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Ranking functions, having their first appearance under the name „ordinale

Konditionalfunktionen“ in my Habilitationsschrift submitted in 1983, had several

precursors of which I was only incompletely aware, among them Shackle’s

functions of potential surprise (see Shackle 1969), Rescher’s plausibility indexing

(see Rescher 1976), Adams’ ε-semantics (see Adams 1975), Cohen’s inductive

probabilities (see Cohen 1977), Shafer’s consonant belief functions (see Shafer

1976, ch. 10), and Ellis’ rational belief systems (see Ellis 1979).1 Concerning the

actual genesis, however, their ancestor was Peter Gärdenfors’ early work on belief

revision (see Gärdenfors 1979, 1981).2 This work inspired me enormously, perhaps

because I found there the dynamical perspective to be most salient, and so I

eventually came up with the ranking functions. To my surprise, however, belief

revision theory and ranking theory went mainly separate ways. I am not sure about

the reasons (I offer some speculations below), but in any case I believe that the

separation is unnecessary.

This paper intends to narrow the gap from the side of ranking functions. It tries

to do so in four parts. Section 1 starts by resuming the mutual criticisms. Section 2

briefly introduces ranking theory and how it reflects belief revision theory. Section 3

tries to overcome the main reservation concerning ranking functions by discussing

                                                
1  One must bear in mind that the ideas of these authors are often much older then the references I
have given suggest.
2  There is a huge amount of further material which starts to develop in the seventies (and earlier)
and which is closely, but not so intimately related as the theories mentioned: for instance the
Chisholm-Pollock-Lehrer account of defeasible reasoning (see perhaps first of all Pollock 1990,
though the three authors must be distinguished, of course) and in particular such theories as default
logic, nonmonotonic reasoning, possibility theory etc. best surveyed perhaps in Gabbay et al.
(1994a).
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the extent to which their structure is reflected in changing beliefs. Section 4, finally,

presents a representation of the intended kind.

My paper is far from giving a complete account of the relation between ranking

and belief revision theory. My point is rather only a conceptual one – ranking

functions can take AGM shape! –, and therefore I am happy with offering one

plausible connection, leaving room for variations and improvements. All proofs of

theorems and other observations in the paper are more or less on the level of

exercises; I have omitted them.

1. Mutual criticisms

My two main criticisms of belief revision theory have stayed the same in the last

15 years. They were directed against Gärdenfors’ early papers, but as far as I see

they still apply to the AGM theory (cf. Alchourrón et al. 1985) and to the more re-

cent developments (cf. Gärdenfors and Rott 1995, Rott 1999a, or Hansson 1998,

1999).

The first point is the well known problem of iterated belief revision. One must be

aware that this is not just some important problem; it is vital to belief revision theory.

As long as it is not solved, belief revision theory does not deserve its name, since it

does not specify a full dynamics (or kinematics) of belief. Ranking functions have

been my answer to this problem (see Spohn 1988). The problem has also been

attended to in the AGM framework3, but neither has the problem received the central

role it deserves, nor can I find the existing proposals convincing. Ranking functions

still strike me as the more elegant and powerful solution; however, I do not want to

engage now into a detailed argument about this.4

The second point is that belief revision theory does not have an adequate notion

of doxastic dependence and independence, i.e. of irrelevance and positive and nega-

tive relevance. The most natural notion of independence in belief revision theory is

the following: ψ is independent of φ relative to the belief set K and the revision

operator * if and only if revision by φ and by ¬φ does not affect the doxastic status

                                                
3  See Boutilier (1993, 1996), Darwiche and Pearl (1997), Hansson (1992, 1993), Lehmann
(1995), Nayak (1994), Nayak et al. (1996), and Rott (1998, 1999b).
4  I am surprised, however, to see that revision methods like that of Boutilier (1993) are still under
discussion, although they were envisaged already in Spohn (1988, sect. 3) and found to be clearly
inadequate.
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of ψ as being believed or disbelieved or neither; i.e., if and only if it holds that

ψ ∈ K*φ iff ψ ∈ K*¬φ and ¬ψ ∈ K*φ iff ¬ψ ∈ K*¬φ. However, as I mentioned

in Spohn (1988, p. 120; cf. also 1983, footnote 18), this is too much independence;

it entails, for instance, that each sentence ψ believed in K is doxastically independent

of each sentence φ neither believed nor disbelieved in K. Rather such a φ should

possibly be positively (or negatively) relevant to such a ψ. For instance, I do not

know whether the candidate speaks French (= φ) or not, but I believe (because of her

other qualities) that she will get the job (= ψ). But since speaking French is an

additional qualification for the job, φ is intuitively an additional reason or positively

relevant for ψ. I am not aware of any more sophisticated accounts of doxastic

dependence and independence within the AGM framework which would fare

essentially better.

