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1. Introduction

There are too many theories of causation to get into the focus of a small paper.

But there are two in which I have a natural interest since they look almost the same:

namely the theory of Clark Glymour, Peter Spirtes, and Richard Scheines, so vi-

gorously developed since 19831 and most richly stated in Spirtes et al. (1993)

(whence I shall refer to it as the SGS theory), and my own theory, published since

1978 in a somewhat irregular way. They look almost the same, but the underlying

conceptions turn out to be quite dissimilar. Hence, the original idea for this paper

was a modest one: simply to compare the philosophical basics of the two theories.

However, no paper without a thesis! Therefore I have sharpened my comparison to

the thesis written right into the title.

The plan of the paper is simple. Section 2 sets out the formal theory of Bayesian

nets in an almost informal way, and section 3 analyses the philosophical differences

hidden in the common grounds. Section 4 briefly extends the comparison to the

treatment of actions or interventions.

2. Causal Graphs and Bayesian Nets

Whenever we want to conduct a causal analysis in a given empirical field, we

have to start by conceptually structuring this field. This is usually done by speci-

fying a frame or a set U of variables characterizing the field. Each variable A ∈ U
                                                
1  The acknowledgments of Glymour et al. (1987) report that the work on that book took about
four years.
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can take some value from the set of its possible values. Thus, by specifying a value

for each variable in U we specify some possible small world, some way how the

empirical field characterized by the frame U may realize.

Variables should be conceived here as specific and not as generic variables. A

generic variable would be something like social status or annual income which may

take different values for different persons at different times. However, it is hard to

find any causal order among generic variables. One then finds causal circles – high

social status tends to generate high annual income, and vice versa –, and one even

finds apparent self-causation – social status tends to reproduce itself.

By contrast, a specific variable is something like my social status today or my

annual income in 1998, not conceived as it actually is, which is given by some par-

ticular figure, but conceived as something which may take any value, say, between 0

and 1 billion Euros. There is a proper causal order among specific variables. For

instance, there is no self-causation. If my social status today is high, it tends to be

high tomorrow as well (though there is no guarantee, see the sudden fall of politi-

cians), but this is a causal relation between two different specific variables.

Indeed, the causal structure whithin the frame U of specific variables is neatly

captured by a causal graph over U which is nothing but a DAG, a directed acyclic

graph <U,E> with U being its set of nodes and E being its set of edges. That the

graph is directed means that its edges are directed, i.e. that E is an asymmetric rela-

tion over U, and that it is acyclic means that the directed edges don’t form circles,

i.e. that even the transitive closure of E is asymmetric.

Let me give a standard example (used by Pearl 1998 and elsewhere): U consists

of five variables:

A1: season of a given year (spring, summer, fall, winter)

A2: rain fall during the season (yes, no)

A3: sprinkler during season (on, off)

A4: wet pavement (yes, no)

A5: slippery pavement (yes, no)

which we might plausibly arrange into the following DAG (if the variables refer to

some place in Southern California):
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A1 (season)

(rain fall) A2 A3 (sprinkler)

A4 (wet pavement)

A5 (slippery pavement)

The DAG <U,E> becomes a causal graph, if the edges in E are given a causal

interpretation, i.e. if an edge A → B is interpreted as stating that A is directly influ-

encing B, or that B is directly causally dependent on A, within the given frame U.

Thus, so far the DAGs simply express the formal properties of direct causal depen-

dence.

Specific variables have a specific temporal location. Hence, the variables in U are

temporally ordered. So I shall add the natural constraint that in any edge A → B of a

causal graph A temporally precedes B. Some philosophers oppose, but this is not the

place to discus their worries.

The next and crucial step is to introduce probabilities. The frame U generates, as

mentioned, a space of possible small worlds the subsets of which may take proba-

bilities according to some probability measure P. In particular, each event of the

form {A = a}, stating that the variable A takes the value a, gets a probability. Ac-

cordingly, there is probabilistic dependence and independence among variables.

More explicitly, we may define the sets X and Y ⊆ U of variables to be probabili-

stically independent given or conditional on the set Z ⊆ U, i.e. X ⊥P Y / Z, iff for all

x,y,z  P(X = x | Y = y, Z = z) = P(X = x | Z = z), i.e. iff, given any realization z of Z,

any event about X is probabilistically independent of any event about Y.

