
is Pareto-better than the Nash equilibrium; yet mixtures of them in which
equivalent strategy combinations have equal weight are dependency
equilibria.

5. Discussion. As I have already indicated, dependency equilibria seem
to be causal nonsense. Normal form games seem to be characterized by
the causal independence of the actions of the players; in extensive form
games, one action can influence the other, but there cannot exist causal
loops, as apparently assumed by dependency equilibria. This objection
is, however, already undermined by Reichenbach’s common cause prin-
ciple, according to which such a probabilistic correlation may always point
to some common cause. So, in order to get clear about this point, we
would have to engage in a most careful discussion of the causal structure
of decision and game situations.

We cannot do this in the short space given here. Let me only indicate
a few points. It is a most natural assumption that an action is caused by
the decision situation of the agent. This is an internal state of the agent,
her view of the situation consisting of her beliefs and desires, intentions,
etc. Decision and game theory model such decision situations. The whole
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model then represents the situation, but the situation itself is not an item
in the model. It can be made so only in more complex models that I call
‘reflexive decision models’, something started in Eells (1982) and usefully
applied to Newcomb’s problem, but not further developed to my knowl-
edge. Only in such reflexive models can the causation of the agent’s actions
be made explicit. They allow for a most useful separation of decision and
action, they allow considering possible side effects of a decision situation
besides the ensuing action, which may crucially matter to the decision,
and they allow for a useful theory of commitment and a unification of
sophisticated and resolute choice in the sense of McClennen (1990).5

Such considerations can be used, for example, to make a case for one-
boxing in Newcomb’s problem (from a causal point of view!). This already
suggests a significance for PD, which is well known to be conceivable as
a two-sided Newcomb problem. The point then is to conceive the decision
situations of the players as somehow jointly caused and as entangled in
a dependency equilibrium. The players are free to break the entanglement
(in which case they defect) or to maintain the entanglement (in which case
they are able to rationalize cooperation). However, by no means are the
players assumed to believe in a causal loop between their actions; rather,
they are assumed to believe in the possible entanglement as providing a
common cause of their actions. This, in any case, would be my line of
defense, if space would permit it.

So many pages have been filled with PD, and many at least resembling
mine in spirit. So, let me add some comparative remarks, which may shed
some further light on the new equilibrium concept.

1. Some philosophers may claim to have offered a much simpler ratio-
nalization of cooperation in the one-shot PD than the one I have put
forward, namely, via the so called mirror principle (cf. Davis 1977 and
Sorensen 1985), which says that whenever Ann and Bob are in the same
decision situation, they act in the same way. In PD they are in the same
situation because of the symmetry of the story. Hence, only joint coop-
eration and joint defection are possible outcomes. If they believe in the
principle, they also believe that these are the only possible outcomes.
Hence, since for both joint cooperation is better than joint defection, it
is rational for both to cooperate.

This argument is entailed by my account, so I agree with its conclusion.
But I find it too quick. It avoids causal considerations, and it does not
present a theory of rationality that would entail the rationality of co-
operation for Ann and Bob in their particular situation. Therefore, it does
not exclude that mutual defection satisfies the mirror principle as well, as

5. All of this is more fully explained in Spohn 2003.
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the standard theory has it. In a way, it takes its conclusion for granted.
By contrast, my account attempts to back up the mirror argument by
specifying a theory of rationality in which the rationality of cooperation
emerges as a conclusion. Moreover, it is hard to see how to apply the
mirror principle when the situation is not symmetric; but there is no such
presupposition in dependency equilibria.

2. In a similar spirit, some game theorists may say that my account
really belongs to cooperative game theory, within which the cooperative
solution of PD is no mystery anyway. However, if we follow Osborne and
Rubinstein (1994, 255ff.) and take cooperative game theory to refer to
groups of players without considering “the details of how groups of play-
ers function internally,” this is not true; dependency equilibria are intended
to rationalize cooperation as an account of individual rationality. If we
follow Harsanyi and Selten (1988, 1) instead and define “cooperative
games as those permitting enforceable agreements,” it is again not true;
my rationalization of cooperation refrained from alluding to enforceable
agreements. Whether it will succeed is, of course, another question. In
any case, dependency equilibria may provide a story about individual
rationality backing up cooperative game theory to some extent.

3. To continue on the issue, Harsanyi and Selten (1988, 4–7) showed
how cooperation can emerge as an ordinary Nash equilibrium in a non-
cooperative PD by adding a preplay of commitment moves. Ann starts
making her conditional commitment move (“I commit myself to coop-
erate, if Bob does so as well”); Bob follows with his unconditional com-
mitment move (“I commit myself to cooperate”); and then both cooperate.
Thereby we do not even have to assume a causal interdependence of the
players’ decision situations; the dependence is successively generated by
the commitment moves. But, of course, the idea of Harsanyi and Selten
is that there is some external mechanism sufficiently lowering the payoffs
in case the commitments are violated. By contrast, the indicated account
of commitment provided by reflexive decision theory hopes to do without
such external sanctions.

4. My proposal closely resembles the old theory of conjectural variations
about duopoly that is well reviewed in Friedman 1983, Sections 5.1–5.2).
He concludes (107) that “at the level of simultaneous decisions in a single
period model, conjectural variation is not meaningful,” and hence inter-
prets the old single period models of conjectural variation as being im-
plicitly about a dynamical process that has been more recently treated in
multiperiod models. So, does this verdict apply as well to the account
offered here? Yes, at least according to received view: the effective objec-
tion has been that single period conjectural variations assume a causal
dependence that simply does not exist. However, the longer story I have
indicated above tries to dispel exactly this objection. Whether my argu-
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ment would help making sense of the theory of conjectural variations is,
however, beyond my judgment.

5. I would like at least to mention the work of Albert and Heiner (2003)
and Heiner, Albert, and Schmidtchen (2000).6 They also seek a causally
unassailable rationalization of one boxing in Newcomb’s problem (some-
thing I have only mentioned here) and proceed to generalize their account
to a treatment of the one-shot PD. There are obvious differences, due to
the fact that, prima facie, the setting of their story is evolutionary game
theory, which provides quite a different frame of interpretation. Still, the
similarities in intention and procedure are quite remarkable.
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