The point is a philosophically consequential one. Since Gettier (1963) an

enormously rich, but also often frustrating discussion has developed about the

nature of knowledge, justification and related matters. I find it obvious that belief

revision theory is highly relevant to this discussion; the latter could indeed profit

from the former in various respects. Therefore I applaud all attempts such as Rott

(1999a) or Olsson (1999a,b) to realize this profit. However, I think that these

attempts are severely handicapped from the outset by the lack of a workable notion

of doxastic dependence and independence. By contrast, my favorite, and, as I believe,

successful explication of the relation of being a reason is simply positive relevance

(cf. Spohn 1983, 1997/98, 1999), provided it is based on an adequate account of

relevance.

A related consequence is this: The theory of Bayesian nets (see, e.g., Pearl 1988

or Jensen 1996), the beauty and usefulness of which has been fully recognized in

AI, but hardly in philosophical epistemology, entirely depends on the suitable pro-

perties of conditional independence which can be graphically represented by so-cal-

led d-separation. Probability theory yields such properties, ranking theory as well

(cf. Spohn 1988, sect. 6, and 1994); hence, Bayesian nets can be developed in

probabilistic as well as in ranking terms. But there seems no way to draw a

connection to belief revision theory.

The two criticisms are clearly connected. I do not have a strict argument generally

showing that the failure of iterated revision entails an inadequate grasp of

independence. But the source of the two problems is the same in belief revision

theory, and they vanish at once in ranking theory.
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I am less certain about the converse criticism; there is apparently no published

argument. From discussions, however, I infer that there are two main criticisms, one

about the logical format and one from operationalism. Let me explain.

First, belief revision theory provides a logic of the operators studied by it,

whereas ranking theory does not have the form of a logic at all. Thus, philosophers

who are used to conceive of the theories at issue as a branch of philosophical logic

are automatically deterred by ranking theory. In particular, a logical system is

usually is ennobled by a completeness theorem. Belief revision theory indeed

provides a number of such completeness results.5 By contrast, it is already unclear

what completeness could at all mean in ranking theory. This is a serious complaint.

But it is, in a way, a variant of the second criticism, so that my response to the latter,

which is the main business of this paper, will at the same time answer this complaint

as well.

The second main criticism concerns the cardinal structure of ranks which makes

people feel very uneasy; this structure appears to be a mysterious theoretical make-

up lacking sober foundations. The basis of this uneasiness is, I suspect, a kind of

operationalism: According to it, the primary data of epistemology are the beliefs of a

given subject; they provide, as it were, the observational basis of any epistemological

theory. They may be thought to do so either because beliefs are taken to be

somehow introspectively accessible or because they are taken to have a clear and

direct behavioral manifestation, say, in sincere speech. So, any theory which talks

only about these primary data is fine; to assume less accessible structure is

legitimate according to the operationalist attitude only if the structure is somehow

uniquely reflected in the primary data; insofar it is not so reflected, it is an

unsupported posit.

Belief revision theory perfectly meets these operationalist standards. In its

axiomatic form it speaks only of the beliefs of a subject as they are before and after

some doxastic operation like revision or contraction; the only hypothetical element is

that all possible revisions etc. are considered which by far exceed the actual ones. In

its semantic form it speaks of additional structures like choice functions (over

models or in some sense maximal sets of sentences), entrenchment relations, etc., but

then it goes on to show how these structures are uniquely manifested in the

changing beliefs. This is precisely the point of the above-mentioned completeness

results which turn into representation theorems under the present methodological
                                                
5  This was, in a way, the essential achievement of Alchourrón et al. (1985), the birth of the AGM
theory, which has found many variations since then.



5

perspective. No comparable achievements seem available for ranking functions, and

as long as this is so, they cannot be accepted from such an operationalist point of

view.

I have two responses to this criticism. First, I think that I was not unfair in

characterizing the attitude in question as (kind of) operationalistic. So the obvious

comment is that operationalism is dead since 30 or even 60 years, and for good

reasons. Representation theorems are thus not necessary for rendering theoretical

concepts meaningful; it would be wrong to discard a theory merely for want of a

suitable representation in (quasi) observational terms. This is not to say that

representation theorems are not useful. They are; they tell when our axiomatic and

semantic intuitions coincide and mutually support each other. This is good to know,

but it does not make them indispensible.

This is the offensive response which I take, however, to be unconvincing in the

present context. So I add, secondly, a defensive response which is simply that it is

quite straightforward to establish representation theorems for ranking functions as

well; their theoretical structure is also uniquely reflected in changing beliefs. This is

what I want to explain in the rest of the paper.

2. Ranking functions, revisions, and contractions

To this purpose we have to formally introduce ranking functions. To keep things

simple I restrict everything to be finite. So let W be a finite set of basic possibilities

(possible worlds) and let all subsets of W, denoted by A,B,C,D,E, and F with or

without subsripts, be propositions. A  denotes the complement W \ A of A; often I

abbreviate A∩B by AB.