Following SGS, we can state two conditions concerning a DAG <U,E> and a

measure P for U, in which Pa(A) denotes the set of parents or immediate prede-

cessors of the node A, Nd (A) denotes the set of non-descendants of A, and Pr(A)

denotes the set of nodes temporally preceding A.

There is, first, the Markov condition (cf. Spirtes et al. 1993, pp. 53ff.) stating that

for each A ∈ U  A ⊥P Nd(A) / Pa(A). i.e. that each variable is independent from all

its non-descendants given its parents. If the DAG agrees with the given temporal

order this condition is equivalent to the apparently weaker condition that for each A
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∈ U  A ⊥P Pr(A) / Pa(A). This condition is also equivalent to the decomposability

of P:

P(U = u) = 
A U∈
∏ P(A = a) | Pa(A) = x) ,

where a and x, respectively, are the realizations of A and Pa(A) according to the re-

alization u of U. This decomposability harbors enormous computational advantages

so ingeniously exploited by Pearl (1988) and others.

For instance, the above example satisfies the Markov condition iff

A3 ⊥P A2 / A1,

A4 ⊥P A1 / {A2,A3}, and

A5 ⊥P {A1,A2,A3} / A4,

or iff, for all a1,...,a5 realizing A1,...,A5

P(a1,...,a5) = P(a1)·P(a2 | a1)·P(a3 | a1)·P(a4 | a2,a3)·P(a5 | a4).

There is, second, the minimality condition (cf. Spirtes et al. 1993, pp. 53f.) stat-

ing that no proper subgraph of the DAG <U,E> satisfies the Markov condition.

Following Pearl (1988, p. 119) a DAG satisfying the Markov and the minimality

condition is called a Bayesian net(work). In a Bayesian net, the parents of a node

thus form the smallest set of variables for which the relevant conditional independ-

ence holds.

For instance, the above example satisfies the minimality condition iff none of the

following independencies holds:

A2 ⊥P A1,

A3 ⊥P A1,

A4 ⊥P A2 / A3 and A4 ⊥P A3 / A2, and

A5 ⊥P A4 .

SGS further introduce a third condition, the faithfulness condition (cf. Spirtes et

al. 1993, pp. 56), which is, however, more complicated and slightly less important so

that I shall neglect it in the sequel.
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So far, I have only introduced two distinct graph-theoretical representations: one

of causal dependence between variables and one of conditional probabilistic

dependence. However, the core observation of each probabilistic theory of causation

is that there is a close connection between causal and probabilistic dependence, that

the two representations indeed coincide, i.e. that each causal graph is a Bayesian

net. Thereby, the Markov and the minimality condition turn into the causal Markov

and the causal minimality condition. This means, to repeat, that the set of variables

on which A directly causally depends within the frame U is the smallest set condi-

tional on which A is probabilistically independent from all its other non-effects or,

equivalently, from all other temporally preceding variables.2 This assertion may in-

deed be used to define direct causal dependency within the frame U. At least I pro-

posed to do so in Spohn (1976/8, section 3.3, in particular pp.117f.). The defini-

tional equivalence also follows from the assumptions made by SGS.

So far there is perfect agreement between SGS and me. However, there are also

differences: first, concerning the development of causal theory, and second, con-

cerning the understanding of the basic theory thus laid out. I shall dwell on the se-

cond point, but let me briefly mention the main differences of the first kind.

In my work, I did not use, and did not even think of, any graph-theoretical me-

thods. These methods, graph-theoretic representations of independence relations, so-

called d-separation, etc., were essentially introduced and pushed forward by Judea

Pearl and his group after around 1985 (cf. Pearl 1988, pp. 132ff.). I am enthusiastic

about these methods. They add powerfully to the strength, beauty, and vividness of

the theory. Of course they are richly used by SGS. What I did have, however, in

Spohn (1976/8, sections 3.2+3, with some variations translated in Spohn 1980), was

the above-mentioned probabilistic definition of direct causal dependence and the full

theory of conditional probabilistic independence on which this definition and the

graph-theoretic methods rest, i.e. the graphoid and the semi-graphoid axioms,

including the conjecture of their completeness (refuted by now) and the weaker

conjecture of the completeness of the properties of direct causal dependence entailed

by them (proved by now).3

Naturally, I wondered how the above account of causal dependence between va-

riables may be founded on an account of causal relations between events or states of

affairs or singular propositions. This is obviously philosophically important, but of
                                                
2  That there is exactly one such set is a consequence of the properties of conditional probabilistic
independence.
3  For the conjectures see Spohn (1976/8, p. 105 and p. 119). For the positive and negative re-
sults see, e.g., the overview in Spohn (1994).
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little use in scientific and statistical methodology, and thus of no concern to SGS.

The foundation seemed straightforward: the event {A = a} is a direct cause of the

event {B = b} in the possible small world u if and only if both events occur in u, if

{A = a} precedes {B = b}, and if {A = a} is positively relevant to {B = b} according

to P under the obtaining circumstances C, which are best identified with the event

that all the variables preceding B (and differing from A, of course) take the values

they take in u. Thus, the variable B directly causally depends on the variable A iff

some event about A is a direct cause of some event about B in some possible small

world. For a long time, I was under the influence of the view of Suppes (1970, p.

58) that probabilistic causation cannot be transitive. In Spohn (1990) I changed my

mind and started to prefer defining (direct or indirect) causation as the transitive

closure of direct causation, though, as explained there, the issue is quite intricate.

Finally, in Spohn (1983, ch. 5 and 6; see also 1988) I have proposed the theory

of ranking functions, as they are called nowadays, which yield a perfect deterministic

analogue to probability theory, to conditional probabilistic dependence and inde-

pendence, to the theory of Bayesian nets, and thus to the above account of probabi-

listic causation, and I have suggested there that this is how deterministic causation

should be analyzed.4

So I have always moved within the philosophical confines. By contrast, Judea

Pearl and his collaborators have done impressive work developing and utilizing the

whole theoretical field for the purposes of artificial intelligence in a most detailed

and fruitful way. And SGS have done impressive work developing sound statistical

methodology on a sound philosophical basis, a different and in many respects much

more difficult endeavor which starts to be successful in the big statistical

community. Though all this work is addressed, to a large extent, to other depart-

ments, it contains a lot of high philosophical interest. But there is no place to further

expand on this.

3. About the Causal Import of Bayesian Nets

Let me turn, then, to the interpretational differences between SGS and me which

are my main concern. For this purpose, let us look again at the proposed definition:

the variable A directly causally depends, within the frame U, on all and only the

members of the smallest set of variables in U preceding A conditional on which A is
                                                
4  A suggestion which I have coherently explained in English only in Spohn (2000b).
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probabilistically independent from all other variables in U preceding A. This defi-

nition hides two relativizations which deserve closer scrutiny.

First, direct causal dependence is obviously frame-relative according to this defi-

nition. The relativization would be acceptable, if it concerned only the direct/indirect

distinction: what appears to be a direct causal dependency within a coarse-grained

frame may well unfold into a longer causal chain within a more fine-grained frame.

In this sense the frame-relativity is also accepted by SGS (cf. Spirtes et al. 1993, pp.

42f.). It’s worse, however. The whole notion of causal dependence is frame-relative

according to this definition: where there appears to be a direct or an indirect causal

dependency within a coarse-grained frame, there may be none within a more fine-

grained frame, and vice versa. This consequence seems harder to swallow.

The second relativization is better hidden. The talk of conditional independence

refers, of course, to an underlying probability measure. Where does it come from?

It might come from reality, so to speak. This raises the question, of course, how

to conceive of objective probabilities – a large question which I want to cut short by

simply saying that they should best be understood as chances or propensities. This,

however, is obscure enough. I have three reservations about using chances in the

present context.

The first reservation is that chances are hard to find. But we want, and do, apply

the probabilistic theory of causation almost everywhere, and in particular to fields

where it is very unclear whether genuine chances exist. Almost all examples of SGS

are from social sciences, medical sciences, etc. Maybe, if basic physics is chancy,

everything else in the universe is chancy, too. But if so, we suffer from a complete

lack of understanding of the chances, say, in economics or medicine, and whatever

the probabilities are we are considering in these fields, they are certainly not suchlike

chances.

A further reservation is that I find it very awkward in the meantime to talk of

chancy events being caused (as has been most forcefully argued by Railton 1978).