Definition 1: κ is a ranking function (for W) iff κ assigns to each non-empty

proposition a natural number as its rank such that for all A, B:

(a) either κ(A) = 0 or κ( A) = 0 (or both),

(b) κ(A∪B) = min {κ(A), κ(B)}.

For A∩B ≠ Ø the conditional rank of B given A is defined as:

(c) κ(B | A) = κ(A∩B) − κ(A).

Finally, define the core E of κ as

(d) E = {w∈W | κ({w}) = 0}.
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Ranks represent degrees of disbelief. Hence, A is not disbelieved in κ iff κ(A) =

0, disbelieved in κ iff κ(A) > 0, and believed in κ iff A  is disbelieved in κ, i.e. iff κ
( A) > 0 or iff A is a superset of the core E. Thus, we may define the belief set K

associated with κ as the set of propositions believed in κ, i.e. K = {A | E⊆A}.

Obviously, there is a one-one-correspondence between belief sets and cores. I find it

easier to proceed in terms of cores instead of belief sets. Due to (b), the rank of a

proposition is the minimum of the ranks of its singleton subsets – a useful property

I shall occasionally exploit.

The formal explication of doxastic dependence and independence will become

important later on:

Definition 2: Let κ be a ranking function. Then A is 

positively relevant

irrelevant

negatively relevant
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to B given C relative to κ iff these clauses hold for the corresponding ranks (addi-

tionally) conditional on C.

Of course, (conditional) irrelevance is the same as (conditional) independence. The

equivalence of the two defining conditions is easily checked. The first condition di-

rectly expresses the intuitive meaning of relevance and irrelevance, whereas the se-

cond condition will later prove to be useful; it also shows the symmetry of

irrelevance and positive and negative relevance. The inadequacies mentioned with

respect to belief revision theory in the previous section are obviously avoided by this

definition.

How to account for doxastic changes within this modelling? In Spohn (1988) I

argued to conceive of it in close analogy to generalized probabilistic

conditionalization invented by Jeffrey (1965, ch. 11). That is, if one is informed

about A (and nothing else), then the ranks conditional on A and conditional on A
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should not change at all. This leaves little freedom; only the restriction of κ to A can

be shifted relative to the restriction of κ to A . In Spohn (1988) I argued further that

there is no objective measure of how large the shift should be; rather, one and the

same informational content can come in various strengths, and therefore the size of

the shift should be a free parameter of the doxastic change. Hence, I defined:

Definition 3a: Let κ be a ranking function, A a non-empty proposition, and n a

natural number. Then the A,n-conditionalization κA,n of κ is defined by κA,n(B) =

κ(B|A) for B⊆A, κA,n(B) = κ(B| A) + n for B⊆ A , and κA,n(B) = min {κA,n(AB),

κA,n( AB)} for all other B.

Here, the parameter n characterizes the result of the doxastic change; in A,n-condi-

tionalization the rank of A is shifted to 0 and the rank of A  to n. As Shenoy (1991)

has observed first and several others after him, it is in a way more natural to use the

free parameter for measuring the size of the shift and not its result; only then it is ap-

propriate to describe the parameter as characterizing solely the informational pro-

cess. Then we get:

Definition 3b: Let κ be a ranking function, A a non-empty proposition, and n a

natural number. Then the A|n-conditionalization κA|n is defined by κA|n(B) = κ(B) –

m for B⊆A, where m = min {κ(A),n}, κA|n(B) = κ(B) + n – m for B⊆ A , and κA|n(B)

= min { κA|n(AB), κA|n( AB)} for all other B.

As intended, A improves here its rank in comparison to A  by exactly n units. Of

course, the two kinds of conditionalizations are interdefinable: κA,n = κA|m with m =

κ(A) + n, from which the converse relation may be inferred.

The essential point of these rules of doxastic change is that they can be

unrestrictedly iterated; the result of conditionalizing a ranking function is a ranking

function, which can be subject to further conditionalization.

Thereby we can immediately integrate belief revision theory into ranking theory,

as I have mentioned in Spohn (1988, footnote 20).

Definition 4: Let κ be a ranking function with core E. Then define the revision

E*〈A〉 of E by A≠ Ø relative to κ to be the core of κA,n for some n > 0 and the

contraction E÷〈A〉 of E by A≠W relative to κ to be E, if E∩ A  ≠ Ø, and to be the

core of κA,0, if E ⊆ A.
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It should be clear that this captures within ranking theory what we intuitively

intend revision and contraction to be; it should also be clear that the result of a single

revision does not depend on which n > 0 is chosen. The definition perfectly

corresponds to revision and contraction as conceived in belief revision theory.