The idea behind genuine chances is that of partial determination without further de-

terminability, and the idea behind causation is that of full determination. So, it’s ra-

ther only the chances of events which are fully determined or caused and not the

chancy events themselves. I certainly agree with Papineau (1989, pp. 308 and 320)

that we need a probabilistic theory of causality in any case and that it is then largely

a matter of terminology whether we should say that something that has raised the

chance of an occurring event is among the causes of that event or only among the

causes of the chance of that event. Still, my terminological preference is clear.
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Mainly, however, my reservation is due to the fact that the above theory would be

doomed as an analysis of causation if it starts with the notion of chance. The

philosophical point of the enterprise is to elucidate the obscure notion of causal ne-

cessitation or full determination, and then the notion of chance or partial determina-

tion is presumably part of the package to be elucidated. To analyze the one in terms

of the other does not seem helpful. I rather hoped to get a grip somehow on both

notions together, on causation and chance.

If objective probabilities are thus to be avoided in the above definition of causal

dependence, the only alternative is to use subjective probabilities. This is certainly an

option, indeed the one I always preferred. However, it clearly amounts to a further

relativization of causation to an epistemic subject or to its epistemic state. The above

definition then says not what causal dependence is, but only how it is conceived by

some epistemic subject.

This relativization is certainly in good Humean spirit. But even Hume who

maintained it so bravely, was ambiguous and denied it at other places. Likewise, I

have never been happy with these relativizations, but I did not get clear about how to

get rid of them and what else to say about causation.

For instance, I could not see that the manipulability account of causation is of

any help. Whether to explain the notion of something influencing something else by

the notion of myself influencing something else or the other way around does not

seem to make much of a difference. Moreover, actions, goals, etc. always deemed to

me extraneous to the topic of causation. I found no help in the process theory of

causation of Salmon (1984). Rich and illuminating as it is, its fundamental distinc-

tion between processes and pseudoprocesses leads in a large circle back to counter-

factuals. So why not immediately engage into a counterfactual analysis of causation?

Alluding to mechanisms is unhelpful since mechanisms seem to be nothing but

suitably refined causal chains. The idea of energy transfer seems entirely beside the

point when it comes to causation in the social sciences. Postulating a second-order

universal of causal necessitation adds little in itself. And so forth.

So, the crucial question persisted: what else to say about causation? Only slowly

it dawned upon me that I might, and indeed should, turn the inability to say more

into a positive thesis. In a sense which I shall explain below there is nothing more to

say about causation then I already did!

By contrast, these relativizations are plainly unacceptable to SGS, and this is, I

admit, only common-sensical. They do not want, and do not pretend, to give an

analysis of causation. They rather want to develop a theory over some undefined
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notion of causation, just as statistics is a big theory over some undefined notion of

probability. So, in effect, they develop a theory jointly about causation and proba-

bility (cf. Spirtes et al. 1993, pp. 5ff. and 41ff.).

Their attitude, then, is this. Causal dependence, whatever it is, is ubiquitous.

However, we are able to model only small parts of empirical reality by tentatively

describing them by causal graphs and statistical hypotheses. The basic axiom of this

model building is that these causal graphs are Bayesian nets, i.e. satisfy the Markov

and the minimality condition introduced above (and also the faithfulness condition).

The frame-relative definition of direct causal dependence is thus only an equivalence

following from their axiom and has no explicative status. This shows clearly that

their underlying conception is quite different from mine.

The natural follow-up question is: why should the axiom hold? SGS do not

claim universal validity. The Einstein-Podolsky-Rosen paradox and quantum en-

tanglement in general seem to provide a noticeable exception on which, however, I

would like to be silent as well. But this does not diminish the success of the axiom

elsewhere. They summarize their defense of the axiom in the following way:

”The basis for the Causal Markov Condition is, first, that it is necessarily true of populations of

structurally alike pseudo-indeterministic systems whose exogenous variables are distributed inde-

pendently, and second, it is supported by almost all of our experience with systems that can be put

through repetitive processes and whose fundamental propensities can be tested.” (Spirtes et al.