Theorem 1:

(a) Ø ≠ E*〈A〉 ⊆ A,

(b) if E*〈A〉 ∩ B ≠ Ø, then E*〈A∩B〉 = E*〈A〉 ∩ B,

(c) if E ∩ A  ≠ Ø, then E ÷ 〈A〉 = E,

(d) if E ⊆ A, then E ÷ 〈A〉 ∩ A = E,

(e) E ÷ 〈A∩B〉 ⊆ E ÷ 〈A〉 ∪ E ÷ 〈B〉,
(f) if E ÷ 〈A∩B〉 ∩ A  ≠ Ø, then E ÷ 〈A〉 ⊆ E ÷ 〈A∩B〉,
(g) E*〈A〉 = E ÷ 〈A〉 ∩ A,

(h) E ÷ 〈A〉 = E ∪ E*〈 A〉.

Compare now (a) and (b) of theorem 1 with the eight revision postulates of

Gärdenfors (1988, sect. 3.3):

(K*1) K*φ = Cn(K*φ) (Closure),

(K*2) φ ∈ K*φ (Success),

(K*3) K*φ ⊆ Cn(K ∪ {φ}) (Expansion),

(K*4) if ¬φ ∉ K, then Cn(K ∪{φ}) ⊆ K*φ (Preservation),

(K*5) if Cn(φ) ≠ L, then K*φ ≠ L (Consistency Preservation),

(K*6) if Cn(φ) = Cn(ψ), then K*φ = K*ψ (Intensionality)6,

(K*7) K*(φ∧ψ) ⊆ Cn(K*φ ∪ {ψ}),

(K*8) if ¬ψ ∉ K*φ, then Cn(K*φ ∪ {ψ}) ⊆ K*(φ∧ψ).

(K*6) is implicit in my talking of propositions instead of sentences. (K*1) is

contained in the correspondence between cores and belief sets. Given this

correspondence, Theorem 1(a) is equivalent to (K*2) and (K*5), and Theorem 1(b)

is equivalent to (K*7) and (K*8). (K*3) and (K*4) are entailed by (K*7) and

(K*8), anyway. So, (a) and (b) of Theorem 1 are indeed equivalent to these revision

postulates.
                                                
6  In the belief revision literature this property is called „extensionality“, but there is an older
tradition according to which (K*6) says that the belief revision operator is intensional.
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Compare further Theorem 1, (c)-(f), with the eight contraction postulates of Gär-

denfors (1988, sect. 3.4):

(K÷1) K÷φ = Cn(K÷φ) (Closure),

(K÷2) K÷φ ⊆ K (Inclusion),

(K÷3) if φ ∉ K, then K ⊆ K÷φ (Vacuity),

(K÷4) if φ ∈ K÷φ, then φ ∈ Cn(Ø) (Success),

(K÷5) K ⊆ Cn(K÷φ ∪ {φ}) (Recovery),

(K÷6) if Cn(φ) = Cn(ψ), then K÷φ = K÷ψ (Intensionality),

(K÷7) K÷φ ∩ K÷ψ ⊆ K ÷ (φ∧ψ),

(K÷8) if φ ∉ K ÷ (φ∧ψ), then K ÷ (φ∧ψ) ⊆ K÷φ.

Again (K÷1) and (K÷6) are implicit in my framework. And due to the

correspondence between cores and belief sets, (K÷2) - (K÷5) are equivalent to

theorem 1, (c) and (d); and (e) and (f) translate (K÷7) and (K÷8). So, again, (c)-(f)

of Theorem 1 are equivalent to these contraction postulates.

Finally, (g) of theorem 1 is obviously the Levi Identity, and (h) is the Harper

Identity.

Indeed, theorem 1 is all that follows from the definition of revision and

contraction in terms of ranking functions; no stronger properties of * and ÷ can be

derived. This is an ambiguous assertion in view of the extensive discussion of the

Gärdenfors postulates and many variants of them. It can either be used as

confirmation of these postulates, as I tend to do. Or it can conversely be viewed as

disconfirmation of ranking theory, if one thinks that these postulates are the wrong

ones.

How do we know that Theorem 1 is complete? This becomes clear when one

realizes that a ranking function κ embodies an epistemic entrenchment relation: B is

at most as entrenched as A relative to κ iff B  is at least as strongly disbelieved in κ
as A , i.e. iff κ( B ) ≥ κ( A). This entrenchment relation shows up in contractions: B

is at most as entrenched as A iff B ∉ E ÷ 〈AB〉. And it has just the properties which

are revealed completely in the contraction postulates (K÷1) - (K÷8).7 Moreover, it is

obvious from Definition 4 that the revisions and contractions prescribed by a

ranking function κ depend exclusively on the entrenchment relation entailed by it.

Hence, theorem 1 is indeed complete.

                                                
7  For all this see Gärdenfors (1988, sect. 4.6).



10

3. Ranking functions and iterated revisions and contractions

All this is well known for more than ten years.8 So far, hence, we have arrived at

the result that the ordering of disbelief entailed by a ranking function κ is uniquely

reflected in single revisions and contractions as characterized in theorem 1 via the

equivalence:

(Ord) κ(A) ≤ κ(B) iff B  ∉ E ÷ 〈 A B 〉.

This amounts, conversely, to the negative fact that a ranking function itself cannot

completely show up in single revisions and contractions, simply because many

different gradings of disbelief result in the same order of disbelief. So the further

strategy is clear: if we want to find out about a complete manifestation of ranking

functions in changing beliefs, we have to look at iterated revisions and contractions.

This is no surprise; after all, this is the use ranking functions were designed for,

hence they should prove in this use. Of course, we thereby enter a large field of in-

quiry; one may think of many desirable or undesirable properties of such iterations.

It is certainly beyond my power to provide a full investigation of this field; so I shall

be content with offering a few plausible paths, since they are sufficient to establish

my point.

Let me start with a very trivial observation. Revisions and contractions relative to

ranking functions were based in definition 4 on the conditionalization explained in

definition 3a. Of course, the other conditionalization gives rise to belief change as

well.

Definition 5: Let κ be a ranking function with core E. Then define the (minimal)

enhancement E#〈A〉 of A ≠ Ø in E relative to κ to be the core of κA|1.

By a minimal enhancement A gets minimally better entrenched or, respectively, A

gets minimally worse entrenched. Thus, enhancement is not revision; if κ(A) > 1 or

κ( A) > 0, E#〈A〉 = E, i.e. nothing changes on the surface. If κ(A) = 1, the

                                                
8  Actually, the basic facts are already contained, in somewhat different, though entirely differently
interpreted terms, in Lewis (1973).
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enhancement of A is, in effect, a contraction by A ; and if κ(A) = κ( A) = 0, the

enhancement of A is an expansion by A.

Enhancements can obviously be iterated in the same way as conditionalization.

Hence define E#〈A1,...,An+1〉 = E#〈A1,...,An〉
#〈An+1〉. Moreover, a proposition can be

enhanced several times. Hence define E#n〈A〉 = E#〈A,...,A〉 (n times). Now the trivial

observation is that the grading of disbelief is uniquely reflected in iterated

enhancements:

(Grad) κ(A) = n > 0 iff E#n-1〈A〉 = E and E ⊂ E#n〈A〉, and κ(A) = κ( A) = 0

iff E#〈A〉 = E ∩ A.

Furthermore, I see no principal difficulty in giving a complete „behavioral“

description of iterated enhancements.

So, this already solves our problem. It is a disappointing solution, of course. The

measuring rod enhancements provide is certainly unacceptable from the point of

view of belief revision theory, since single enhancements have usually no „beha-

vioral“ consequences at all; only the appropriate number of enhancements has.

Let us hence look for a more convincing solution. One remark, though:

Intuitively, enhancements make good sense. The following story is not unusual: I

strongly disbelieve A. Now one source tells me that A. This cannot dispel my

disbelief. The next source also affirms that A. I am still reluctant to give up my

disbelief. But there comes the point where the number of affirmations outweighs my

disbelief, provided they are independent and accumulate enhancements. Hence,

epistemology is well advised to account for such cases. Probability theory is able to

do so (if we neglect the problem of how at all to give a probabilistic account of belief

and disbelief), ranking theory as well, but belief revision theory apparently not. I

grant, of course, that it is very artificial to turn such cases into a measuring device for

ranking functions.

Where to look for a better representation of rankings in belief change? Let us

return to revisions and contractions as specified in definition 4. Given the underlying

ranking function κ, they can clearly be iterated as well: E*〈A1,...,An+1〉 = E*〈A1,

...,An〉*An+1, and likewise for contraction. Note that it did not matter how we fix the

parameter n > 0 implicit in a single revision (which was defined via A,n-conditio-

nalization). But, of course, the parameter makes a lot of difference for iterated

revisions. For studying them we should thus fix the parameter to be the same in all

revisions considered, preferably n = 1 throughout. However, this imports a cardinal
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arbitrariness which may compromise the investigation from the outset. By contrast,

iterated contraction does not depend in this way on arbitrary decisions; definition 4

suffices to uniquely determine it relative to a given ranking function. This

consideration leads me to pursue our question solely in terms of iterated

contractions.

Let us observe, first, that iterated contractions are not reducible to a single

contraction. The only tempting thought may be that E ÷ 〈A,B〉 is the same as E ÷
〈A∪B〉. But of course it is not. E ÷ <A∪B> must not contain the belief that A∪B,

whereas E ÷ 〈A,B〉 must only delete the beliefs in A and in B, but may retain the

belief in A∪B.

A bit less trivial is the observation that iterated contraction is even not reducible to

(simultaneous) multiple contraction which has been inquired in belief revision theory

by Fuhrmann and Hansson (1994). On p. 44 they mention that multiple and iterated

contraction cannot be the same because the order of contractions may matter in an

iteration – Hansson (1993, p. 648) has a nice example in which commutativity of

iterated contractions intuitively fails –, but not in a multiple contraction in which all

propositions have to be contracted at once. This is confirmed in ranking theory

which also entails the non-commutativity of iterated contractions:

Theorem 2: E ÷ 〈A,B〉 ≠ E ÷ 〈B,A〉 iff E ⊆ A,B, κ(B | A) = 0 or κ(A | B ) = 0, and

κ( B | A) < κ( B | A) (which is equivalent to κ( A | B ) < κ( A | B)).