1993, p. 64)

I am not quite satisfied by this. The first defense points to an interesting and im-

portant fact, but defers the issue to deterministic causation. And the second defense

shows that we have a lot of intuitive skills and scientific knowledge in order to select

appropriate sections of reality. But they continue the summary of their defense:

”Any persuasive case against the condition would have to exhibit macroscopic systems for which

it fails and give some powerful reason why we should think the macroscopic natural and social sy-

stems for which we wish causal explanations also fail to satisfy the condition. It seems that no

such case has been made.”

Indeed, it is interesting how they argue about specific putative counter-examples.

Their strategy is always the same: whenever there is a causal graph which is not a

Bayesian net, there exists a suitable causal refinement of the original graph which is
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a Bayesian net. In the specific cases they discuss I find their argument convincing,

for instance, when they reject the interactive forks of Salmon (1984, pp. 168ff.).5

But why should this strategy always work (with the disturbing exception already

noticed)? Two possible explanations come to my mind. One possibility is that we

have an independent notion of causation, and using that notion we generally happen

to find suitable refined causal graphs which are Bayesian nets. But surely it is in-

credible that we merely happen to find these refinements. There should be a general

reason for this success. Here one might continue in the following way:

Basically, causation is deterministic, and then, given a specific conception of de-

terministic causation, we can specify very general conditions under which such

causal relationships get displayed in Bayesian nets. This is the strategy pursued by

Papineau (1985). It is also the strategy behind SGS’ theorem that (linear) pseudo-

indeterministic systems, i.e. systems with a suitable (linear) deterministic extension

in which the exogenous variables are independently distributed, satisfy at least the

Markov condition (cf. Spirtes et al. 1993, pp. 58ff.).

This strategy is very illuminating as far as it goes. But I doubt that it works in the

end. My reason for my doubt is that I don’t believe that we have a workable theory

of deterministic causation which could play this independent role. Rather I believe,

as already indicated, that all our problems and arguments about probabilistic

causation turn up all over again when deterministic causation is at issue.6

Hence, I don’t think that the strategy presently envisaged works on the basis of

deterministic causation. And I do not see any other independent notion of causation

for which it has been, or could be, argued that it generally exhibits itself in Bayesian

nets. So I am indeed skeptical of the whole approach.

How else might we explain that there always are suitably refined causal graphs

which are Bayesian nets? The only other possibility which comes to my mind is to

say that there is no independent notion of causation to be alluded to, that this is our

understanding of causation. In other words: it is the structure of suitably refined

Bayesian nets which decides about how the causal dependencies run. We cannot re-

gard B to be causally dependent on A unless we find a sequence of arrows or di-

rected edges running from A to B in a suitably refined Bayesian net and unless, of

course, this stays to be so in further refinements. The last clause shows that the talk

                                                
5  This rejection is of vital importance to their and my enterprise. If interactive forks were not on-
ly an apparently unavoidable, strange exception, as in the EPR paradox, but a perfectly normal and
unsurprising phenomenon, as Nancy Cartright argues again in this volume, then Bayesian nets
would lose much of their interest, and my title thesis would simply be wrong.
6  See Spohn (2000b) for some substantiation of this claim.
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of suitable refinements is unnecessarily vague. In the final analysis it is the all-em-

bracive Bayesian net representing the whole of reality which decides about how the

causal dependencies actually are.

Of course, we are bound to have only a partial group of this all-embracive Bay-

esian net. Therefore it is important to have theorems telling under which conditions

and to which extent our partial grasp is indicative of the final picture, that is, under

which conditions the causal relations in a fine-grained Bayesian net are maintained

in coarsenings. The theorem of SGS about pseudo-indeterministic systems is a

good example. Clearly, however, the conditions to be specified in such theorems

cannot be but assumptions about the shape of the final picture.

These remarks indicate how I propose to get rid of the two relativizations of cau-

sal dependence explained above. If the notion of causal dependence is prima facie

frame-relative, we can eliminate this relativity only by moving into the all-embracive

frame containing all variables needed for a complete description of empirical reality.