Constructing the proof shows precisely how the failure of commutativity comes

about under these conditions. Roughly, the point is that A is positively relevant to B

(and vice versa) and that the additional conditions thus have the effect either that A B

is disbelieved (or „if A, then B“ believed) after contracting first by A and then by B,

but not after the reverse contraction, or that AB is disbelieved (or „if B, then A

believed) after contracting first by B and then by A, but not after the reverse

contraction (or that both is the case).

This observation raises two issues. First, there is the side question whether

multiple contraction can also be explained in terms of ranking functions. Yes, it can.

Suppose that {A1,...,An} are to be contracted from the core E of κ (all of which are

assumed to be believed in E, in order to avoid triviality). Choice contraction of at

least one of A1,...,An may then be defined as the single contraction of A1∩...∩An, as

Fuhrmann and Hansson (1994, p. 72) have observed. Package contraction of all of

A1, ...,An may be defined in the following way: Let B1,...,Bm be those atoms of the
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Boolean algebra generated by {A1,...,An} which are subsets of A 1∪...∪ An. Clearly,

all of B1,...,Bm are disbelieved in κ. Let C1 be the union of the least disbelieved of

these atoms, C2 the union of the second least disbelieved, etc., and Ck the union of

the most disbelieved. Now contract κ first by C1, then by C2, and so on until none of

A1,...,An is believed any more (this procedure may stop before one has reached Ck).

The core E' of the resulting ranking function κ' may then finally be defined as the

package contraction E ÷ {A1,...,An}. Thus one may prove that package contraction so

defined satisfies all the postulates listed in Fuhrmann, Hansson (1994, pp. 50-55),

i.e. the postulates (success), (inclusion), (vacuity), (relevance), (failure), and

(uniformity) in the package version. These postulates do, however, not completely

characterize package contraction as defined, because they generalize only (K÷1) -

(K÷6); the appropriate generalizations of (K÷7) and (K÷8) are only conjectured in

Fuhrmann, Hansson (1994, pp. 55-57).9

Mainly, however, theorem 2 suggests the question how a doxastic dependence or

independence between A and B shows up in iterated contraction. The answer is

straightforward: At least one of AB, A B , AB, or A B  must have rank 0. Suppose

κ(AB) = 0 (if one of the other conjunctions has rank 0, the corresponding assertions

hold). Then we have:

(PosRel) A is positively relevant to B w.r.t. κ, i.e. κ(AB) + κ( A B ) < κ(A B ) +

κ( AB) iff E ÷ 〈A,B〉 ⊆ A∪B or E ÷ 〈A,B〉 ⊆ A∪B  or both, i.e. iff „if A,

then B“ or „if B, then A“ or both are believed in E ÷ 〈A,B〉 (or, for that

matter, in E ÷ 〈B,A〉).10

(NegRel) A is negatively relevant to B w.r.t. κ, i.e. κ(AB) + κ( A B ) > κ(A B ) +

κ( AB) iff E ÷ 〈A,B〉 ⊆ A∪B, i.e. iff „if non-A, then B“ is believed in E

÷ 〈A,B〉 (= E ÷ 〈B,A〉).11

(Irrel) A is irrelevant to B w.r.t. κ, i.e. κ(AB) + κ( A B ) = κ(A B ) + κ( AB) iff

none of A∪B, A∪B , A∪B, and A∪B  is a superset of E ÷ 〈A,B〉 (= E ÷
〈B,A〉), i.e. iff none of the material implications between A or A  and B or

B  is believed in E ÷ 〈A,B〉.

                                                
9  Sven Ove Hansson tells me that he does no longer believe in these conjectures.
10  At least one of the material implications is believed in E ÷ 〈A,B〉 iff at least one of them is
believed in E ÷ 〈B,A〉. Theorem 2 only says that there may be differences concerning which one(s)
is(are) believed after the two contractions.
11  The apparent asymmetry between (PosRel) and NegRel) comes about because our starting point
κ(AB) = 0 entails that AB is not disbelieved and hence „if A , then non-B“ not believed in E ÷
〈A,B〉.
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What these conditions do, hence, is precisely to provide „operational“ definitions of

doxastic dependence and independence. And they do so, I find, in an intuitively ap-

pealing way: Suppose AB is not disbelieved. Thus neither A nor B is disbelieved, but

possibly both are believed. Contraction by A then results in a doxastic state which is

neutral on A, i.e. in which neither A nor A  is believed. Likewise, contraction by B

results in a state which is neutral on B. Hence, iterated contraction by A and by B (in

either order) results in a state which is neutral on both, A and B. But possibly some

material implications between A or A  and B or B  survive, and the kind of

dependency between A and B should manifest itself precisely in which of these

implications survive; in particular, independence between A and B should obtain

precisely if none of them are maintained, as (Irrel) says.