The all-embracive Bayesian net, then, does not distribute subjective probabilities over

this frame in some arbitrary way. Rather, full information about the maximal frame

should be accompanied by full information about the facts, so that subjective

probabilities are optimally informed and thus objective at least in the sense proposed

by Jeffrey (1965, ch. 12). In this way, the relativization of causal dependence to an

epistemic state is eliminated as well.7

I am well aware that by referring to the all-embracive frame and to objective pro-

babilities in this sense I am referring to entirely ill-defined and speculative entities. It

is clear, moreover, that all causal theory can only deal with specific frames and

specific Bayesian nets and their relations. Still, I find it philosophically inevitable to

refer to such ill-defined entities, and the philosophical task is to try to strip them at

least of some of their obscurity.

This finally explains my claim that in a sense there is no more to causal depend-

ence than the above definition: this definition with its relativizations does all the the-

oretical work, and the move just proposed to eliminate these relativizations and thus

to say what causal dependence really is is only a philosophical appendix adding no

substantial theoretical content.

This needs two qualifying remarks. The first remark is that, even in the sense in-

tended here, it is not wholly true that Bayesian nets exhaust all there is to the notion

of causal dependence. I have hardly addressed the relation between time and causa-

                                                
7  Or at least reduced. My vague formulations do not allow conclusions concerning the uniqueness
of the objective probabilities thus understood.
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tion and not at all the relation between space and causation, and both add consider-

ably to the notion of causal dependence, i.e., to how the all-embracive Bayesian net

has to look in the final analysis. By contrast, I have already expressed my doubts

that such notions as action, mechanism, energy transfer, or process further enrich the

notion of causal dependence. Anyway, whatever the further aspects of the notion of

causal dependence, the theory of Bayesian nets covers its central conceptual content.

The second remark is that one must be very clear about the status of my claim

that unrelativized, i.e. actual causal dependence is relativized causal dependence

relative to the all-embracive frame and Jeffreyan objective probabilities. This is very

much like the claim of Putnam (1980) that the ideal theory cannot be false. Both as-

sertions are a priori true. Something is a priori true iff it cannot turn out to be

otherwise. By contrast, something is necessarily true iff it cannot be otherwise.

Hence, there is nothing metaphysically necessary about the truth of the ideal theory.

The world could easily be different from what the ideal theory says even given the

truth of the ideally complete evidence on which it relies. But the world cannot turn

out to be different from what the ideal theory says because this theory exhausts all

factual and counterfactual means of evidence.

Similarly, causal dependence cannot turn out to be different from what it is in the

all-embracive Bayesian net. But again this is only an epistemological claim, slightly

more contentful than Putnam’s claim, which has nothing to do with the metaphysics

of causation. Indeed, I was completely silent on the latter. If I had wanted to say

something about the metaphysics, I should have entered the whole of science, and

then, of course, much more could be said.

Let me emphasize once more that I believe exactly the same story to apply to de-

terministic causation. There, again, Bayesian nets form the conceptual core of causal

dependence, the only difference being that Bayesian nets are now constructed not in

terms of probability measures, but in terms of ranking functions, their deterministic

analogue.
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4. Actions and Interventions

When I started to write about causation in Spohn (1976/8), my real interest was

decision theory. Therefore action variables were part of my picture from the outset.

More precisely, I considered not only a set U of occurrence variables, as I called

them for want of a better term, but also a set V of action variables. Thus the frame

considered was always U ∪ V. In decision contexts the task is to find the optimal

action, action sequence, or strategy, and once one has found it, one starts executing it

(unless weakness of will interferes). Hence, it does not make sense to assume the

decision maker to have a probabilistic assessment of his own possible actions. For

this reason I postulated that a decision model must not explicitly or implicitly con-

tain any probabilities for the action variables in V (and thus took opposition to Jeff-

rey 1965).8 So instead of considering one probability measure P over U ∪ V I fol-

lowed Fishburn (1964, pp. 36ff.), and assumed a family {Pv} of probability mea-

sures over U, parametrized by the possible action sequences v realizing V, which

were to express probabilities of events over U conditional on v. It is straightforward

then to extend the notion of conditional dependence and independence to such a

family {Pv}, with the effect that relativized causal dependence can be explained

relative to the frame U ∪ V in the way sketched above and that a causal graph over U

∪ V can be constructed which is a Bayesian net (in a slightly generalized sense).