We can immediately extend these conditions to „behavioral“ definitions of

conditional dependence and independence: Consider three propositions A, B, and C.

At least one of the conditional ranks κ(AB|C), κ(A B |C), κ( AB|C), and κ( A B |C)

must be 0. Assume without loss of generality that κ(AB|C) = 0. Then we have:

(CPosRel) A is positively relevant to B given C w.r.t. κ, i.e. κ(AB|C) + κ( A B |C) <
κ(A B |C) + κ( AB|C) iff either A∪B∪C  or A∪B∪C  (or both) is a

superset of, i.e. believed in E ÷ 〈C , A∪C , B∪C 〉.

The corresponding conditions (CNegRel) and (CIrrel) hold for conditional negative

relevance and conditional irrelevance.

These conditions look somewhat less perspicuous than the previous ones. The

effect of the threefold appearance of C  in the iterated contraction is to restrict all

doxastic changes to (the possibilities in) C, and then the point is quite the same;

(CIrrel) says, for instance, that A and B are independent given C iff none of the

material implications „if C and A', then B'“ (A' ∈ {A, A}, B' ∈ {B, B}) survives the

three contractions.

The six conditions from (PosRel) to (CIrrel) are assertions about a ranking func-

tion κ. But as I suggested, they are also plausible assertions about (un-)conditional

dependence and independence in an intuitive sense. This raises urgent questions:

What are, intuitively, the properties of doxastic dependence and independence? Or, if

that makes sense, what should they rationally be? Answers would have many

consequences for iterated contractions (via these conditions) and for iterated revision

(via the Levi Identity). Conversely, how are iterated contraction and revision in-
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tuitively or rationally to be expected to behave? Again, answers would determine a lot

about doxastic dependence and independence. Either way, I have the discussion

where I want to have it. Belief revision theory must think about doxastic dependence

and independence and their properties; otherwise it is bound to be insufficient on its

home field, revisions and contractions.

4. A Representation Result

Relative to ranking functions, anyway, doxastic dependence and independence are

clearly defined and hence their „behavioral“ consequences uniquely determined. I

do not want to engage now into an argument about the intuitive expectedness or

acceptability of the properties of ranking dependence and independence. Generally,

one can say that they are (almost) the same as those of probabilistic dependence and

independence and agree with the graphical criterion of d-separation.12 Hence, the

question of intuitive acceptability is the same for both frameworks.

In this final section I rather want to address the question whether our

observations open a way for a complete operational definition of ranking functions,

i.e. to which extent ranking functions are conversely determined by suitable

properties of iterated contraction via (Ord) and (PosRel) – (CIrrel). This seems to be

a standard problem of measurement theory. Hence one should look for advice in the

theory of difference measurement (cf., e.g. Krantz et al. 1971, ch. 4) or in the theory

of probability measurement (cf. Domotor 1969, Krantz et al. 1971, ch. 5, or Fine

1973, ch. II) which proceeds from comparisons of unconditional and/or conditional

probabilities and/or a qualitatively given independence relation.

However, it was not clear to me how to carry over these parts of measurement

theory. One reason is that a complete axiomatization of conditional dependence or

independence by itself is apparently still unknown (cf. Spohn 1994). Another reason

is that, if measurement is based on probability comparisons, the usual route is to

identify so-called standard, i.e. equally distanced sequences; however, ranking

function would lose their point, if they had to embody standard sequences.

Still, it does not seem so difficult to achieve a representation of ranking functions;

after all, things are vastly simplified by the fact that only natural numbers are

possible measurement results. So let us start from some ordering ≤ of disbelief
                                                
12  „Almost“ refers to the fact that only some very far-fetched differences have been discovered. Cf.
Spohn (1994).
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which is reflected in contraction via (Ord) and from some conditional non-negative

relevance relation, denoted as A∆B|C, which is reflected in iterated contraction via the

disjunction of (CPosRel) and (CIrrel). The goal then is to thereby represent a

ranking function κ such that for all A,B,C: A≤B iff κ(A) ≤ κ(B) and A∆B|C iff

κ(AB|C) + κ( A B |C) ≤ κ(A B |C) + κ( AB|C). I am content with presenting one

inelegant way to achieve this goal; it is certainly open to improvement.

First, the necessary properties of ≤ are obvious (where A≈B is defined as A≤B

and B≤A, and A<B as A≤B, but not B≤A):

(1) ≤ is a weak order, i.e. transitive and connected,

(2) if A≤B, then A≈A∪B.

This entails that there is a sequence of non-empty propositions E0...,En which

partition W such that E0<...<En and A≈Ej iff A∩Ej ≠ Ø and A∩Ei = Ø for all i < j

(and hence A≈Ej for all non-empty A⊆Ej). Thus, ≤ is completely captured by the

sequence E0,...,En, and we need only determine the ranks of E0,...,En.

Here, conditional non-negative relevance may help in the following way. First, we

can reduce any such relevance to one among propositions constructed from the

sequence E0,...,En: Let A,B,C be any three propositions. Then there must be i,j, k,l≤n

such ABC≈Ei, A BC≈Ej, ABC≈Ek, and A BC≈El. We may assume without loss of

generality that Ei ≤ Ej,Ek,El. If El<Ej or El<Ek should be the case, then A is obviously

positively relevant to B given C. This is stated in a necessary condition:

(3a) if El < Ej or El < Ek, then A∆B|C.

Let us consider then the other case where Ej,Ek ≤ El. Again, without loss of generality

we may assume that Ei ≤ Ej ≤ Ek ≤ El. Now define:

Fi = Ei∪...∪En,

Fik = Ei∪...∪Ek-1,

Fijkl = Ei∪...∪Ej-1∪Ek∪...∪El-1.

Then, we obviously have FiFikFijkl ≈ Ei, FiFik F ijkl ≈ Ej, Fi F ikFijkl ≈ Ek, and Fi F ik F ijkl ≈
El. This entails the further necessary condition:

(3b) if Ei ≤ Ej ≤ Ek ≤ El, then A∆B|C iff Fik ∆ Fijkl | Fi.
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Hence, we can confine ourselves to considering only such triples of F-propo-

sitions. They can be used to measure the rank distances between members of the

sequence E0,...En in the following way: Let us say that the distance beween Ei and

Ei+1 is minimal iff for all k > i  F ik ∆ Fii+1kk+1 | Fi and for all k > i  Fki ∆ Fkk+1ii+1 | Fk. If

one observes first the intended representation of non-negative relevance and second

the fact that A∆B|C expresses the conditional non-positive relevance of A to B, then

it becomes clear that this definition captures the intuitive meaning.

If the distances between Ei and Ei+1 were minimal for all i = 0,...,n-1, then E0, ...,En

would indeed form a standard sequence and we were finished. However, to require

so much minimality would be uninterestingly restrictive. The following structural

condition is much weaker (for which we define A⊥B|C, i.e. A is irrelevant to B given

C, iff A∆B|C and A∆B|C):

(S) Whenever the distance between Ei and Ei+1 is not minimal, then there are k and

l ≥ k+2 such that Fik ⊥ Fii+1kl | Fi, if k > i, and Fki ⊥ Fklii+1 | Fk, if k < i.

Numerically, (S) has the effect that each non-minimal distance is the sum of smaller

distances and thus in the end a unique multiple of the minimal distance. Clearly, (S)

is a non-necessary condition; relations ≤ and ∆ induced by some ranking function

may or may not behave according to (S). But (S) is sufficient for representing

ranking functions:

As I said, (S) uniquely fixes somes function f defined for 〈i,j〉 with i < j ≤ n such

that f(i,i+1) = 1 iff the distance between Ei and Ei+1 is minimal and such that f(i,j)

measures the distance between Ei and Ej in multiples of the minimal distance. How-

ever, it does so only if non-negative relevance is well-behaved. So, given (S), the

following condition is also necessary:

(4) Fik ∆ Fijkl | Fi iff f(i,j) ≥ f(k,l).

So, all this sums up to the following

Theorem 3: Whenever the relations ≤ and ∆ satisfy conditions (1) - (4) and (S), then

there is a ranking function κ such that for all A,B,C: A ≤ B iff κ(A) ≤ κ(B) and

A∆B|C iff κ(AB|C) + κ( A B |C) ≤ κ(A B |C) + κ( AB|C). There is only one such

ranking function κ' such that κ'(Ei+1) – κ'(Ei) = 1 if the distance between Ei and Ei+1
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is minimal. If κ'' is another ranking function thus represented, then there is some

natural number α > 0 with κ'' = ακ'.

Hence, ranking functions are measured on ratio scales; more uniqueness could

obviously not be expected.

Of course, not each ranking function may be uniquely represented in this way.

For instance, if n = 2, i.e. if κ distinguishes only three ranks κ(E0) = 0, κ(E1) = x,

and κ (E2) = y, then the above machinery helps to determine whether 2x = y or 2x < y

or 2x > y; but if one of the latter two holds, there is nothing to further determine x.

Still, theorem 3 can and should be improved. Structural conditions weaker then (S)

may do as well, and the necessary conditions (3) and (4) can and should be

expressed in a nicer way.

But formal optimality was not my aim here. The point of the exercise was only to

show that there are conditions sufficient for representation, namely the conditions

(1) - (4) and (S), which are expressible in terms of ≤ and ∆13 and thus, via (Ord),

(CPosRel), and (CIrrel), ultimately in terms of iterated contractions. Hence, iterated

contractions alone suffice for fixing the structure of ranking functions.14
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