Consequently, all action variables are exogenous variables in that graph (but there

may be more), and they introduce an asymmetry into the independence relation since

occurrence variables can be (conditionally) independent from action variables,

whereas the question whether an action variable is independent from another variable

cannot arise simply because no probabilities are assigned to actions.9

A natural application of this account is Newcomb’s problem, of course, which is

basically a problem about the relation between probability and causality. As I obser-

ved in Spohn (1978, sect. 5.1), the account just sketched entails that among the four

combinations of probabilistic dependence on and independence from action va-

riables on the one hand and causal dependence on and independence from action

variables on the other exactly one is impossible, namely the case that something is

probabilistically dependent on, but causally independent from the action variables.

                                                
8  See also our exchange in Spohn (1977) and Jeffrey (1977). I still believe my principle "no pro-
babilities for one's own options" to be correct and full of important consequences. It expresses, for
instance, the most basic aspect of the freedom of the will since it exempts the will, i.e. willful ac-
tions, from causes, at least in the eyes of the agent. Cf. Spohn (1978, p 193).
9  For all this see Spohn (1976/8, sections 3.1+2).
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But this, and only this, was the case Nozick (1969) worried about. Accordingly,

there is no Newcomb problem, and two-boxing emerges as the only rational option.

I still think that this observation is basically sound.10

When studying causation more closely later on, I neglected action variables for

the sake of simplicity. But one can observe a growing interest in the explicit consi-

deration of action variables in the theory of causation and the surrounding statistical

and AI literature which certainly relates also to the triumph of the graph-theoretical

methods. Thus, a theory of intervention or manipulation has become also a central

part of the SGS theory.

Their picture is this (cf. Spirtes et al. 1993, pp. 75ff.). They start with an unma-

nipulated graph, as they call it, over a frame U. Then they consider one or several

manipulations which they represent through a set V of variables enriching the origi-

nal frame U in such a way that they are exogenous variables in the enriched or com-

bined graph and directly manipulate or act on some variables in U. These intervent-

ion variables in V have a zero state which says: ”Don’t interfere!” or ”Let it go!”

If they take this state, the original unmanipulated graph stays in force. But if they

take another state they enforce a new distribution on the directly manipulated

variables irrespective, and thus breaking the force, of the ancestors of the directly

manipulated variables in the unmanipulated graph. In the simplest case the new

distribution will outright dictate a certain value to the directly manipulated variables.

Their so-called manipulation theorem says then how to compute all the probabilities

of the manipulated graph from the unmanipulated graph and the new distributions of

the directly manipulated variables. All this provides also a nice and precise

explanation of the epistemological difference between observing a variable to take a

certain value and making it to take that value11 which entail two quite different belief

revisions (cf. also Meek, Glymour 1994, pp. 1007ff.).

However, the SGS theory of manipulation strikes me as being essentially equi-

valent with my old proposal just sketched. I did not distinguish a particular unmani-

pulated graph or, what comes to the same, a special zero state of the intervention

variables, because there is not always a natural zero state – in the Newcomb situation

you have to take one or two boxes, you cannot just let it go – and because non-

interference or refraining seemed to me to be an action as well. One could, however,

distinguish some values of action variables as such zero states in my framework and
                                                
10  Of course, I have become aware that this observation does not exhaust the problem. It is a rich
problem indeed, and at least in the iterated Newcomb problem I have converted to a one-boxer. Cf.
Spohn (2000a).
11  A distinction which has been observed also by Kyburg (1980).
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thus define the unmanipulated graph in the sense of SGS as the subgraph

determined by these action variables taking their zero states. Their manipulation the-

orem then simply states the recursive decomposition of probabilities characteristic of

Bayesian nets and their slight generalization to a probability family {Pv}.12

Again, a crucial difference lies in the fact that SGS build a very detailed statistical

theory of prediction (of the effects of intervention) on their basic definitions.13 Our

basic agreement, however, is also displayed in our treatment of Newcomb’s

problem, where Meek, Glymour (1994, p. 1015) reach the same conclusion as the

one I have sketched above.

To sum up: There is a large agreement between SGS and me in the formal basics

of a probabilistic theory of causal dependence, including even the extension to act-

ions or interventions. The main difference is that they abstain from any bold state-

ment about what causation is, wisely so for their purposes, whereas I have advanced

and argued for the, positive or negative, thesis that from an epistemological point of

view the theory of Bayesian nets exhaust, with the caveats mentioned, the theory of

causal dependence.
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